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Abstract: In this paper, we attempt to estimate lead time (duration) of each period of an operation process by a factory
worker using a wrist-worn accelerometer. In a factory line production system, a worker repetitively performs prede-
fined operation processes, and the lead time greatly affects productivity of the line production system. Our proposed
method automatically finds a frequent sensor data segment as a “motif” that occurs once in each operation period using
only prior knowledge about predefined standard lead time of the operation process, and uses the occurrence intervals
of the motif to estimate the lead time.
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1. Introduction

1.1 Background
Recognition of daily activity using sensor data obtained from

body-worn smart devices is currently one of the most active top-
ics in the ubiquitous and wearable computing research communi-
ties [1], [2], [3], [4], [5]. Activity recognition techniques are ex-
pected to be applied to industrial applications such as work anal-
ysis of factory workers [6], [7] as well as daily applications such
as healthcare, elderly care, and lifelogging [8], [9], [10]. This pa-
per also focuses on factory worker assembly tasks and attempts
to analyze the work by using a wrist-worn acceleration sensor.

Many factories have applied a line production system where
each product passes through the same sequence of operation pro-
cesses. Assembly work by factory workers still constitutes the
core of the production system and improvement of assembly
work is one of the most important tasks for increasing productiv-
ity [7], [11]. In the line production system, a worker repetitively
performs predefined operation processes, and each operation pro-
cess consists of a sequence of operations such as setting a board
on a work bench and screwing parts onto the board. The duration
of one period of a worker’s operation process is referred to as
“lead time,” and the lead time directly affects productivity of the
line production system. Therefore, management of the periods
of operation processes is necessary for improving productivity of
the line production system.

The first important task in managing operation process periods
is to measure the lead time of each period. With the measured
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durations, a line manager can easily know which worker is the
bottleneck of the line. Also, from the transition in worker lead
times, the line manager can estimate the degree of worker fatigue
and the extent to which the worker is habituated to the work, and
thus can estimate the potential bottleneck of the line. When a
line manager finds that the lead time of an operation process is
much longer or shorter than usual lead times, the line manager
should determine the reasons, e.g., lack of a certain operation or
the extension or shortening of the duration of a certain operation.
Therefore, the second important task is the analysis of the prob-
lematic operation process. This paper mainly focuses on the first
task.

Although it is possible to manage and maintain the entire as-
sembly line by having a line manager manually measure the lead
time of each worker’s operation process, this imposes heavy bur-
dens on the manager because the line consists of many work-
ers. Although working devices with timing measurement func-
tions do exist, such devices are not applied to all workers and all
processes. Analyzing a problematic operation process by using
the line manager is far more difficult.

1.2 Research Goal
Therefore, an easy and unobtrusive way to automatically mea-

sure the lead time of each operation process and analyze the oper-
ation process is required. One possible way of measuring the lead
time is to use a wearable sensor and machine learning techniques.
By detecting a sensor data segment that appears in each operation
period, we can measure the lead time based on the frequency (oc-
currence interval) of the segment. For example, when a screwing
action occurs at the start of each operation period, we can measure
the lead time of each period by learning and detecting sensor data
segments of the action. (When the action occurs several times
in each operation period, this method does not work well.) Su-
pervised learning approaches can also be applied to the operation
process analysis. By learning a labeled sequence of operations in
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Fig. 1 Example of three-axis acceleration data obtained from a factory worker in an assembly line who
wore a smart watch on her right wrist. Red, green, and blue lines show x-, y-, and z-axes acceler-
ation data, respectively. The sensor sampling rate is about 60 Hz.

advance, we can find a missing operation or an operation whose
duration is longer or shorter than usual. However, these super-
vised approaches requiring training data collection have the fol-
lowing problems. (1) Since an operation process depends on each
worker, collecting training data from each worker in advance im-
poses substantial costs. (2) Operation processes can frequently
change (e.g., weekly or monthly) due to frequent revisions on the
production system.

In this study, we attempt to investigate the feasibility of unsu-
pervised understanding of operation processes in line production
systems. Specifically, this study focuses on measuring lead times,
and we propose an unsupervised measurement method for esti-
mating the lead time of each operation period using a wearable
sensor. The goal of this method is to find a start time (and an end
time) of each period in unsupervised manner. Figure 1 shows an
example of an acceleration data sequence obtained from a worker
in a real factory. The worker first turned on a sensor data logger
and then started her work. Because the second period included
additional operations, its lead time is longer than the lead times
of the other periods. By analyzing the acceleration sequence, our
method detects a start time and end time of each period as shown
in Fig. 1 in an unsupervised manner.

