1FHRAIEF 2

RRBE

Ri#wXEs 7073327 Vol.10 No.5 5 (Nov. 2017)

INY) TR EHHE X ') A 72
GPGPU 7 1 %' 5 LA %+ Kani-CUDA

BEmEL) WA R B SEE? A e

2017%F3A3AR%K

GPGPU & iE GPU 2 UHEIA D7D IV A2 HMTH 1), @itk X o TR EHE & BT
AT ENTESL., Lal, GPGPU 7Yu2r I I v I3—fke7ar 53 7L) QadaHgETd v Ik
LEFMETAZEDH LY, 28 21E, HAATY RV T7T0y F v FREIICBITAXE) T FL
ADFERDPHHEC 2 B 2 b, JERBMICETENDL ALy FTAEYBEENRE 2w L DR
ETHDH, TOX)BEELIICHLTGPGPU 70/ 53 v VY 2HETAH7200 7075 AERERIESR
ENTwa. L2aL, SN0 7THPCHA AT P WHMAFETETVERHAL TV
72, BELRREALD R SN TA ST LER) T ENTE LD o7z, FTTHRAENY 7HEE & A 2
EY EMA72E) CUDA IEWERGG 57270 7 5 L 454 Kani-CUDA #32% 4 5. Kani-CUDA
FEEAE D GPCGPU 710 7 J A4 SynthCL % b & IZFREF SN TWwW A28, Z09477 R SynthCL A%
A %) = TETTH LA L, Kani-CUDA TIE N TRIIZHD 720120 v 7 25 v TET 2
LTWwWa, oL LTEILEA T » DVEMRICHAE A B el b2 i L7270 77 A12BWT, BAlo
I ZFRHERR) TR S OBLE O G & #ER L 72,

Kani-CUDA: A GPGPU Program Synthesizer with Barrier

Synchronization and a Shared Memory

AKIRA KANTY®) IzuMi ASAKURA? HIDEHIKO MASUHARAZ TOMOYUKI AOTANI2

Presented: March 3, 2017

GPGPU uses a GPU for general purpose computation and performs large amount of computation at high
speed by exploiting high parallelism. However, compared to sequential programming, GPGPU programming
is more complicated, and more difficult to confirm correctness. For example, blocking optimizations using
shared memory require complicated memory address calculations, and asynchronously executed threads re-
quire confirmation of memory race freedom. To cope with those difficulties, there are program synthesizers
that support GPGPU programing. However, those synthesizers cannot deal with highly optimized programs,
since they have a simple execution model that does not have barrier synchronization and a shared memory.
We propose a program synthesizer Kani-CUDA that has semantics close to CUDA, in particular supporting
barrier synchronization and a shared memory. The design of Kani-CUDA is based on the one of SynthCL, an
existing GPGPU program synthesizer. Unlike SynthCL that uses an interleave execution model, Kani-CUDA
uses a lock-step execution model to deal with barrier synchronization. As an application, we synthesized
array index expressions and placement of barrier synchronization statements in a stencil computation for a
thermal diffusion with a shared memory optimization.

LR R S B G R R
Department of Information Science, Tokyo Institute of Tech-
nology, Meguro, Tokyo 152-8550, Japan

2 RO LERIE I LB - R RS R
Department of Mathmatical and Computing Science, Tokyo
Institute of Technology, Meguro, Tokyo 152-8550, Japan

2) kani.a.aa@m.titech.ac.jp

© 2017 Information Processing Society of Japan

