
Vol. 46 No. SIG 3(ACS 8) IPSJ Transactions on Advanced Computing Systems Jan. 2005

Regular Paper

Construction of Hybrid MPI-OpenMP Solutions for SMP Clusters

Ta Quoc Viet,
†
Tsutomu Yoshinaga,

†
Ben A. Abderazek

†

and Masahiro Sowa
†

This paper proposes a middle-grain approach to construct hybrid MPI-OpenMP solutions
for SMP clusters from an existing MPI algorithm. Experiments on different cluster platforms
show that our solutions exceed the solutions that are based on the de-facto MPI model in
most cases, and occasionally by as much as 40% of performance. We also prove an automatic
outperformance of a thread-to-thread communication model over a traditional process-to-
process communication model in hybrid solutions. In addition, the paper performs a detailed
analysis on the hardware and software factors affecting the performance of MPI in comparison
to hybrid models.

1. Introduction

Clusters of Symmetric Multiprocessors
(SMPs) have recently gained great popularity.
Consequently, the proper choice of a parallel
programming model becomes extremely impor-
tant. The three model candidates are listed as
follows:

1. Pure MPI (MPI): each processing element
(PE) is used for one MPI process, which has its
own address space 1). A PE communicates with
others by passing messages.

2. Hybrid MPI-OpenMP with process-to-
process communication (Hybrid PC): each SMP
node is used for one MPI process. OpenMP 2) is
applied for computation parallelization within
SMP nodes. MPI communication is executed
outside OpenMP parallel regions.

3. Hybrid MPI-OpenMP with thread-to-
thread communication (Hybrid TC): similar to
the hybrid PC model. However, MPI commu-
nication tasks are performed within OpenMP
parallel regions by a single thread. During com-
munication, non-communicating threads are
assigned to perform computation tasks. A
computation-communication overlap within a
node is the particularity of the model.

Thus, the number of processes in MPI,
nprocs(M), is the product of the number of
nodes, nnodes, and the number of PEs per
node, nppn. This number is equal to nnodes
for hybrid models:

nprocs(M) = nnodes × nppn
nprocs(PC) = nprocs(TC) = nnodes
Until date, hybrid models apply two common

† Graduate School of Information Systems, University
of Electro-Communications

methods to parallelize computation tasks with
OpenMP within a node: (1) fine-grain loop-
level parallelization and (2) coarse-grain SPMD
parallelization. In the former, OpenMP parallel
directives are inserted into all available parallel
loops. In the latter, each thread manages its
own data and performs computation tasks as if
it is a process in MPI with no further utility of
the “!$Omp do” construct 3).

This paper proposes and applies an alter-
nate, the middle-grain approach. While avoid-
ing the complexity of the SPMD method, it
also denies a poor performance characteristic
of the fine-grain parallelization (Section 3.1).
Applying the middle-grain method along with
an overlapping-oriented task-schedule (Sec-
tion 3.3), we can create effective hybrid TC so-
lutions that exceed MPI in performance, occa-
sionally by as much as 40%.

To achieve multiformity, we choose experi-
mental platforms and problems with contrary
characteristics. A cluster of Sun Enterprise
3500 SMPs and a cluster of Intel Dual-processor
SMPs are used as experimental platforms (Sec-
tion 5). The NAS-CG benchmark—CG 4) (Sec-
tion 6) and the High Performance Linpack
Benchmark—HPL 5) (Section 7) are selected as
experimental problems. Both benchmarks are
important and well-known in the high perfor-
mance computing world and are therefore, ex-
amined by various studies 3),6)～9).

The main contributions of this paper are
listed as follows:
1. A detailed comparison among the three mod-

els, and a complete analysis on the hardware
and software factors that affect their perfor-
mance.

2. A proof for automatic outperformance of hy-

25

26 IPSJ Transactions on Advanced Computing Systems Jan. 2005

brid TC over hybrid PC under any circum-
stances.

3. An algorithm to construct a hybrid TC so-
lution based on the middle-grain approach
and an overlapping-oriented task-schedule,
which dominates the de-facto MPI solution
in most cases.

2. Related Works

The hybrid PC model has been examined in
several prior studies. In Ref. 6), the authors
have shown a common path to construct a fine-
grain hybrid PC code, which is referred to as the
“Hybrid Memory Model—HMM,” from an ex-
isting MPI model. On the basis of this path, the
authors of Refs. 7) and 8) built a fine-grain hy-
brid PC solution for the NAS benchmarks and
compared its performance to a pure MPI model
on a cluster of IBM SP nodes. Using COSMO—
a cluster of Intel dual processor nodes, the
authors of Ref. 10) compared hybrid PC and
pure MPI by solving the Smooth Particle Ap-
plied Mechanics (SPAM) problem. The above
mentioned studies revealed that hybrid PC is
worse than pure MPI in most cases despite its
three main advantages: (1) low communication
cost, (2) dynamic load balancing availability,
and (3) coarse-grain communication availabil-
ity 10). Even on the Earth Simulator with the
CG problem, hybrid PC outperforms pure MPI
only when nnodes is a considerably large 11).

The poor performance of the fine-grain
hybrid PC model was explained by its
poor inner-node OpenMP parallelization effi-
ciency 8), which was due to a bad cache hit ra-
tio 10). These studies also discussed replacing
the fine-grain loop-level OpenMP paralleliza-
tion by the coarse-grain SPMD OpenMP model
with extra thread data localization. However,
they also predicted two huge disadvantages for
such a solution: (1) complexity in programming
and (2) sacrifice of the dynamic load balancing
availability.

Another study has described the construction
of a coarse-grain SPMD pure OpenMP solution
on a shared-memory platform 3). This solution
outperforms a pure MPI solution in all exper-
iments. The results proved its ability to ob-
tain an inner-node OpenMP performance bet-
ter than that of the MPI model. However, the
application of the approach to hybrid solutions
is not yet clear.

We initially proposed the basic principles of
hybrid TC in Refs. 12) and 13). In Ref. 13),

a hybrid TC solution for the HPL benchmark
outperformed MPI by approximately 10% on
the Sun cluster although it was created by a
relatively primitive algorithm. However, the
lack of experiments did not permit us to ar-
rive to a conclusion regarding the dominance of
hybrid TC. The performance for hybrid TC will
improve by approximately 27.5% by proposing
and applying a more progressive algorithm as
shown in this paper.

