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Abstract: In hierarchical phrase-based machine translation, a rule table is automatically learned by heuristically ex-
tracting synchronous rules from a parallel corpus. As a result, spuriously many rules are extracted which may be
composed of various incorrect rules. The larger rule table incurs more disk and memory resources, and sometimes
results in lower translation quality. To resolve the problems, we propose a hierarchical back-offmodel for Hiero gram-
mar, an instance of a synchronous context free grammar (SCFG), on the basis of the hierarchical Pitman-Yor process.
The model can generate compact rules and phrase pairs without resorting to any heuristics, because longer rules and
phrase pairs are automatically backing off to smaller phrases under SCFG. Inference is efficiently carried out using
two-step synchronous parsing of Xiao et al. combined with slice sampling. In our experiments, the proposed model
achieved a higher or at least comparable translation quality against a previous Bayesian model on various language
pairs: German/French/Spanish/Japanese-English. When compared against heuristic models, our model achieved com-
parable translation quality on a full size German-English language pair in Europarl v7 corpus with a significantly
smaller grammar size; less than 10% of that for heuristic models.

Keywords: statistical machine translation, hierarchical phrase-based SMT, phrase alignments, synchronous context
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1. Introduction

Hierarchical phrase-based statistical machine translation
(HPBSMT) [5] is a popular alternative to phrase-based SMT
(PBSMT), in which a synchronous context free grammar (SCFG)
is used as the basis of the machine translation model. With
HPBSMT, a restricted form of an SCFG, i.e., Hiero grammar, is
usually used and is especially suited for linguistically divergent
language pairs, such as Japanese and English. In general,
Hiero grammar is extracted from heuristically symmetrized
word alignments [29]. This heuristic method can extract Hiero
grammars without any tree structures, and is faster than other
tree based models, i.e., Bayesian SCFG methods [2]. However,
a rule table, i.e., a synchronous grammar, may be spuriously
composed of many rules with potential errors especially when
it was automatically acquired from a parallel corpus through
the heuristic extraction method [5]. As a result, the increase
in the rule table incurs more disk and memory resources, and
sometimes results in lower translation quality. Especially, in low
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resource circumstances, such as a mobile translation system, a
large size rule set is more problematic.

Pruning a rule table either on the basis of a significance
test [16] or entropy [23], [38] used in PBSMT can be easily ap-
plied for HPBSMT. However, these methods still rely on a
heuristically determined threshold parameter. Bayesian SCFG
methods [2] solve the spurious rule extraction problem by di-
rectly inducing a compact rule table from a parallel corpus on the
basis of a non-parametric Bayesian model without any heuris-
tics. Training for Bayesian SCFG models infers a derivation
tree for each training instance, which demands the time com-
plexity of O(|f|3|e|3) when we use dynamic programming SCFG
bi-parsing [36] to a pair of source sentence f and target sentence
e whose sentence lengths are |f| and |e|. Gibbs sampling with-
out bi-parsing [22] can avoid this problem, though the induced
derivation trees may strongly depend on initial derivation trees.
Even though we may learn a statistically sound model on the ba-
sis of non-parametric Bayesian methods, current approaches for
an SCFG cannot handle rules and phrases of various granulari-
ties. The lack of various granularities may cause the generation
of short length rules and phrase pairs. This is because the shorter
rules and phrase pairs are more frequent than the longer one on a
training dataset. The translation on short length rules and phrase
pairs sometimes decreases the translation quality, because they
cannnot handle the dependencies of longer distant words. For
these reasons, current Bayesian approaches for an SCFG still rely
on exhaustive heuristic rule extraction from the word-alignment
decided by derivation trees. As long as the Bayesian SCFG meth-
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ods use the exhaustive heuristic rule extraction, the increase of
rule set is inevitable.

To solve the problem, we propose a model on the basis of
the previous work on the non-parametric Inversion Transduction
Grammar (ITG) model [27] wherein phrases of various granulari-
ties are learned in a hierarchical back-off process. We extend it by
incorporating arbitrary Hiero rules when backing off to smaller
spans. The back-off process helps our model to generate rules
and phrase pairs, which have a longer length than the previous
model, since our back-off process can express longer phrase pairs
by combinations of shorter rules and phrase pairs. In addition to
the handling of longer phrase pairs, our back-off model can re-
place the several shorter rules and phrase pairs by single longer
phrase pairs. For these features, our model can ease the decrasing
of translation quality on compact sizes of rules and phrase pairs.
However, in contrast to these benefits, the back-off process in-
creases the inference time. For efficient inference, we use a fast
two-step bi-parsing approach [37] which basically runs in a time
complexity of O(|f|3). Slice sampling for an SCFG [1] is used
for efficiently sampling a derivation tree from a reduced space of
possible derivations.

This paper is an extension of our prior work [17] with addi-
tional experiments and more detailed analysis. In particular, we
add the following contents in this paper: A comparison between
the previous Bayesian model with no restricted leaf nodes *1 and
our proposed back-off model; A comparison between the signif-
icance pruning method and the proposed back-off model; Anal-
ysis of actual rule and phrase pair length for each model. The
results and analysis of additional experiments support our con-
clusion that our model achieved higher or at least comparable
BLEU scores against the previous Bayesian SCFG model on
the following language pairs; German/French/Spanish-English
in the News-Commentary corpus, and Japanese-English in the
NTCIR10 corpus. We also observed the increasing of longer
phrase pairs on our back-off models on French/Spanish-English
in the News-Commentary corpus, and Japanese-English in the
NTCIR10 corpus. On a full size Germany-English language pair
in the Europarl v7 corpus, when compared against a heuristically
extracted model through the GIZA++ pipeline with and without
significance pruning method, our model achieved a comparable
score, and higher scores with significantly less grammar size, re-
spectively.

