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A Motion Capture System Using a Smartphone
and a Smartwatch
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Abstract: We propose a simple but effective motion capture system comprising a fixed smartphone used as a camera
and a smartwatch wore by a target person for absolute scale human pose estimation. Owing to the recent advance of
machine learning techniques, 3D human pose can be inferred from a single image. However, the estimated pose suffers
from scale ambiguity because of the essential nature in the 3D estimation from a 2D image. Therefore, we propose
a simple setup such that a target person wears a natural, non-invasive, and easy-to-wear smartwatch that can measure
inertial data, and is captured by a fixed smartphone. To estimate absolute human poses, the trajectory of a wrist where
the smartwatch is attached is first computed from both images and inertial data. Then, the trajectory from images is
metrically scaled by computing the ratio between the two trajectories. By estimating the scale for human poses from
images, the absolute human poses can be computed.
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1. Introduction
Vision based human motion capture systems have commonly

been used to measure the behavior of people in various situations
such as sports, film making, and virtual reality [10]. VICON*1 and
OptiTrak*2 are commercial systems that can accurately measure
3D metric human motions. In their systems, multiple cameras
are first fixed and carefully calibrated, and then some fiducial
markers are attached on a target person so that the 3D positions of
the markers can be estimated for the motion capture. Since their
system configuration is complicated, simpler systems have been
developed in the literature.

With the advent of RGB-D cameras (e.g. Microsoft Kinect and
Intel RealSense), the 2D/3D pose of a human body can be com-
puted from a single depth image in real-time with machine learning
techniques [13]. However, the depth ranges of RGB-D cameras
are normally limited, and the cameras cannot acquire depth images
in outdoor environments because of the use of infrared lights. To
overcome these drawbacks, motion capture systems using only a
single RGB camera have also been proposed [1,4]. In recent years,
the accuracy is drastically improved owing to the advance of deep
learning based techniques [2,9]. One drawback of a single camera
based approach is that the estimated 3D human pose is basically
up to scale because the inference of 3D pose from a 2D image is
essentially ill-posed.

In this paper, we propose a simple but effective motion capture
system that can measure absolute scale human poses. The system
simply comprises a fixed single camera to capture a target person,
and an IMU attached to the person to estimate the trajectory of a
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Table 1: Advantage of our proposed system
Configuration Metric Wide range

RGB-D camera X ×

RGB camera × X
RGB camera + IMU (ours) X X

body part in metric. This system can be realized by using a smart-
phone as a camera and a smartwatch as an IMU. A smartwatch
has been introduced in recent years, and can be used as a natural,
non-invasive and easy-to-wear watch attached to a wrist of the
target person. Therefore, we propose an algorithm that human
pose is first computed by using images, and then its absolute scale
is computed by using inertial data from the IMU. In other words,
the trajectory of a wrist is first computed by using a state-of-the-art
method on 3D human pose estimation from images. Simultane-
ously, the same trajectory is accurately computed in metric by
using inertial data based on a technique of pedestrian dead reckon-
ing (PDR). Finally, the trajectory from images is metrically scaled
by computing the ratio between the two trajectories. In Table 1,
the advantage of our motion capture system is described compared
with RGB-D camera or RGB camera based systems.

2. Overview
2.1 System configuration

As illustrated in Figure 1, our system comprises a fixed smart-
phone as a camera to capture a target person, and a smartwatch
wore by the person. We used an android smartphone*3 as both
a camera device and a receiver of IMU data transferred from an
android smartwatch*4. The frequency of acquiring images and in-
ertial data is 10 Hz and 100 Hz, respectively, and they are synchro-
nized by the time stamp. The resolution of the image is 640×360

*3 VAIO Phone A
*4 ASUS ZenWatch 2
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(a) System configuration

(b) Estimated human pose in metric

Fig. 1: Motion capture system using a smartphone and a smart-
watch

pixels. In the smartwatch, the orientation is computed from both
acceleration and angular velocity by using Madgwick’s IMU fil-
ter [8], and then is transferred to the phone with the acceleration
data. Note that the video and the IMU data are post-processed in
our current implementation, but the implementation can easily be
modified for online systems.