Hybrid TC was then discussed and compared
with the hybrid PC of Refs. 14), 15), and 16).
According to the authors, there is no automatic
outperformance for hybrid TC. In Section 4.4,
we can prove that hybrid TC always exceeds
hybrid PC in performance.

3. Hybrid Solution Construction

This section presents a new method to cre-
ate hybrid solutions from original MPI algo-
rithms. The hybrid TC solution is based on
the middle-grain approach and an overlapping-
oriented task-schedule. The hybrid PC solution
applies only the middle-grain approach along
with an original MPI task-schedule.

3.1 The Middle-grain Approach
Until date, there are two common approaches

for OpenMP to parallelize computation tasks
within an SMP node: fine-grain and coarse-
grain SPMD methods. The former simply
inserts OpenMP “fork-and-join” directives in
all available loops from an original MPI code.
However, it exhibits a rather poor performance
in comparison to the MPI model. The latter
treats the threads like MPI processes in the
MPI model. The data is thread-localized. A
single OpenMP “fork-and-join” construct is ap-
plied to the whole solution. The “!$Omp do”
directive is no longer used. The communication
part from the original MPI solution is also simu-
lated and replaced by memory copying. Within
an SMP, the application of the approach results
in a brilliant performance that outperforms the
original MPI model in all the examined experi-
ments 3). However, this approach lacks simplic-
ity, a particularity of OpenMP. Furthermore,
the application of the approach to hybrid solu-
tions is not yet clear.

In this study, we propose a novel middle-grain
approach that has advantages over both the
above mentioned methods: simplicity and effec-
tiveness. Its main features are listed as follows:

MPI-algorithm basement: the solution is
based on the original MPI algorithm rather

Vol. 46 No. SIG 3(ACS 8) Construction of Hybrid MPI-OpenMP Solutions for SMP Clusters 27

than its code.
Middle-grain parallelization: an OpenMP

parallel construct is applied for a block, which
may contain several loops. A block includes
both computation and communication tasks.
Computation tasks are partitioned into indexed
grains that will be executed by the “!$Omp do”
directives.

Intra-node flag communication: all data-
dependencies are followed by status flags. A
thread must update the shared status flag to
announce the completion of a task. In order
to confirm the completion of the task, other
threads can check the flag’s status.

3.2 The Middle-grain’s Effect
Until date, a traditional hybrid model with

the fine-grain approach is assumed to be less
effective than MPI in computation. The poor
performance is explained by (1) extra OpenMP
synchronization overheads caused by too many
parallel regions and (2) a low cache hit ra-
tio caused by bad memory access behavior.
However, by the middle-grain approach, hybrid
models can overcome both the above obstacles
and achieve the same performance as MPI:

(1) OpenMP synchronization overheads:
The middle-grain approach aids in signifi-

cantly decreasing the number of OpenMP par-
allel regions, which makes the synchronization
cost become negligible.

(2) Memory access behavior:
Without data localization, a hybrid model

may force a thread to manipulate the entire
data distributed to a node, and the cache
size becomes insufficient 10). Due to an MPI-
algorithm basement, the middle-grain approach
is flexible enough to split a task into grains such
that the necessary data of which are separated,
and a certain thread will have to manipulate a
smaller data area. In any case, a programmer
can simulate the memory usage pattern of the
MPI model and obtain an identical cache effect.

In addition, OpenMP may cause concurrent
access by several threads to the same memory
location. In order to avoid this problem, cer-
tain data with high rate of concurrent access
are declared as private variables. In our exper-
iments, the private declaration is required for
only certain scalars and the addresses of vec-
tors/matrices. Therefore, the cost for this data
localization is negligible and can be omitted.

It should be noted that in this paper, the
middle-grain effect over the fine-grain approach
is not represented directly by experimental re-

sults since all the experiments with hybrid mod-
els are performed by the middle-grain approach.
For the fine-grain approach, a user has sev-
eral options of parallelization levels in a nested
loop. Furthermore, not all the OpenMP avail-
able loops are OpenMP effective. Therefore, it
is rather complicated to build the most effec-
tive variant of the fine-grain approach 8). The
middle-grain affect is represented indirectly by
the fact that it aids hybrid PC in obtaining a
comparable performance with that of MPI.

3.3 Overlapping-oriented Task-
schedule

The overlap volume is the key-factor of hy-
brid TC. An overlap is available if there is no
data-dependency between certain computation
and communication tasks. In the case of the
original MPI task-schedule, the available over-
lapping volume is usually small. Hereafter, we
propose a 4-step algorithm to build a new task-
schedule from an original MPI algorithm that
permits a greater overlap volume.

Step 1. Select blocks for parallelization. A
block should include both communication and
computation and occupy a noticeable percent-
age of the execution time. A global loop-
iteration is a good candidate. For each block,
perform steps 2 to 4 described below:

Step 2. Build a task-dependency graph for
the block. If the block is a loop-iteration, the
graph should also include the dependencies con-
cerning the previous and next iterations.

Step 3. Try one or more of the following tech-
niques to enlarge the available ovelapping part:
(a) If the block is a loop-iteration, recon-

struct the loop such that larger compu-
tation and communication tasks with no
data-dependency appear.

(b) If a communication task M depends on
only a part of a computation task P , split
P into P1 and P2 such that M depends on
P1 only. Now, we can overlap P2 with M .

(c) If a large communication task M depends
on a large computation task P , split M
and P into M1, M2, M3... and P1, P2,
P3..., respectively, such that Mi depends
on Pi only. Now Mi and Pj (i �= j) be-
come independent and can be overlapped.
However, the size of Mi should be large
enough to avoid a decrease in the commu-
nication speed 10).

Step 4. Rebuild the task-dependency graph
with the modifications caused by steps 2 and
3. Based on the newly created graph, build the

28 IPSJ Transactions on Advanced Computing Systems Jan. 2005

Fig. 1 Time breakdown for parallel models.

hybrid TC task-schedule.
The application of this 4-step algorithm to

CG and HPL will be described in details in Sec-
tions 6.2 and 7.2, respectively.