2. Related Work

Various criteria have been proposed to prune a phrase ta-
ble without decreasing translation quality, e.g., Fisher’s exact
test [16] or relative entropy [23], [38]. Although those methods
are easily applied for pruning a rule table, they heavily rely on
the heuristically determined threshold parameter to trade off the
translation quality and decoding speed of an MT system.

Previously, EM-algorithm based generative models were ex-
ploited for generating compact phrase and rule tables. The joint
phrase alignment model [24] can directly express many-to-many
word aligments without heuristic phrase extraction. DeNero et

*1 We call this setting as Gen-Relaxed in Evaluation.

al. [12] proposed the IBM Model 3 based many-to-many align-
ment model. The rule arithmetic method [9] can generate SCFG
rules by combining other rule pairs through an inside-outside al-
gorithm. However, those previous attempts were restricted in that
the rules and phrases were induced by a heuristic combination.

Bayesian SCFG models can induce a compact model by in-
corporating sophisticated non-parametric Bayesian models for an
SCFG, such as a Dirichlet process [2], [7], [11] or Pitman-Yor
process [22], [31]. A model is learned by sampling derivation
trees in a parallel corpus and by accumulating the rules in the
sampled trees into the model. Due to the O(|f|3|e|3) time com-
plexity for bi-parsing a bilingual sentence, previous studies re-
lied on bi-parsing at the initialization step, and conducted Gibbs
sampling by local operators [2], [22] or sampling on fixed word
alignments [7], [31]. As a result, the inference can easily result
in local optimum, wherein induced derivation trees may strongly
depend on the initial trees.

Xiao et al. [37] proposed a two-step approach for bi-parsing
a bilingual sentence in O(|f|3) in the context of inducing SCFG
rules discriminatively. However, if their approach is adopted
by the Markov Chain Monte Carlo algorithm (MCMC), this ap-
proach violates the detailed balance [25] due to its heuristic k-
best pruning. In this case, the violation of the detailed balance
is caused by the fact that the k-best pruning sometimes gener-
ate hypothesises which cannot be selected in any iteration. If the
model does not satisfy the detailed balance, convergence of the
model is not guaranteed. Blunsom and Cohn [1] proposed a slice
sampling for an SCFG, in the same manner as that for Infinite
Hidden Markov Model (iHMM) [35], which can efficiently prune
a space of possible derivations on the basis of dynamic program-
ming. Although slice sampling can prune spans without violating
the detailed balance, its time complexity of O(|f|3|e|3) is still im-
practical for a large-scale experiment. We efficiently carried out
large-scale experiments on the basis of the two-step bi-parsing of
Xiao et al. [37] combined with slice sampling of Blunsom and
Cohn [1].

After learning a Bayesian model, it is not directly used in a de-
coder since it is composed of only minimum rules without con-
sidering phrases of various granularities. As a consequence, it is a
standard practice to obtain word alignment from derivation trees
and to extract SCFG rules heuristically from the word-aligned
data [10]. The work by Neubig et al. [27] was the first attempt to
directly use the learned model on the basis of a Bayesian ITG in
which phrases of many granularities were encoded in the model
by employing a hierarchical back-off procedure. Our work is
strongly motivated by their work, but greatly differs in that our
model can incorporate many arbitrary Hiero rules, not limited to
ITG-style binary branching rules.

3. Model

Our proposed Back-off model is composed of a previous
Bayesian SCFG Model [22]. Before we introduce our Back-off
model in Section 3.3, we introduce Hiero grammar which is a tar-
get of our proposed Back-offmodel in Section 3.1, and the details
of previous Bayesian SCFG Models in Section 3.2.
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3.1 Hiero Grammar
We use Hiero grammar [5], an instance of an SCFG, which

is defined as a context-free grammar for two languages. Let Σ
denote a set of terminal symbols in the source language, Δ a
set of terminal symbols in the target language, V a set of non-
terminal symbols, S a start symbol and R a set of rewrite rules.
An SCFG is denoted as a tuple of 〈Σ,Δ,V, S ,R〉. Each rewrite
rule in R is represented as X → 〈α/β〉 in which α is a string of
non-terminals and source side terminals (V ∪Σ)∗ and β is a string
of non-terminals and target side terminals (V ∪ Δ)∗. An example
derivation in an SCFG for the sentence pair “nihongo wo eigo ni

honyaku suru koto wa muzukasii。/ Japanese is difficult to trans-
late into English .” is represented as follows:
S → X1 eigo X2 muzukasii。/ X1 difficult X2 English .
X1 → X3 wo / X3 is
X2 → X4 honyaku suru X5 wa / X5 translate X4

X3 → nihongo / Japanese
X4 → ni / into
X5 → koto / to .
Hiero grammar has the following constraints over a general
SCFG:
• Phrase pairs are not allowed to contain multiple word align-

ments. Therefore, only the smallest phrase pairs are kept.
• The number of terminal and non-terminal symbols in each

rule for both source and target sides is limited to 5.
• Each rule may contain at most two non-terminal symbols.
• Adjacent non-terminal symbols in the source side are pro-

hibited.
• A rule must contain at least one alignment between source

and target terminal symbols.
For details, refer to Ref. [5].