2.2 Algorithm
The basic idea is to use a state-of-the-art method for 3D human

pose estimation using an image as external libraries, and use the
inertial data from the IMU to estimate the metric scale of the hu-
man pose. This can be considered a loosely-coupled approach for
the scale estimation, as similar to scale estimation for monocular
visual SLAM using a face size [7], because the scale estimation is
not tightly incorporated into human pose estimation.

As described in Fig. 2, we first compute the 3D human poses
only from images, and extract the trajectory of a wrist from the
estimated poses. In this process, there is the scale ambiguity for
the poses. Simultaneously, the 3D metric trajectory of an IMU
attached to the wrist is accurately computed from both images and
inertial data based on zero velocity update used in pedestrian dead
reckoning (PDR). By computing the ratio between the two wrist
trajectories, the 3D human pose can be metrically scaled.

Images Inertial data

3D human pose 

estimation

3D trajectory 

estimation

Scale estimation

Scaled 3D human poses

Fig. 2: Flow of Algorithm.

�����

���	
���

���
���

�

���	
���

���
���

�

����
��

Fig. 3: Flow of 3D human pose estimation.

3. 3D human pose estimation using an image
3.1 A deep learning based approach

We briefly summarize a deep learning based 3D human pose es-
timation from an image. As illustrated in Figure 3, 2D human pose
in an image is first computed from an image [5]. The accuracy of
this process became higher owing to deep neural network(DNN).
Then, the 3D pose of the 2D pose can be determined based on
a machine learning technique with a large dataset [2]. For the
dataset, a large number of pairs of a 3D pose and its 2D pose in an
image are prepared, and then they are used for training the DNN
so that 3D pose can be inferred from a 2D pose. This indicates
that the 3D pose of a person in an image can be determined only
from an image. Since it is not possible to distinguish between a
small person standing near the camera and a tall person standing
far from the camera, the estimated 3D pose basically has scale
ambiguity.

3.2 Problems of existing approach
We found several problems of the 3D human pose estimation

from a single image, as illustrated in Figure 4. First, the 2D pose
estimation is not perfect. In fact, in some cases of occlusions or
background textures, the detected joint positions in an image can
be totally wrong. To lower the impact of this problem, we detect
obvious wrong pose estimation by simply thresholding the wrist
displacement. If the displacement of the wrist between two frames
is more than a threshold, such case is classified as a wrong pose.
Then, the wrong poses are replaced with poses obtained by linear
regression of the neighbor poses.

The 3D pose estimation from the 2D pose also has some limita-
tions. Basically, estimating the 3D pose only from the 2D pose is
an ill-posed problem. This sometimes results in bad perspective
reconstruction. Another limitation is that the depth estimation of
the pose is not stable. Even though a person remains stationary,
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(a) Two arms are detected as punching whereas the right arm
is not

(b) A hand region cannot be distinguished from the background

Fig. 4: Failure cases of 2D skeleton estimation from a single
image.

the estimated Z value will can often change. This causes a big
problem to estimate the scale since we need to compute the 3D
displacement of the wrist from the estimated 3D human poses. To
solve this problem, we propose to normalize the human pose at a
fixed distance.

3.3 Our solution
First, we normalize the estimated 3D pose so that the length

of the legs will be constant in every frame. This can compensate
the effect of perspective projection which makes the 3D model
bigger when the person is closer to the camera. Next, we lock the
Z coordinate of the neck joint to 0 to compensate the instability
of the depth estimation. With this compensation, we may lose the
accuracy of the depth estimation. However, this is still reasonable
if we consider that neck position does not largely move between
two frames. The normalization process can be described in the
following equation:

Pose =


X1 Y1 Z1

X2 Y2 Z2

... ... ...

X14 Y14 Z14

−

0 0 Z2

0 0 Z2

... ... ...

0 0 Z2


Legs length

where (Xn Yn Zn) is the position of the n-th joint in the 3D
pose, and Z2 is the Z coordinate of the neck joint (2nd joint) in the
3D pose estimation.