4. Parallel Model Comparison

4.1 Methodology
We compare the performance of the three

models with respect to their execution time
T , which includes comPutation time Tp and
comMunication time Tm. We have Tp = Vp/Sp,
where Vp and Sp are the computation volume
and speed, respectively; and Tm = Vm/Sm,
where Vm and Sm are the communication vol-
ume and speed, respectively. When the work-
load is not balanced among the nodes, the exe-
cution time of the heaviest node should be con-
sidered. The bracketed strings “M,” “PC,” and
“TC” are added into the variable names to dis-
tinguish among MPI, hybrid PC, and hybrid
TC, respectively. For example, Tp(M) repre-
sents the computation time for the MPI model.
The comparison would be performed under the
following bases:

Basis 1. Vp(M) = Vp(PC) = Vp(TC) = Vp:
All models have the same computation vol-

ume. This is natural because all of them are
based on the same algorithm.

Basis 2. Sp(M) = Sp(PC):
MPI and hybrid PC have the same compu-

tation speed. As discussed in Section 3.1, the
middle-grain approach supplies hybrid PC (and
hybrid TC in the computation-only phase) the
same computation speed as that of MPI. Hy-
brid TC in a computation-communication over-
lap is slower because one of the processors is
busy with communication at that time.

Basis 3. Vm = f(nprocs):
The communication volume is a function of

nprocs. This function varies from problem to
problem.

Basis 4. Sm(PC) = Sm(TC) = Sm(hybrid)

and Sinter m(PC) ≥ Sm(hybrid):
Hybrid models have the same communication

speed, which is slower than the inter-node com-
munication speed of MPI.

On the Intel cluster, if hybrid TC uses
“!$Omp single nowait” to implement the com-
munication, the overlap slows down the commu-
nication speed. This slowdown can be avoided
by using the “!$Omp master” directive instead.
Such a problem does not occur on the Sun clus-
ter. A possible reason is a higher priority that
the Intel OpenMP implementation assigns to
the master thread.

Unlike hybrid models, MPI simultaneously
performs the communication tasks by nppn
channels. In platforms where a single PE
cannot saturate the inter-node communication
bandwidth, the communication speed of MPI
will be faster than that of the hybrid mod-
els 15),16).

4.2 Execution Time Calculation
Figure 1 illustrates a breakdown of the ex-

ecution time for the three models. In reality,
each component may be broken into several
non-continuous parts; however, for simplicity,
we merged them. This mergence does not af-
fect the correctness of the time calculation.
MPI Execution Time T(M):

T(M) = Tp(M) + Tintra m(M) + Tinter m(M),

(1)

where Tintra m(M) and Tinter m(M) are the
times spent for the intra-node and the inter-
node communication, respectively.
Hybrid PC Execution Time T(PC):

T(PC) = Tp(PC) + Tm(PC). (2)
Hybrid TC Execution time T(TC):

In hybrid TC, the main objective is to over-
lap the computation and communication tasks

Vol. 46 No. SIG 3(ACS 8) Construction of Hybrid MPI-OpenMP Solutions for SMP Clusters 29

to the maximum possible extent. However,
due to the task-dependencies and the difference
between the computation and communication
times, usually, there still exist computation and
communication tasks that must be performed
outside the overlap. With

Tp only(TC): computation-only time,
Tm only(TC): communication-only time, and
Toverlap(TC): overlap time,

we have
Tm(TC) = Tm only(TC) + Toverlap(TC),

and T(TC) is given by
T(TC) = Tp only(TC) + Tm(TC). (3)

4.3 MPI versus Hybrid PC
Due to basis 1 and basis 2, we have

Tp(M) = Tp(PC). (4)
From Eqs. (1), (2), and (4), we can calculate the
difference in the execution time between MPI
and hybrid PC as

T(M) − T(PC)

= Tintra m(M) + Tinter m(M) − Tm(PC)

= Tintra m(M) +
Vinter m(M)

Sinter m(M)
− Vm(PC)

Sm(PC)
.

This subtraction, where a positive result
would imply outperformance for hybrid PC,
cannot determine the better model. In compar-
ison to MPI, hybrid PC does not suffer intra-
node communication. On exchange, it has a
slower inter-node communication speed (basis
4). In order to determine the better model, we
should evaluate the following factors:

Factor 1: Sintra m(M). Slow intra-node com-
munication speed would cause MPI more costs.

Factor 2: nppn. In general, the MPI intra-
node communication volume increases along
with nppn.

Factor 3: Sm(hybrid). If a single channel
can saturate (or occupy most) the inter-node
communication bandwidth, the communication
speed advantage of MPI will be eliminated.

Factor 4: The function Vm of nprocs. If Vm

is an increasing function of nprocs, MPI under-
goes more communication.

4.4 Hybrid PC versus Hybrid TC
We compare (2) and (3). According to bases

3 and 4, hybrid PC and hybrid TC has the same
communication time Tm(hybrid):

Tm(PC) = Tm(TC) = Tm(hybrid). (5)
During the computation-only stage in hybrid
TC, a node uses all nppn PEs for computation
as in hybrid PC; hence, we have

Sp only(TC) = Sp(PC). (6)

From Eqs. (2), (3), (5), and (6), the difference
in the execution time between hybrid PC and
hybrid TC is

T(PC) − T(TC) =
Vp − Vp only(TC)

Sp(PC)
.

On the other hand,
Vp only(TC) = Vp − Vp overlap(TC)

and
Vp overlap(TC) = Toverlap(TC)×Sp overlap(TC).

Consequently,
T(PC) − T(TC) =

Toverlap(TC) ×
Sp overlap(TC)

Sp(PC)
. (7)

Thus, hybrid TC is always faster than hybrid
PC. The difference in the execution time is in
direct proportion to the overlap time. In the
absence of an overlap, the two models have the
same execution time.

4.5 MPI versus Hybrid TC
The two models can be compared with re-

spect to the hybrid PC model. Since hybrid
TC has great advantages over hybrid PC, and
hybrid PC is not so poor in comparison to MPI,
we expect an advantage for hybrid TC in most
cases.