3.2 Bayesian SCFG Models
3.2.1 Generative Process

Previous Bayesian SCFG Models, for instance a model pro-
posed by Levenberg et al. [22], are based on Pitman-Yor pro-
cess [32] and learn SCFG rules by sampling a derivation tree for
each bilingual sentence. Figure 1 shows an example derivation
tree for our running example sentence pair under the model. The
generative process is represented as follows:

GX ∼ Prule(dr, θr,Gr0 ),

X → 〈α/β〉 ∼ GX , (1)

where GX is a derivation tree and Prule(dr, θr,Gr0 ) is a Pitman-
Yor process [32], which is a generalization of a Dirichlet process
parametrized by a discount parameter dr, a strength parameter θr
and a base measure Gr0 . The output probability of a Pitman-Yor
process obeys the power-law distribution with the discount pa-
rameter, which is very common in standard NLP tasks.

The probability that a rule rk is drawn from a model
Prule(dr, θr,Gr0 ) is determined by a Chinese restaurant process
(CRP) which is decomposed into two probability distributions.
If rk already exists in a table, we draw rk with probability

ck − dr · |ϕrk |
θr + nr

, (2)

Fig. 1 Derivation tree generated from Bayesian SCFG model.

where ck is the number of customers of rk, nr is the number of all
customers and ϕrk is the number of rk’s tables. On the other hand,
if rk is a new rule, we draw rk with probability

θr + dr · |ϕr |
θr + nr

·Gr0 , (3)

where |ϕr | is the number of tables in the model.
3.2.2 Base Measure

In the previous Bayesian SCFG model [22], the base measure
for rule probability Gr0 is composed of four generative processes.
First, the number of symbols in a source side of a rule |α| is gen-
erated from a Poisson distribution:

|α| ∼ Poisson(0.1). (4)

Let t(x) denote a function that returns terminals from a string x.
The number of target side terminal symbols |t(β)| is also generated
from a Poisson distribution and represented as:

|t(β)| ∼ Poisson(α + λ0), (5)

where λ0 is a small constant for the input distribution greater than
zero. The type of symbol αi in the source side, typei, either ter-
minal or non-terminal symbol, is determined by:

typei ∼ Bernoulli(φ|α|), (6)

where φ is a hyperparameter taking 0 < φ < 1. φ|α| is based on
an intuition that shorter rules should be relatively more likely to
contain terminal symbols than longer rules. Source and target ter-
minal symbol pairs 〈t(α), t(β)〉 are generated from the geometric
means of two directional IBM Model 1 word alignment probabil-
ities and monolingual unigram probabilities for two languages,
and represented as:

〈t(α), t(β)〉 ∼ (Puni(t(α))P−−→
M1

(t(α), t(β))

·Puni(t(β))P←−−M1
(t(α), t(β)))

1
2 . (7)

When t(α) or t(β) is empty, we use the constant 0.01 instead of
the Model 1 probabilities.

3.3 Hierarchical Back-offModel
3.3.1 Generative Process

In the previous models, the generative process is represented as
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Fig. 2 Derivation tree generated from the hierarchical back-off model.

a rewrite process starting from the symbol S , which can incorpo-
rate only minimal rules. Following Neubig et al. [27], our model
reverses the process by recursively backing off to smaller phrase
pairs as shown in Fig. 2. First, our model attempts to generate a
phrase pair, i.e., a sentence pair, as a derivation tree. If the model
successfully generates the phrase pair, we will finish the genera-
tion process. Otherwise, a Hiero rule is generated to fallback to
smaller spans represented in each non-terminal symbol X in the
rule. Then, each phrase pair corresponding to each smaller span is
recursively generated through our model. In Fig. 2, a phrase pair
with “nil” indicates those not in our model; therefore the phrase
pair is forced to back-off either by generating a new phrase pair
from a base measure (base) or by falling back to smaller phrases
using a Hiero rule (back-off). The recursive procedure is done un-
til we reach phrase pairs which are generated without any back-
offs. Let a discount parameter be dp, a strength parameter be θp,
and a base measure be Gp0 . More formally, the generative process
is represented as follows:

GX ∼ Prule(dr, θr,Gphrase),

Gphrase ∼ Pphrase(dp, θp,GX),

X → 〈s/t〉 ∼ Gphrase,

X → 〈α/β〉 ∼ GX , (8)

where s is source side terminals and t is target side terminals in
phrase pair 〈s/t〉. Pphrase is composed of three states, i.e., model,
back-off, and base, and follows a hierarchical Pitman-Yor pro-
cess [34].
model:

We draw a phrase pair 〈s/t〉 with the probability similar to
Eq. (2):

ck − dp · |ϕpk |
θp + np

, (9)

where ck is the number of customers of a phrase pair pk and np

is the number of all customers. Note that this state is reachable
when the phrase pair 〈s/t〉 exists in the model in the same manner
as Eq. (2).
back-off:

We will back off to smaller phrases using a rule generated by
Prule as follows:

θp + dp · |ϕp|
θp + np

· cback + γb ·Gb

cback + cbase + γb

·Prule(dr, θr,Gphrase)

