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Kani-CUDA: A GPGPU Program Synthesizer with Barrier
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GPGPU uses a GPU for general purpose computation and performs large amount of computation at high
speed by exploiting high parallelism. However, compared to sequential programming, GPGPU programming
is more complicated, and more difficult to confirm correctness. For example, blocking optimizations using
shared memory require complicated memory address calculations, and asynchronously executed threads re-
quire confirmation of memory race freedom. To cope with those difficulties, there are program synthesizers
that support GPGPU programing. However, those synthesizers cannot deal with highly optimized programs,
since they have a simple execution model that does not have barrier synchronization and a shared memory.
We propose a program synthesizer Kani-CUDA that has semantics close to CUDA, in particular supporting
barrier synchronization and a shared memory. The design of Kani-CUDA is based on the one of SynthCL, an
existing GPGPU program synthesizer. Unlike SynthCL that uses an interleave execution model, Kani-CUDA
uses a lock-step execution model to deal with barrier synchronization. As an application, we synthesized
array index expressions and placement of barrier synchronization statements in a stencil computation for a
thermal diffusion with a shared memory optimization.
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