5. Platform Specification

Table 1 lists the configurations of the Sun
and Intel clusters applied. The exchanging
bandwidth is measured as the speed at which
a node exchanges data. For the Sun cluster,
the exchanging bandwidth increases along with
the message sizes and almost stabilizes at a size
of 2000 double precision numbers. For the In-
tel cluster, the bandwidth attains a maximum
value at a size of 1750 double precision num-
bers. Therefore, these sizes are used for measur-
ing the exchanging bandwidth. The exchanging
bandwidth of hybrid models and the intra-node
bandwidth are shown as their ratio to the inter-
node exchanging bandwidth of the MPI model.

An examination of the factor list discussed in
Section 4.3 reveals that the Sun cluster is more
suitable for hybrid models than the Intel cluster
with respect to factors 2 and 3 and less suitable
with respect to factor 1.

6. Hybrid Solutions for CG

6.1 Problem Description
CG is one of the NAS set of benchmarks. It

30 IPSJ Transactions on Advanced Computing Systems Jan. 2005

Table 1 Sun and Intel cluster specification.

Sun Intel

nnodes 2 8
nppn 8 2
Processor type Ultra Sparc-II Xeon
Frequency (MHz) 336 2800
IPC 1 2
Peak perf. (GFlops) 5.376 89.600
Cache per PE (MB) 4 0.5
Network (Mbps) 100 1000

OS Solaris 9 Red Hat 9
MPI library HPC Cluster 4 MPICH 1.2.5
BLAS library Forte 6 ATLAS 3.4.1

MPI BW (Mbps) 89.15 607.12
Hybrid BW 75.27% 58.91%
Intra. BW 10.63 times 5.24 times

IPC : instructions per cycle
MPI BW : MPI inter-node exchanging

bandwidth
Hybrid BW : in comparison to MPI BW
Intra. BW : intra-node BW, in comparison

to MPI BW

uses the inverse power method to determine an
estimate of the largest eigenvalue of a fixed sym-
metric positive definite n × n sparse matrix A
with a random pattern of nonzeros. The prob-
lem size is specified by classes. While class A is
extremely small, classes C and D are extremely
large for our platforms. As a result, we select
class B with n = 75000 for our experiments 4).

CG accepts only a power-of-2 nprocs, which
are mapped onto a nprows × npcols process-
grid. If nprocs is a square, npcols = nprows;
otherwise, npcols = 2 × nprows.

The sparse matrix A is stored by a Com-
pressed Row Storage (CRS) method. The data
are equally distributed over processes. A pro-
cess i stores and operates on a (n/nprows) ×
(n/npcols) sparse local matrix AL. Fig-
ure 2 (a) illustrates data distribution in a sam-
ple case where nprocs = 8; nprows = 2;
npcols = 4.

6.2 Hybrid TC Task-schedule
Step 1: Block Selection

The performance analysis reveals that more
than 90% of the computation cost are spent for
a matrix-vector product q = Ap, where p is a
dense vector and q is the result vector. The
product also occupies most of the communica-
tion cost of the benchmark. Therefore, we se-
lect this matrix-vector product as the block for
our middle-grain solution.
Step 2: Original Task-dependency Graph

In a block, an MPI process has to perform
two tasks, P and M :

1. P (Computation): multiplies the local ma-

Fig. 2 Construction of a CG hybrid TC task graph.

trix AL by the local vector pL and stores the
result in vector wL: wL = ALpL. With CRS,
pL has a random memory access pattern during
this multiplication.

2. M (Communication): exchanges wL with
other processes in the same process-row to re-
duce the sum to the local result qL, then ex-
changes qL with the transposing process to pre-
pare for the next multiplication.

Communication task M depends on the com-
putation task P . There is no independent task-
pair, and thus, no available overlap. We con-
tinue with step 3.
Step 3: Overlap-generating Techniques

Techniques (a) and (b) are not applicable
for CG. We apply technique (c): divide P
and M into several parts P1, P2, P3..., and
M1, M2, M3..., respectively. A split task Pi now
computes a partial product wi = Aip, and Mi

exchanges the partial wi only. Mi is performed
by the master thread and depends on Pi. Mi

can be overlapped with any Pj(i �= j). Fig-
ure 2 (c) shows the concerning data for the par-
tial tasks Pi and Mi; Figure 2 (d) shows the new
task-dependency graph. Solid arrows indicate
real dependencies; dotted arrows only indicate
that we perform Pi and Mi in an increasing
order: P1, P2, P3..., and M1, M2, M3... Mi

should not be too small. Here, we set Mi such
that wi has a length of 1750 double precision
numbers for the Intel cluster and 2000 double
precision numbers for the Sun cluster.

Vol. 46 No. SIG 3(ACS 8) Construction of Hybrid MPI-OpenMP Solutions for SMP Clusters 31

6.3 Task-partitioning and Pseudo-code
For simplicity and without losing perfor-

mance, we choose each Pi as a grain. Therefore,
the number of grains, ngrains, is given by

ngrains = ceiling

(
sizeof(wL)
sizeof(wi)

)
.

During a grain’s execution, each element of
pL is accessed repeatedly after a period of time,
the length of which depends on the size of pL.
If pL is extremely large (in comparison to the
cache size), the element will not remain in the
cache, and this results in a cache-miss. This
problem can be solved by vertically cutting Ai

and pL, for example, into Ai1 , Ai2 , and Ai3 and
pL1 , pL2 , and pL3 , respectively. Now we can
represent wi as

wi = Ai1pL1 + Ai2pL2 + Ai3pL3 .
Each of the three new products has a smaller

vertor size and consequently, a better cache hit
ratio (Fig. 2 (e)). The technique is also valid
for the MPI model. For example, the amended
MPI code is four times faster than the original
version on the Intel platform with npcols = 1
(332.12 Mflops versus 80.24 Mflops). In the
case of the Sun cluster, the cache of which is
larger, or with the Intel cluster when npcols >
2 (nprocs > 4), this technique loses its utility.