·
∏

X∈〈α/β〉
Pphrase(dp, θp,GX), (10)

where cback and cbase are the number of customers sampled from
the back-off and base phrases, respectively, with a base measure
Gb and hyperparameter γb. We use a uniform distribution for
Gb = 0.5 since we consider only two states, back-off and base.
Unlike the model state, Pphrase may reach this state even when
a phrase pair is not in the model. The phrase pair is backed-off
to smaller phrase pairs using Pphrase through the non-terminals in
the generated rule X ∈ 〈α/β〉.
base:

As an alternative to the back-off state, we may reach the base

state which follows the probability distribution on the basis of the
base measure Gp0 ,

θp + dp · |ϕp|
θp + np

· cbase + γb ·Gb

cback + cbase + γb
·Gp0 . (11)

In summary, Pphrase(dp, θp,GX) is defined as a joint probability of
Eqs. (9) through (11).
3.3.2 Base Measure

The base measure for phrases Gp0 is composed of three gener-
ative processes, in a similar manner as Levenberg et al. [22]. The
number of terminal symbols in a phrase pair in the source side,
|s|, is generated from a Poisson distribution:

|s| ∼ Poisson(0.1). (12)

The length for the target side |t| is generated in the same manner
as the source side of the phrase pair. The alignments between s
and t are also generated in the same manner as those for the base
measure in a rule.

4. Inference

For efficient inference, we propose a method to combine a
fast two-step bi-parsing approach [37] and slice sampling for an
SCFG [1]. Sampling for inference is conducted by a sentence-
wise block sampling [1], which has a better convergence property
when compared with a step-wise Gibbs sampling. We repeat the
following steps given a sentence pair.
( 1 ) Decrement the number of customers of the rules and phrase

pairs used in the current derivation for the sentence pair.
( 2 ) Bi-parse the sentence pair in a bottom up manner.
( 3 ) Sample a new derivation tree in a top-down manner.
( 4 ) Increment the number of customers of the rules and phrase

pairs in the sampled derivation tree.
The most time-consuming step during the inference procedure is
bi-parsing of a sentence pair which essentially takes O(|f|3|e|3)
time using a bottom up dynamic programming algorithm [36].
When a span is very large, it can easily suffer combinatorial ex-
plosion. To avoid this problem, we use a two-step slice sampling
by performing the two-step bi-parsing [37] and by pruning possi-
ble derivation space [1] in each step (Algorithm 1). From lines 1
to 8, a set of word alignment is enumerated and put into a list of
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Algorithm 1 Two-step slice sampling
1: for i← 1, · · · , |source| do

2: for j← 1, · · · , |target| do

3: cubea ← {sourcei, target j}
4: end for

5: cubea ← {sourcei, null}
6: chart← SliceSampling(cubea)

7: clear cubea

8: end for

9: for h← 1, · · · , |source| do

10: for all the i, j s.t j − i = h do

11: for inferable rule, phrase from the subspans of [i, j] of all charts do

12: cube← rule, phrase

13: end for

14: chart ← SliceSampling(cube)

15: clear cube

16: end for

17: end for

word alignments cubea. In addition to the arbitrary word align-
ment of sourcei to target j, null word alignment is also merged
into cubea (line 5). Note that word alignment considered in the
algorithm is restricted to one-to-many *2. the set of word align-
ments in cubea is pruned and added to the chart by SliceSampling,
where chart denotes a hyper-graph, representing connections of
all rules and phrase pairs. In SliceSampling, the phrases and rules
in cube are pruned based on a randomly sampled threshold and
the remainders are added to chart. From lines 9 to 17, all possi-
ble phrases and rules for each span constrained by the remained
word alignment are enumerated and temporally stored into a list
of rules and phrase pairs cube. The time complexity for the word
alignment enumeration from lines 1 to 8 is O(| f ||e|) and that for
the phrase and rule enumeration from lines 9 to 17 is O(| f |3).

The key difference to the slice sampling [1] lies in lines 6 and 3
of Algorithm 1. Let d denote a set of derivation trees d and u be
a set of slice variables u. In slice sampling, we prune the rules rsp

in each source span sp based on a slice variable usp correspond-
ing to that sp. After pruning, we sample trees from the pruned
space of r. The above process is formally represented as:

u ∼ P(u|d),

d ∼ P(d|u), (13)

where P(d|u) is computed through sampling in a top-down man-
ner after parsing in a bottom-up manner with Algorithm 1,
and is equal to

∏
d P(d|u). The probability P(u|d) is equal to∏

sp P(usp|d). Let r∗sp denote a currently adopted rule in the span
sp and P(usp|d) be defined using a pruning score Score(r∗sp) as
follows:

Score(rspi ) = Inside(rspi ) · Future(rspi ), (14)

where Inside(rsp) and Future(rsp) are inside and outside probabil-
ities for sp, respectively. Let srsp denote a set of source side words
*2 In Hiero grammar, as we explained in the Section 3.1, phrase pairs are

not allowed to contain multiple word alignments. This restriction may
decrease the expressiveness of the previous Bayesian SCFG models. In
Experiments, for fair comparisons between previous Bayesian model and
our hierarchical back-off model, we removed the restriction of the mul-
tiple word alignments, and named this setting as Gen-Relaxed. In Gen-
Relaxed, the expressiveness of the previous Bayesian SCFG model is the
same as our hierarchical back-off model.