4. 3D trajectory estimation using an IMU
4.1 Metric trajectory estimation

Since we take a loosely-coupled approach for absolute scale
estimation, the trajectory of an IMU is independently estimated
from the human pose estimation. The flow is illustrated in Figure 5.
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Fig. 5: Flow of the IMU trajectory estimation.

First, the orientation of the IMU is computed to express the accel-
eration of the sensor in the earth frame. In our system, we used the
Madgwick’s algorithm [8] to compute the orientation quaternion
from the accelerometer and gyroscope data. Note that we did not
use the magnetometer data because of magnetic distortion.

The next step is the double integration of the acceleration to
estimate the trajectory of the IMU. However, this needs an ac-
curate initial velocity. If the initial velocity is wrong, the wrong
velocity is integrated such that the more time the movement lasts
and the less reliable the computed trajectory will become. This
often occurs when using a cheap IMU such as the ones integrated
in other devices like smartwatches and smartphones. To estimate
an accurate velocity, a technique of zero velocity update has been
proposed in PDR [3, 6, 11, 12]. The idea is to set the velocity to 0
when the IMU is static. This can reset the velocity and suppress
the error accumulation. To use this technique, we need to detect
the stationary periods of the IMU movement, as described in the
next section.

4.2 Stationary moment detection
Stationary moment detection basically relies on some signal

processing on the acceleration magnitude*5. After removing the
offset of the acceleration magnitude using a high-pass filter, it is
smoothed, and then thresholded to find the stationary moments.
In PDR, such method works fine if the IMU is attached at a foot.
However, it is not totally adapted for our case because we track
the trajectory of a wrist, which is different from the trajectory
of a foot in PDR. While walking, the foot is subject to strong
acceleration because of the nature of the movement. However, to
track a wrist under free movement, the acceleration is not always
high and do not always stand out from the noise. Specifically, in
case of a linear movement, we cannot use a simple thresholding
on the smoothed acceleration magnitude.

For this reason, we use the wrist displacement in pixels com-

*5 http://x-io.co.uk/gait-tracking-with-x-imu/
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Fig. 6: Stationary moment detection.

puted from the 2D pose estimation, as illustrated in Figure 5. By
finding the local minimums of the smoothed wrist displacement,
we can find the instants when the wrist is not moving. Also, by
thresholding the absolute value of the wrist displacement deriva-
tive, we can find the duration of each stationary period. If we only
keep the periods which contain a local minimum, we will get all
the stationary periods.

The next step is to fuse the two methods, as illustrated in Fig-
ure 6. A simple logical AND between the outputs of the two
methods allows to get a good detection of the stationary periods.
The combination of the two methods ensures that the stationary
periods are well detected by checking the video data. Note that
the synchronization of the data is crucial for this method to give
good results.

5. Scale estimation from trajectory of wrist
The estimation of the scale is done by comparing the displace-

ment of the wrist computed from the IMU trajectory and in the
estimated 3D pose from the images. In that sense, the scale can be
obtained according to the following formulation:

S cale =
IMU displacement

Image based displacement
.

The initial idea was to compute the scale using the displacement
between the beginning and the end of each movement(between the
end of a stationary period and the beginning of the next stationary
period). However, because of the uncertainty of the IMU mea-
surements and the 3D pose, the results were not stable. Therefore,
our new idea was to compute the scale using the displacement of
the wrist between random moments in the movements. The more
time we compute the scale, the more the scale distribution takes a
Gaussian shape. This was confirmed through the experiments with
100,000 samples. As illustrated in Figure 7, the scale distribution
takes a Gaussian shape. The expectation of the distribution is
about 1.69 m, this result is quite near to the exact height of our

target size (1.77 m). By taking the mean value of that distribution,
we can have a good estimate of the scale.

Fig. 7: Distribution of estimated scales.

6. Conclusion
We presented a simple motion capture system using a smart-

phone and a smartwatch. Since 3D pose estimation from an image
has the scale ambiguity, the ambiguity was solved using a smart-
watch wore by a target person. The evaluation of scale estimation
needs to be more investigated.
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