A hybrid TC pseudo-code based on the
middle-grain approach along with the newly
created task-schedule is shown in Fig. 3. All
communication tasks Mi(i = 1...ngrains) are
performed by the master thread. On comple-
tion of the computation task Pi, the thread-
in-charge should switch on flagi. The execu-
tion of the corresponding Mi has to wait un-
til Pi finishes, which is implemented by “wait

!$omp parallel default(shared) private(i)
!$omp do schedule(dynamic)
do i=1, np only

call Pi

flagi=.true.
enddo
!$omp end do nowait
!$omp master
do i=1, ngrains

wait until flagi = .true.
call Mi

enddo
!$omp end master
!$omp do schedule(dynamic)
do i=np only + 1, ngrains

call Pi

flagi=.true.
enddo
!$omp end do
!$omp end parallel

Fig. 3 CG, hybrid TC pseudo-code for q = Ap block.

until flagi = .true..” To minimize this de-
lay, np only computation grains should be per-
formed in advance by all threads in the com-
puting only phase. A good value of np only can
be defined based on the computation and com-
munication speeds of an SMP node.

6.4 Communication Volume
During a block, a process first exchanges its

local wL with others from the same process-row
log 2npcols times; it then exchanges local qL

with its transpose-process once. As a result, the
number of messages, nmsgs, is log 2npcols + 1.
All these messages have the same length as pL,
the size of which is n/npcols. Taking a length of
n double-precision numbers as a measurement
unit, the communication volume per processor,
Vmpp, can be calculated as

Vmpp =
log 2npcols + 1

npcols
(Table 2).

For MPI, the communication volume of a node
is given by

Vm(M) = Vmpp × nppn.
Meanwhile, for the hybrid models,

Vm(hybrid) = Vmpp.
When nprocs = 2, the transpose-process of
a process is just itself. Under MPI, several
processes of a process-row belong to the same
SMP node. Thus, the inter-node communica-
tion volume can be determined by subtract-
ing the volumes of the self-communication and
the intra-node communciation from the total.
Table 3 (a) and (b) list the inter-node com-
munication volume per node for the Sun and
Intel clusters, respectively. For hybrid mod-
els, the volume is the same for all nodes. For
MPI, the value listed belongs to the heaviest
node. Occasionally, the heaviest node does not
perform inter-node communication by all nppn
processes. The number within parentheses rep-

Table 2 CG communication volume per process.

nprocs nprows npcols Vmpp

2 1 2 1
4 2 2 1
8 2 4 0.75
16 4 4 0.75

Table 3 CG inter-node communication volume.

(a) The Sun cluster (b) The Intel cluster

nppn MPI* hyb.
2 0.5(1) 0.5
4 0.5(2) 0.5
8 1(4) 0.5

nnodes MPI* hyb.
2 0.5(1) 0.5
4 1(2) 1
8 1(2) 0.75

*: Within parenthesis: number of MPI comm.
channels.

32 IPSJ Transactions on Advanced Computing Systems Jan. 2005

Fig. 4 CG class B experimental results.

resents the number of inter-node communicat-
ing channels in this case.

6.5 CG Experimental Results
Figure 4 (a) shows the experimental results

of CG on the Sun cluster with nnodes = 2 and
various values of nppn. Meantime, Fig. 4 (b)
shows the results on the Intel cluster with
nppn = 2 and various values of nnodes. While
the difference in performance between hybrid
TC and hybrid PC represents effect of the
computation-communication overlap, the dif-
ference between hybrid PC and MPI reflects
their communication cost.

Due to the crossbar memory architecture, the
computation speed of the Sun cluster is almost
in direct proportion to the number of processors
particpating in computation. Thus,

Sp overlap(TC)

Sp(PC)
=

nppn − 1
nppn

.

Furthermore, the hybrid TC task-schedule per-
mits us to overlap nearly the entire communi-
cation volume with all available values of nppn.
Together with Eq. (5), we have

Toverlap(TC) = Tm(hybrid),

and formula (7) can be rewritten as

T(PC) − T(TC) = Tm(hybrid) × nppn − 1
nppn

.

Thus, the difference in execution time between
hybrid PC and hybrid TC increases along with
nppn. The formula extremely coincides with
the actual values listed in Table 4 (a). A small
disparity is due to the remaining part of com-
munication that cannot be overlapped and the
measurement error.

Meantime, hybrid PC is worse than MPI
while nppn = 2 or nppn = 4 and better than
MPI while nppn = 8, which agrees with dis-
cussions on factor 2 in Section 4.3. When

Table 4 CG class B, hybrid models execution time.

(a) The Sun cluster, nnodes = 2,
Tm(hybrid) = 114 secs.

nppn 2 4 8
(nppn − 1)/nppn 0.5 0.75 0.875
T(TC) (secs.) 636 367 258
T(PC) (secs.) 693 452 359
T(PC) − T(TC)∗ 56(49%) 85(74%) 101(89%)

*: Within parenthesis: ratios to Tm(hybrid)

(b) The Intel cluster, nppn = 2

nnodes 2 4 8
T(TC) (secs.) 84.2 51.0 31.8
T(PC) (secs.) 91.6 68.6 41.1
T(PC) − T(TC) 7.4 17.6 9.3

nppn = 2, hybrid PC and MPI have the same
communication volume and speed (Table 3 (a)).
However, MPI is slightly better than hybrid
PC due to the out-of-block part of the solu-
tion, which is not thread-parallelized in hybrid
models. When nppn = 4, while the communi-
cation volumes are equal, communication speed
of MPI is better due to its two-channel com-
munication pattern. Consequently, it outper-
forms hybrid PC by approximately 5%. How-
ever, with nppn = 8, MPI suffers a larger inter-
node communication volume (1 versus 0.5). At
the same time, a larger nppn causes MPI more
intra-node communication cost. As a result, hy-
brid PC exceeds MPI by approximately 9%.

On the Intel cluster, the difference in execu-
tion time between the two hybrid models varies
along with the communication volumes. Ac-
cording to Table 3 (b) and Table 4 (b), when
nnodes = 4, the communication volume is
largest (Vm(hybrid) = 1), and the difference ob-
tains the highest value (17.6 seconds), which
results in an outperformance of 34% for hybrid
TC (Fig. 4 (b)).

Meantime, MPI and hybrid PC have nearly

Vol. 46 No. SIG 3(ACS 8) Construction of Hybrid MPI-OpenMP Solutions for SMP Clusters 33

the same performance while nnodes = 2, MPI
is better while nnodes = 4, and hybrid PC is
better while nnodes = 8. These results can also
be explained by Table 3 (b). With 2 nodes, MPI
and hybrid PC have the same communication
pattern and thus, nearly the same performance.
It should be noted that the out-of-block part
does not play any role on the Intel platform be-
cause of its memory bus bottle-neck. For low
cache hit ratio problems such as CG, an extra
processor cannot provide any computation ad-
vantage. With nnodes = 4, MPI and hybrid PC
have the same communication volume but MPI
has two communication channels, which causes
a large performance difference (22%). With
nnodes = 8, MPI undergoes more communi-
cation (1 against 0.75), and therefore, its per-
formance is approximately 3% lower than that
of hybrid PC.