in rsp, trsp a set of target side words in rsp, ssp a set of words in
a source sentence without srsp and tsp, a set of words in a target
sentence without trsp . By using IBM Model 1 probabilities in two
directions, Inside(rsp) is calculated by

(P−−→
M1

(ssp, tsp) · P←−−
M1

(ssp, tsp))
1
2 . (15)

We use the IBM Model 1 outside probability for future score
Future(rsp). Similarly, the future score Future(rsp) is computed
using the two directional models:

(P−−→
M1

(ssp, tsp) · P←−−
M1

(ssp.tsp))
1
2 . (16)

When sp is used in the current derivation d, slice variable usp is
sampled from a uniform distribution *3:

P(usp|d) =
I(usp < Score(r∗sp))

Score(r∗sp)
, (17)

otherwise, usp is sampled from a beta distribution if sp is not in
the current derivation d:

P(usp|d) = Beta(usp; a, 1.0), (18)

where a < 1 is a parameter for the beta distribution. If the
Score(rspi ) is less than usp, we prune the rspi from cube. Simi-
lar to Blunsom and Cohn [1], if the span sp is not in the current
derivation, the rules with a low probability are pruned according
to Eq. (18). Letting rd

sp denotes a rule in d with span sp, P(d|u) is
calculated by:

∏

sp∈d

P(rd
sp)

∑
r j∈rsp

P(r j)I(usp < S core(r j))
. (19)

In our experiments discussed in Section 6, slice sampling pa-
rameter a was set to 0.02 when calculating the future score in
Eq. (16). In contrast, we used a = 0.1 when performing slice
sampling without the future score. We empirically found that set-
ting a lower value for a led to slower progress in learning due to
a combinatorial explosion when inferencing a derivation for each
sentence pair.

In the beginning of training, we do not have any derivation
trees for given training data, although the derivation trees are re-
quired for estimating parameters for Bayesian models. We use the
two-step parsing for generating initial derivation trees solely from
base measures. K-best pruning is conducted against the score de-
noted by Eq. (14), which is very similar to Xiao et al. [37] *4.

For faster bi-parsing, we run sampling in parallel in the same
way as Zhao and Huang [39], in which bi-parsing is performed in
parallel among the bilingual sentences in a mini-batch. The up-
dates to the model are synchronized by incrementing and decre-
menting the number of customers for the bilingual sentences in
the mini-batch. Note that the bi-parsing for each mini-batch is
conducted on the fixed model parameters after the synchronized
parameter updates.

In addition to the model parameters, hyperparameters are re-
sampled after each training iteration following the discount and
strength hyperparameter resampling in a hierarchical Pitman-Yor

*3
I(·) is a function that returns 1 if the condition is satisfied and 0 otherwise

*4 Note that we use k = 30 for k-best pruning.
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process [34]. In particular, we resample 〈dp, θp〉, the pair of dis-
count and strength parameters for phrases from a distribution:

[θp]
|ϕp |
dp

[θp]
np

1

∏

〈s,t〉

|ϕp |∏

k=1

[1 − dp](c〈s,t〉−1)
1 (20)

where [ ] denotes a generalized Pochhammer symbol, and c〈s,t〉 is
the number of customers of phrase pair 〈s, t〉. We resample the
pair 〈dr, θr〉 in the same way as 〈dp, θp〉. The hyperparameter γb

is resampled from distribution:

(cback + γb ·Gb)(cbase + γb ·Gb)
(cback + cbase + γb)2

, (21)

where φ, used in the generative process for either terminal or non-
terminal symbol typei ∼ Bernoulli(φα), is resampled from the
following distribution:

∏

〈α/β〉∈Base

Bernoulli(φ|α|)c〈α/β〉 , (22)

where c〈α/β〉 denotes the number of customers of rule 〈α/β〉, and
Base denotes a set of rules generated from the base measure. All
the hyperparameters are inferred by slice sampling [26].

5. Extraction of Translation Model

In the previous work on Bayesian approaches [1], [22], it is
standard practice to heuristically extract rules and phrase pairs
from the word alignment derived from the derivation trees sam-
pled from the Bayesian models. Instead of the heuristic method,
we directly extract rules and phrase pairs from the learned mod-
els which are represented as Chinese restaurant tables. To limit
grammar size, we include only phrase pairs that are selected at
least once in the sample.

For each extracted rule or phase pair, we compute a set of fea-
ture scores used for a HPBSMT decoder; a weighted combination
of multiple features is necessary in SMT since the model learned
from training data may not fit well to translate an unseen test
data [28]. We use the following six features; the joint model prob-
ability Pmodel is calculated by Eq. (2) for rules and by Eq. (9) for
phrase pairs. The joint posterior probability Pposterior( f , e) is es-
timated from the posterior probabilities for every rule and phrase
pair in derivation trees through relative count estimation, moti-
vated by Neubig et al. [27] *5. The joint posterior probability is
considered as an approximation for those back-off scores. The
conditional model probabilities in two directions, Pmodel( f |e) and
Pmodel(e| f ), are estimated by marginalizing the joint probability
Pmodel( f , e):

Pmodel( f |e) =
Pmodel( f , e)∑
f ′ Pmodel( f ′, e)

. (23)

The inverse direction Pmodel(e| f ) is estimated similarly. The lex-
ical probabilities in two directions, Plex( f |e) and Plex(e| f ), are
scored by IBM Model 1 probabilities between the source and tar-
get terminal symbols in rules and phrase pairs. In addition to the
above features, we use Word penalty for each rule and phrase pair
used in the cdec decoder [13].