Hybrid TC exceeds MPI in all the cases. For
example, with nppn = 8 on the Sun cluster and
nnodes = 8 on the Intel cluster, hybrid TC out-
performs MPI by as much as 40% and 31%, re-
spectively. The everlap always permits hybrid
TC to overcome MPI even at the points where
MPI obtains the multi-channel communication
advantage.

It is noticeable that the difference among the
three models is relatively small while nppn (for
the Sun cluster) or nnodes (for the Intel clus-
ter) is small. For the Intel cluster, the decrease
of nnodes results in an increase of the compu-
tation volume per node. For the Sun cluster,
the decrease of nppn results in a decrease of
the computation speeed. In both cases, it leads
to a decrease of the rate of the communication
cost, and consequently, a decrease in the per-
formance difference among the three models.

7. Hybrid Solutions for HPL

7.1 Problem Description
HPL solves a random dense linear equation

system using a block LU decomposition algo-
rithm. Its major task is to factorize an n × n
random dense square coefficient matrix A into
corresponding upper and lower triangulars U
and L such that A = U · L. When n is large
enough, the factorization occupies more than
99% of the overall execution time. Users can
set the problem size n upon execution. HPL ac-
cepts any value of the nprocs processes, which
are organized into a P × Q process-grid. A
multiplication between dense matrices occupies
most of the computation cost.

Fig. 5 HPL, data pattern and an original task-
dependency graph.

Table 5 HPL, original task list.

No. Description Cur. dep. Prev. dep.
1 Decom(D) - 7
2* Bcast(D) 1 -
3 Solve(DU=U0) 2 -
4* Bcast(U) 3 -
5 Solve(LD=L0) 2 -
6* Bcast(L) 5 -
7 T=T-LU 4,6 -

*: Communication tasks
Cur. dep.: Current iteration’s dependencies
Prev. dep.: Previous iteration’s dependencies

The data in HPL are stored in nb×nb square
blocks, where nb is the block size and can be ad-
justed upon execution to obtain the best per-
formance. Blocks are distributed onto nprocs
processes according to a block-cyclic scheme,
i.e., they are cyclically dealt onto the P × Q
process-grid. Such a data distribution aids in
decreasing communication cost 5).

According to the right-looking variant, LU
factorization is performed by a loop with
ceiling(n/nb) iterations. Related data for the
ith iteration is shown in Fig. 5 (a). D is the ith

block of the main diagonal. L, U , and T are the
current parts of the lower, upper, and trailing
matrices, respectively. Table 5 lists the task-
list for such an iteration. Tasks 2, 4, and 6 are
communication tasks. Task 1 depends on task
7 of the previous iteration. For tasks 4 and 7,
symbols U0 and L0 represent the current values
of U and L, respectively. Each of these should
be replaced by the root of the correlative equa-
tion after the task finishes. Task 7 is the major
computation task. Meanwhile, tasks 4 and 6
occupy almost all the communication volume.

7.2 Hybrid TC Task-schedule
Step 1: Block Selection

A loop-iteration described above is chosen as
the middle-grain block.

34 IPSJ Transactions on Advanced Computing Systems Jan. 2005

Fig. 6 HPL, building a hybrid TC task-schedule.

Step 2: Original Task-dependency Graph
Based on Table 5, a task-dependency graph

is created and shown in Fig. 5 (b), wherein com-
munication tasks are represented by shaded cir-
cles. As seen in the graph, there are only two
independent pairs of tasks available for an over-
lap: 3 with 6 or 5 with 4. However, computa-
tion tasks 3 and 5 are extremely small; hence,
we should go to step 3.
Step 3: Overlap-Generation Techniques

As shown in Fig. 5 (b), all tasks of the cur-
rent iteration depend on task 7 of the previous
iteration that updates the “previous” trailing
matrix including the “current” D, U , L, and
T . Therefore, we apply technique (b) to split
task 7 into 71, 73, 75, and 77 that updates D,
U , L, and T , respectively. We have a new task-
dependency graph shown in Fig. 6 (a). Tasks
1, 3, 5, and 7 now depend on the previous tasks
71, 73, 75 and 77, respectively. Since tasks 4 and
6 (major communication) and previous task 77

(major computation) are independent, we ap-
ply technique (a) to reconstruct the loop so that
they lie in the same iteration and become avail-
able for overlap. In Fig. 6 (a), tasks of a new
loop iteration are bounded by a shaded poly-
gon. It includes tasks belonging to three orig-
inal iterations. Then, technique (b) is applied
once more: 77 are split into 771 , 773 , 775 , and
777 to break the “big” dependency into smaller
ones. Table 6 and Fig. 6 (b) show the new task-
list and corresponding data blocks. Figure 6 (c)
shows the final version of the hybrid TC task-
dependency graph. Tasks 771 , 773 , 775 , and 777

are obtained from the previous iteration; tasks
1, 2, 3, and 5 are obtained from the next iter-

Table 6 HPL, hybrid TC task list.