*5 Note that the correct way to decode from our model is to score every
phrase pair created during decoding with back-off states, which is com-
putationally intractable.

As indicated in previous studies [12], [21], the translation qual-
ity of generative models is lower than that of models with heuris-
tically extracted rules and phrase pairs. DeNero et al. [12] re-
ported that considering multiple phrase boundaries is impor-
tant for improving translation quality. The generative models,
in particular Bayesian models, are strict in determining phrase
boundaries since their models are usually estimated from sam-
pled derivations. As a result, translation quality is poorer when
compared with a model estimated using a heuristic method. The
Hiero grammar severely suffers from the phrase granularity prob-
lem and can overfit to the training data due to the flexibility of the
rules.

To alleviate this problem, Neubig et al. [27] combined the
derivation trees across training iterations by averaging the fea-
tures for each rule and phrase pair. During the sampling pro-
cess, each training iteration draws a different derivation tree for
each sentence pair, and the combination of those different deriva-
tion trees can provide multiple possible phrase boundaries to the
model. Inspired by the averaging over the models from differ-
ent iterations, we combine them as a part of a sampling process;
we treat the derivation trees acquired from different iterations as
additional training data, and increment the number of the cor-
responding customers into our model. Hyperparameters are re-
sampled after the merging process. The new features are directly
computed from the merged model.

6. Experiments

6.1 Comparison with Previous Bayesian Model
First, we compared the previous Bayesian model [22] with our

hierarchical back-off model. The details are as follows:
• Gen Previous Bayesian SCFG model with Hiero constraints.

Due to the minimal phrase constraint of a Hiero grammar,
Gen can only generate one-to-many phrase pairs. In infer-
ence steps, different to the original method, we used our
proposed two step slice sampling approach without future
scores.

• Gen-Relaxed For fair comparisons between the previous
Bayesian model and our hierarchical back-off model, we re-
moved the minimal phrase constraint of a Hiero grammar
to generate many-to-many word alignments in the previous
Bayesian model. Other settings are same as Gen.

• Back Our proposed hierarchical back-off model inferenced
by the two step slice sampling approach without future
scores.

• Back+future Our proposed hierarchical back-off model in-
ferenced on the two step slice sampling approach with future
scores.

In the German/Spanish/French-to-English translation pairs, we
used WMT 2010 test set [3] for testing, WMT 2009 test set [4]
for tuning, and News-Commentary-v8 corpus for training. In
the Japanese-to-English translation pair, we used NTCIR10 cor-
pus [14] for tuning, testing and training. We used the first 100 K
sentence pairs of training data sets for the translation models. All
sentences were tokenized, lowercased, and filtered to preserve
at most 40 words on both source and target sides for training.
We sampled 20 iterations for Gen and Back and combined the
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Table 2 Results of translation evaluation in 100 k corpus.

News-Commentary NTCIR10
de-en es-en fr-en ja-en

Model Sample BLEU SIZE BLEU SIZE BLEU SIZE BLEU SIZE

∗ GIZA++ - 16.66 7.07 M 23.16 6.07 M 20.79 6.25 M 26.08 3.45 M

Gen 1 15.36 397.63 k 21.10 295.69 k 19.45 311.76 k 25.73 262.45 k
10 15.39 529.46 k 20.83 384.55 k 19.24 419.33 k 25.79 344.67 k

Gen-Relaxed 1 15.30 397.61 k 20.90 295.53 k 19.33 312.00 k 26.00 268.17 k
10 15.31 591.62 k 21.10 433.64 k 19.43 464.61 k 25.52 378.28 k

Back 1 15.30 410.92 k 21.43 314.95 k 19.74 362.22 k 25.69 294.90 k
10 15.42 563.80 k 21.53 420.15 k 19.51 497.51 k 25.63 388.87 k

Back+future 1 15.49 384.69 k 21.63 296.30 k 19.97 340.70 k 25.82 268.38 k
10 15.55 579.12 k 21.74 429.33 k 19.97 513.41 k 25.41 390.23 k

Table 1 The statistics for each corpus.

De-En Es-En Fr-En Ja-En

TM Sentence 100.0 k 100.0 k 100.0 k 100.0 k
TM(en) Word 1.9 M 1.7 M 1.5 M 1.8 M
TM(other) Word 1.9 M 1.9 M 1.8 M 2.0 M
LM(en) Sentence 2.5 M 2.5 M 2.5 M 3.2 M
LM(en) Word 55.6 M 55.6 M 55.6 M 27.8 M

Dev Sentence 2.5 k 2.5 k 2.5 k 2.0 k
Dev(en) Word 65.5 k 65.5 k 65.5 k 67.3 k
Dev(other) Word 62.7 k 68.1 k 72.5 k 73.0 k

Test Sentence 2.5 k 2.5 k 2.5 k 8.6 k
Test(en) Word 61.9 k 61.9 k 61.9 k 310.0 k
Test(other) Word 61.3 k 65.5 k 70.5 k 333.0 k

last 10 iterations for extracting the translation model *6. During
the extraction process, we limited the source or target terminal
symbol size of phrase pairs to 5. The batch size was set to 64.
The language models were estimated from the all-English side
of the WMT News-Commentary and europarl-v7. In NTCIR10,
we simply used the all-English side of the training data. All the
5-gram language models were estimated using SRILM [33] with
interpolated Kneser-Ney smoothing. The details of the corpus
are presented in Table 1 *7. For detailed analysis, we also eval-
uate Hiero grammars extracted from GIZA++ [29] grow-diag-
final bidirectional alignments using Moses [18] with Hiero op-
tions. We use GIZA++ and Moses default parameters for train-
ing. Decoding was carried out using the cdec decoder [13]. Fea-
ture weights were tuned on the development data by running
MIRA [6] for 20 iterations with 16 parallel. For other parame-
ters, we used cdec’s default values. The numbers reported here
are the average of three tuning runs [15].

Table 2 lists the results measured using BLEU [30]. The row
marked up with ∗ indicates the model using word class infor-
mation *8. The column Sample denotes the combination size for
each model. The column SIZE in the table denotes the number of
the extracted grammar types composed of Hiero rules and phrase
pairs. The numbers in italic denote the significance improvement
from the score of 1 and 10 sample combinated Gen and Gen-
Relaxed. The numbers in bold denote the score of Back+future,

*6 Gen, Gen-Relaxed and Back took 1 day, Back+future took 1.5 days for
inference on Intel Xeon E5-4650 2.70 GHz x 2 16 core 32 thread CPU
with 256 MB main memory machine.

*7 The Sentence denotes the sentence size and the Word denotes the word
size for each corpus.

*8 Our Back-off models and bayesian SCFG models do not use any word
class information.

significantly improved from the higher score of 1 and 10 sampled
combinated Back. This bold numbers shows the effectiveness of
our proposed slice sampling with future score. All significance
tests are performed using multeval [8] under p-value of 0.05.
Back performed better than Gen and Gen-Relaxed on Spanish-
English and French-English language pairs. Note that the gains
were achieved with the comparable grammar size. When compar-
ing German-English and Japanese-English language pairs, Back
has no significant improvement on Gen and Gen-Relaxed. The
combination of our Back with future scores during slice sampling
(+future) achieved further gains over the slice sampling without
future scores, and slightly decrease the grammar size, compared
to Back. However, Back+future has still no significant improve-
ment on Gen and Gen-Relaxed in German-English and Japanese-
English language pairs. The sample combination has no or slight
gains on the BLEU score, in spite of the increase in the gram-
mar size. From the results, using the last one sample as a gram-
mar is sufficient for translation quality. The performance of the
Bayesian model did not match with that for the GIZA++ pipeline
heuristic approach. In general, complex models, such as Gen and
Back, demand larger corpus size for training, and the evaluation
on such smaller corpus may not be a fair comparison, since the
sampling approach can only rely on sampled derivations. Thus,
we evaluate these methods on a large size corpus in the next sec-
tion.

6.2 Comparison with Heuristic Extraction
As reported in Refs. [12], [21], the comparison against

heuristic extraction is a challenging task. We compared the
Back+future and a baseline extracted from grow-diag-final align-
ments (GDF) of GIZA++ using Moses with Hiero options in
the German-to-English translation pair. We used GIZA++ and
Moses default parameters for training. IBM Model 4 is the main
model implemented in GIZA++ which relies on word class in-
formation, though our Back-off model does not use it. For a fair
comparison, we also used IBM Model 3 as an additional baseline
which does not use word class information. In addition, we used
HEUR-W proposed by [27] for heuristic extraction from the last
1 sample of Back+future, and present it in +HEUR-W. Further-
more, we pruned rule tables using significance pruning [16] for a
fair comparison in terms of the rule-table size denoted as +SP.

We used WMT 2006 test corpus [20] for testing, WMT 2005
test corpus [19] for tuning, and full europarl-v7 corpus for train-
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Table 3 The statistics for each corpus.

TM LM Dev Test

All Sentence 1.9 M 1.9 M 2.0 k 2.0 k
De Word 31.3 M - 55.1 k 59.4 k
En Word 32.8 M 53.1 M 58.8 k 55.5 k

Table 4 Results of translation evaluation in de-en full size corpus.

Model BLEU SIZE

∗ GIZA++Model 4+GDF 27.21† 73.24 M (x15.32)
∗ GIZA++Model 4+GDF+SP 27.15† 6.12 M (x1.28)

GIZA++Model 3+GDF 26.78 59.26 M (x12.40)
GIZA++Model 3+GDF+SP 26.92 5.54 M (x1.16)

Back+future+HEUR-W 26.88 74.52 M (x15.59)
Back+future+HEUR-W+SP 26.84 7.90 M (x1.65)

Back+future 27.04 4.78 M (x1.0)