No. Description Dependencies

4* Bcast(U) -
6* Bcast(L) -
771 D1 = D1 − L0U0 -
773 U1 = U1 − L0U0 -
775 L1 = L1 − L0U0 -
777 T ′ = T ′ − L0U0 -
71* D1 = D1 − LU 4, 6, 771
73 U1 = U1 − LU 4, 6, 773
75 L1 = L1 − LU 4, 6, 775
1* Decom(D1) 71

2* Bcast(D1) 1
3 Solve(D1U1 = U0

1) 2

5 Solve(L1D1 = L0
1) 2

*: Tasks assigned to the master thread

#pragma omp parallel default(shared) private(i)
{

#pragma omp master
{

(4); flag(4)=1;
(6); flag(6)=1;
wait untill flag(771); (71);
(1);
(2); flag(2)=1;

}
#pragma omp single nowait
{

(771); flag(771)=1;
}
#pragma omp for schedule(dynamic) nowait
for (i=0; i<sizeof(U1); i++) {

(773 [i]); flag(773 [i])=1;
}
#pragma omp for schedule(dynamic) nowait
for (i=0; i<sizeof(L1); i++) {

(775 [i]); flag(775 [i])=1;
}
#pragma omp for schedule(dynamic) nowait
for (i=0; i<sizeof(T ′); i++) (777 [i]);
#pragma omp for schedule(dynamic) nowait
for (i=0; i<sizeof(U1); i++) {

Wait until flags(4,6,773 [i]); (73[i]); flag(73[i])=1;
}
#pragma omp for schedule(dynamic) nowait
for (i=0; i<sizeof(L1); i++) {

Wait until flags(4,6,775 [i]); (75[i]); flag(75[i])=1;
}
#pragma omp for schedule(dynamic) nowait
for (i=0; i<sizeof(U1); i++) {

Wait until flags(2,73[i]); (3[i]);
}
#pragma omp for schedule(dynamic) nowait
for (i=0; i<sizeof(L1); i++) {

Wait until flags(2,75[i]); (5[i]);
}

}

Fig. 7 HPL, hybrid TC pseudo-code for an iteration.

ation. Tasks in the left of the vertical line are
assigned to the master thread. The remaining
are partitioned into grains and should be par-
allelized by “!$Omp do nowait.”

7.3 Task-partitioning and Pseudo-code
Tasks on the right hand side of Fig. 6 (c) are

partitioned into grains such that each grain up-

Vol. 46 No. SIG 3(ACS 8) Construction of Hybrid MPI-OpenMP Solutions for SMP Clusters 35

Fig. 8 HPL experimental results.

Table 7 HPL communication volume.

nprocs P Q Vm

2 1 2 1
3 1 3 2
4 2 2 1
5 1 5 4
6 2 3 1.33
7 1 7 6
8 2 4 1.75

dates an nb × nb data block. Taking a data
block as a measurement unit, according to Ta-
ble 6, tasks 773 , 73, and 3 are partitioned into
sizeof(U1) grains; tasks 775 , 75, and 5 are parti-
tioned into sizeof(L1) grains. Meanwhile, the
numbers of grains for tasks 771 and 777 are 1
and sizeof(T ′), respectively. All the grains are
performed by applying functions of a well-tuned
BLAS library. By this method, hybrid models
achieve the same computation speed as MPI.

A C-style hybrid TC pseudo-code is shown in
Fig. 7. All computation tasks are performed by
“#pragma omp for schedule(dynamic) nowait”
with an exception for task 771 that contains a
single grain and is performed by “#pragma omp
single nowait.” All the data-dependencies are
followed by flags. By this implementation, if
the master thread completes its tasks earlier, it
can join the computation team.

7.4 Communication Volume
In HPL, processes communicate by broad-

casting data. During an iteration, the process
owner of data block D is the heaviest one. It
broadcasts its local upper triangular UL to (P−
1) process-destinations in the same process-
column. Then, it broadcasts its local lower
triangular LL to (Q − 1) process-destinations
in the same process-row. The sizes of UL

and LL are sizeof(U)/Q and sizeof(L)/P , re-
spectively. U and L always have the same
size. The D-owner process also broadcasts D
to ((P − 1) + (Q − 1)) destinations; however,
when U is large enough, the cost of this broad-
cast is negligible.

Table 7 lists the communication volume for
the heaviest process during an iteration. Broad-
casting D is omitted. The size of U is consid-
ered as a measurement unit. For simplicity, we
assume that the communication volume is in di-
rect proportion to the number of destinations.
Thus, the communication volume is given by

Vm =
P − 1

Q
+

Q − 1
P

.

Values of P and Q are selected such that Vm is
minimized. For hybrid models, the inter-node
communication volume is the same as the values
shown in the table. For MPI, we should mul-
tiply these values by nppn; and then subtract
the intra-node communication volume.

36 IPSJ Transactions on Advanced Computing Systems Jan. 2005

7.5 HPL Experimental Results
Figure 8 shows the experimental results for

HPL. The block size nb is selected such that
MPI can obtain the best performance (nb = 80
in almost all cases on both the platforms).

Figure 8 (a) and Fig. 8 (b) show the experi-
mental results using maximum resources of the
clusters and varying the problem size to the
limit restricted by the system memory. A sig-
nificant outperformance of hybrid TC over hy-
brid PC on both the systems indicates the ef-
fect of the new task-schedule, which allows a
great overlap volume. Meantime, hybrid PC is
better than MPI on both the systems, which
represents that MPI undergoes a greater com-
munication cost.

When the matrix size is growing, the commu-
nication cost increases slower than the compu-
tation cost and therefore, the rate of the com-
munication cost decreases. Consequently, the
performance difference between the three mod-
els also decreases, and the three performance
lines of the graph go closer. For example, the
difference between hybrid TC and MPI at the
maximum value of the matrix size are 30% for
the Sun cluster and 6% for the Intel cluster.
These values were 57% and 26%, respectively,
at the beginning points. However, the time
saved by the hybrid models also increases along
with the problem size, as shown by Fig. 9.

In Fig. 8 (c) and Fig. 8 (d), we fix the prob-
lem size and change nppn (for the Sun clus-
ter) and nnodes (for the Intel cluster). On the
Sun cluster, hybrid TC still dominates. Hy-
brid PC is still better than MPI. The differ-
ence among the three models increases along
with nppn. However, we observe a different
pattern on the Intel cluster. Hybrid models get
poor performance when a well-balanced P × Q
process-grid is not available (nnodes = 5 and

Fig. 9 Difference in execution time among models.
The Intel Cluster, nnodes = 8, nppn = 2.

nnodes = 7). Table 7 shows that the com-
munication volume is extremely heavy at these
points and the multi-channel communication
advantage of MPI becomes noticeable. This
problem for hybrid models can be solved by:
(1) decreasing nnodes to a reasonable value (for
example, nnodes = 6 provides a better perfor-
mance than nnodes = 7); and (2) applying a
better broadcasting algorithm to decrease the
communication cost 5).

Similar to the CG problem, with a small value
of nppn (for the Sun cluster) and nnodes (for
the Intel cluster), the performance difference
among the three models is small due to a de-
crease in the rate of the communication cost.