ing. The language models were estimated from the all-English
side of the europarl-v7 corpus. The statistics of these corpora are
presented in Table 3 *9. The experimental set up was similar to
that in Section 6.1 with the following exceptions; Slice sampling
parameter a was set to 0.05. Mini-batch size was set to 1024
and sampling was performed in 20 iterations *10. The translation
model was extracted by the last 1 iteration. We set significance
pruning threshold value as 50 used by Johnson et al. [16]. Table 4
lists the results. The row marked up with ∗ indicates the model
using word class information. We used † and bold values to sepa-
rate the comparison of large and compact rule tables. The values
with † represent the scores are not significantly different to the
best score (p ≤ 0.05), and the bold values indicate that the mod-
els are not significantly different to the best score (p ≤ 0.05) in the
model which rule-table sizes are less than 10 M. We used multe-
val [8] for significance testing. Compared to +GDF, the Heuristic
extraction baselines, our Back+future can decrease the grammar
size against GIZA++ with comparable BLEU score. Compared
to +SP, the significantly pruned baselines, Back+future achieved
statistical significantly no diffrenet BLEU score against strong
baseline GIZA++Model 4+GDF+SP on less grammar size. Be-
cause GIZA++ Model 3+GDF+SP did not achieve statistical
significantly no diffrenet BLEU score against GIZA++ Model
4+GDF+SP, we can say that Back+future can outperform both
BLEU score and rule-table size to the heuristically pipelined ap-
proach on same conditions. Surprisingly, HEUR-W had no gains,
probably because the word alignment in each Hiero rules relied
on the IBM Model 1. Even if we used +SP on HEUR-W, both the
BLEU score and rule-table size are inferior to the Back+future.
This result indicates that directly using a sampled tree for gener-
ating rule-tables is better than the previously used exhaustive ex-
traction method with bayesian SCFG models, on both the BLEU
score and rule-table size.

7. Analysis

Intuitively, the use of the hierarchical back-off increases the
Hiero grammar size, since the phrases of all the granularities in
the derivation trees are incorporated in the grammar. In con-

*9 The Sentence denotes the sentence size and the Word denotes the word
size for each corpus.

*10 Inference took 10 days on Intel Xeon E7-8837 2.67 GHz x 4 32 core 32
thread CPU with 1,024 MB main memory machine.

Table 5 Example of learned rules.

Gen gin X kamera / silver X camera
en / salt

Back+future gin en kamera / silver salt camera

trast, our hierarchical back-off model achieved gains in transla-
tion quality without largely increasing the size of the extracted
grammar when compared to the previous generative model. The
major differences were the use of the minimal phrase pairs used
in the previous work in which only minimal phrase pairs in the
leaves of derivation trees were included in the model. As a re-
sult, larger phrase pairs were forced to be constructed from those
minimal rules. On the other hand, our back-off model could di-
rectly express phrase pairs of multiple granularities. In partic-
ular, a complex noun may be composed of several Hiero rules
in the previous model, but it can be directly expressed by a sin-
gle phrase pair in our model. Table 5 gives an example of a
Japanese-English phrase pair which is represented by two Hiero
rules in the previous model; it is directly expressed by a single
phrase pair in our model. Figure 3 shows the relationships of the
generated phrase length and their sizes. Phrase lengths in these
figures are calculated by adding the source and target lengths for
each phrase pair. From these figures, we can see that Back and
Back+future can generate longer phrase pairs covering shorter
phrase pairs compared to the Gen and Gen-Relaxed in News-
Commentary Spanish/French-to-English corpus and NTCIR10
Japanese-to-English corpus. However, in News-Commentary
German-English corpus, there are almost no differences between
Back and Gen-Relaxed. We conjecture that the lack of longer
phrase pairs in Back is caused by the sparsity of German com-
pound nouns. In NTCIR10 Japanese-to-English corpus, although
the Back extracted longer phrase pairs, the BLEU score did not
outperform the Gen. Japanese and English are linguistically dif-
ferent, and the translation of function words is decided by the
context. Therefore, phrase pairs are not strongly helpful to the
Japanese-to-English language pair, compared to Spanish/French-
to-English language pairs.

The BLEU score of Back+future was higher than the genera-
tive baseline with the comparable grammar size. Figure 4 shows
the relationships of generated rule length and their sizes *11. We
can observe that Back+future under generate longer rules, com-
pared to other methods in all language pairs. We can say that
Back+future generate more moderate size phrase pairs instead
of longer rules, combined with the above analysis of Fig. 3. In
some cases, because these longer rules increase the sparsity of
rule-tables, descreasing of longer rules increases the translation
quality. We can conclude that Back+future infers better models
by pruning low reliable longer spans.

The BLEU score of our back-off model did not achieve gains
over the heuristic baselines. The detailed analysis of the learned
Hiero grammar’s CRP tables reveals that the grammar is very
sparse and may have little generalization capability. The expan-
sion of back-off process and the use of word classes will solve the
sparsity and increase the translation quality.

*11 In this results, rules are limited to non-terminal rules, and have no phrase
pairs.
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Fig. 3 The relationships between length and size of phrase pairs in 100 k corpus for each model.

Fig. 4 The relationships between length and size of rule pairs in 100 k corpus for each model.
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8. Conclusion

We proposed a hierarchical back-offmodel for Hiero grammar.
Our back-off model achieved higher or equal translation quality
against a previous Bayesian model under BLEU scores on var-
ious language pairs: German/French/Spanish/Japanese-English.
In addition to the hierarchical back-off model, we also proposed
a two-step slice sampling approach. We showed that the two-step
slice sampling approach can avoid over-pruning by incorporating
a future score for estimating slice variables, which led to an in-
crease in translation quality through the experiments. The joint
use of the hierarchical back-offmodel and the two step slice sam-
pling approach achieved comparable translation quality on a full
size Germany-English language pair in Europarl v7 corpus with
the significantly smaller grammar size; 10% less than that for the
heuristic baseline.

For future work, we plan to embed a back-off feature to the
decoder which is computed for all the phrase pairs constructed
in a derivation during the decoding process. We will reflect the
change of a probability as a statefull feature for the decoding step.
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