8. Conclusions

In this paper, we proposed and applied an al-
gorithm to build effective hybrid MPI-OpenMP
solutions for SMP clusters, which includes
a middle-grain approach and an ovelapping-
oriented task-schedule. Our hybrid TC solu-
tion dominates MPI in all experiments on dif-
ferent cluster platforms. For CG class B, hy-
brid TC outperforms MPI by 40% and 31% on
a Sun and an Intel cluster, respectively. For
HPL, with a middle problem size, hybrid TC
exceeds MPI 57% and 26%; with the maximum
available problem size, hybrid TC still domi-
nates MPI by 30% and 6%, respectively, for the
Sun and the Intel clusters. Hybrid TC should
be considered as the first priority for a parallel
programming model on SMP clusters.

Acknowledgments This research is sup-
ported in part by the Grants-in-Aid for Scien-
tific Research of Japan Society for the Promo-
tion of Science (JSPS) No.15500033.

References

1) MPI: Message Passing Interface Forum.
http://www.mpi-forum.org/

2) OpenMP: The OpenMP Architecture Review
Board. http://www.openmp.org/

3) Krawezik, G. and Cappello, F.: Performance
Comparison of MPI and three OpenMP Pro-
gramming Styles on Shared Memory Multipro-
cessors, Proc. 15th annual ACM symposium on
Parallel Algorithm and Architectures, pp.118–
127 (2003).

4) NAS: The NAS Parallel Benchmark.
http://www.nas.nasa.gov/Software/NPB/

5) Petitet, A., Whaley, R. C., Dongarra, J.
and Cleary, A.: HPL—A Portable Imple-
mentation of the High-Performance Linpack
Benchmark for Distributed-Memory Comput-

Vol. 46 No. SIG 3(ACS 8) Construction of Hybrid MPI-OpenMP Solutions for SMP Clusters 37

ers. http://www.netlib.org/benchmark/hpl/
6) Cappello, F. and Richard, O.: Intra Node Par-

allelization of MPI Programs with OpenMP,
Technical Report TR-CAP-9901, http://www.-
lri.fr/˜fci/goinfreWWW/1196.ps.gz (1998).

7) Cappello, F., Richard, O. and Etiemble, D.:
Investigating the Performance of Two Pro-
gramming Models for Clusters of SMP PCs,
Proc. High Performance Computer Architec-
ture, pp.349–359 (2000).

8) Cappello, F. and Etiemble, D.: MPI versus
MPI+OpenMP on IBM SP for the NAS Bench-
mark, Proc. Supercomputing 2000 (2000).

9) Boku, T., Itakura, I., Yoshikawa, S., Kondo,
M. and Sato, M.: Performance Analysis of PC-
CLUMP based on SMP-Bus Utilization, Proc.
Workshop on Cluster Based Computing 2000
(2000).

10) Boku, T., Yoshikawa, S. and Sato, M.: Im-
plementation and Performance evaluation of
SPAM article code with OpenMP-MPI hybrid
programming, Proc. European Workshop on
OpenMP 2001 (2001).

11) Nakajima, K.: OpenMP/MPI hybrid vs. Flat
MPI on the Earth Simulator: Parallel Iterative
Solvers for Finite Element Method, Proc.Inter-
national Workshop on OpenMP 2003 (2003).

12) Viet, T. Q., Yoshinaga, T. and Sowa, M.:
A Master-Slaver Algorithm for Hybrid MPI-
OpenMP Programming on a Cluster of SMPs,
IPSJ SIG notes 2002-HPC-91-19, pp.107–112
(2002).

13) Viet, T. Q., Yoshinaga, T., Abderazek, B. A.
and Sowa, M.: A Hybrid MPI-OpenMP Solu-
tion for a Linear System on a Cluster of SMPs,
Proc. Symposium on Advanced Computing Sys-
tems and Infrastructures, pp.299–306 (2003).

14) Wellein, G., Hager, G., Basermann, A. and
Fehske, H.: Fast sparse matrix-vector mulipli-
cation for TeraFlop/s computers, Proc. Vector
and Parallel Precessing (2002).

15) Rabenseifner, R. and Wellein, G.: Commu-
nication and Optimization Aspects of Paral-
lel Programming Models on Hybrid Architec-
tures, International Journal of High Perfor-
mance Computing Application, Vol.17, No.1
(2003).

16) Rabenseifner, R.: Hybrid Parallel Program-
ming: Performance Problems and Chances,
Proc.45th CUG (Cray User Group) Conference
2003 (2003).

(Received May 18, 2004)
(Accepted October 2, 2004)

Ta Quoc Viet received his
M.E. degree from the Gradu-
ate School of Information Sys-
tems, the University of Electro-
Communications (UEC) in 2004
and is currently a Ph.D. stu-
dent. His research interests

include high performance computing, cluster
computing, and parallel programming models.
He is a member of IEEE.

Tsutomu Yoshinaga re-
ceived his B.E., M.E., and D.E.
degrees from Utsunomiya Uni-
versity in 1986, 1988, and 1997,
respectively. From 1988 to Jul.
2000, he was a research asso-
ciate of Faculty of Engineering,

Utsunomiya University. He was also a visit-
ing researcher at Electro-Technical Laboratory
from 1997 to 1998. Since Aug. 2000, he has
been with the Graduate School of Informa-
tion Systems, UEC. His research interests in-
clude interconnection networks for MPPs, clus-
ter computing, and P2P networks. He is a
member of IEEE and IEICE.

Ben A. Abderazek received
his Ph.D. degree in Computer
Engineering from UEC in 2002.
Currently he is working on
Queue processor hardware im-
plementation on FPGA. His
main research interests include

parallel processor, system implementations, re-
configurable architectures, and distributed stor-
age systems. His is a member of IEEE, ACM
and IEICE.

Masahiro Sowa received the
D.E. degree from Nagoya Uni-
versity in 1974 and then, became
an assistant professor of the Uni-
versity of Gunma. From 1986,
he was a Professor of Nagoya
University. Since 1993, he has

been a Professor of the Graduate School of In-
formation Systems, UEC. His research interests
include parallel processing. He is a member of
IEEE, IEICE, JSSST, and ACM.