While the main focus of this paper is estimating the lead times,
we should briefly mention unsupervised analysis of each period
based on outputs of our method to clarify the usefulness of our
method. Because we assume that training data are unavailable,
we segment the time-series data of the period into meaningful
states present in the time-series data in the operation period solely
from the data. With the segmentation result, the line manager can
easily understand the structure of the operation period in detail.
When the lead time of the period is longer than the lead times of
the other periods, for example, the line manager looks at a seg-
mentation result of the period and can find the duration of which
state in the period is longer than usual. Figure 2 shows an ex-
ample of a segmentation (clustering) result where a color shows
an associated cluster (hidden state) of a data point. Our segmen-
tation method is a Bayesian nonparametric version of the hidden
Markov model (HMM) called the hierarchical Dirichlet process
HMM (HDP-HMM) [12]. For more detail about the unsupervised
analysis, refer to [13]. In the example, the lead time of the (n+1)st
period is longer than that of the nth period. As shown in the seg-
mentation result, the duration of the blue colored region of the
(n + 1)st period indicated by a curly bracket seems to be longer
than that of the nth period (63 seconds vs 55 seconds). From the
segmentation result, the line manager can estimate (1) whether or
not necessary operations are missing, (2) whether or not unneces-
sary operations are included, (3) whether or not the duration of an
operation is longer/shorter than usual, and (4) whether or not the
order of operations is correct. Based on the estimation, the line

Fig. 2 Example of segmentation result of three-axis acceleration data ob-
tained from a factory worker.

manager checks videos recorded by cameras that overlook the as-
sembly line, and confirms whether or not the corresponding op-
erations are correct. As discussed above, the lead time estimation
and segmentation results are clues to identify outlying operations.

In the introduction section, we introduced an unsupervised seg-
mentation result based on HDP-HMM. Here we introduce other
unsupervised segmentation methods for time-series data. In Au-
toPlait [14], the authors used a multi-level chain model to seg-
ment the time-series data. Unlike HDP-HMM, they estimate its
model parameters based on the combination of model description
cost and coding cost of whole time-series. Similarly, in Trail-
Marker [15], the authors segment trajectory data as well as clus-
tering the trajectories based on their similarities by minimizing
model description cost and coding cost of describing data. In
[16], pairwise distances among all subsequences in time-series
data are efficiently computed. The authors segment time-series
data based on the fact that the distance between subsequences in
the same segment is small. Unlike these methods, HDP-HMM
estimates model parameters of HMMs based on the Bayes esti-
mation framework.

1.3 Research Methodology
For estimating a start time of each operation period, our pro-

posed method requires only information about a predefined stan-
dard lead time of the operation process. The idea behind our pro-
posed method is simple. In a line production system, a worker
repetitively performs their operation process. Therefore, sensor
data obtained from a wearable sensor attached to the worker also
have repetitive patterns. Our proposed method finds a frequent
sensor data segment as a “motif” that occurs once in each op-
eration period. Red time windows in Fig. 1 indicate examples of
occurrences of a motif. Based on the occurrences of the motif, we
estimate the actual start time of each period. In this method, an
operation process model is prepared in advance based on knowl-
edge about the predefined standard lead time of the operation pro-
cess, and our method finds a motif that appears in the sensor data
sequence in accordance with the operation process model. When
the standard lead time is two minutes, for example, we find a mo-
tif that occurs about every two minutes and then employ the motif
to track operation periods and estimate the start time of each pe-
riod.

Note that the following factors make this task difficult.
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1) The lead time of one period of an operation process of actual
factory work fluctuates. Therefore, simple existing methods for
frequency analysis do not work well for estimating the lead time,
e.g., using the autocorrelation of sensor data or calculating dom-
inant frequencies by analyzing the entire sensor data sequence
using fast Fourier transformation. Also, Fourier analysis cannot
provide the lead time of each period.
2) Operations in a worker’s operation process sometimes change
depending on the situation. For example, if a worker replaces a
part on a board only when the part is broken, the lead time of
the operation process depends on a test result of the part. Also,
the worker assembly tasks sometimes consist of several operation
processes. For example, a worker performs operation process A
and operation process B; operation process A corresponds to as-
sembling parts and operation process B corresponds to boxing
several assembled products. Therefore, operation process A is it-
erated several times and then operation process B is performed
to box products assembled in preceding periods of operation pro-
cess A. In such case, an operation process has two possible cases
of standard lead time.
3) It is difficult to detect when the worker started operation pro-
cesses. We assume that the worker runs a data logger on a wrist-
worn sensor device by herself before she starts her work. So,
the time when she starts sensor data collection does not strictly
correspond to the time when she starts her work.

To cope with the first and second problems, we deal with such
fluctuations and variations of the lead time in an operation process
by employing a particle filter [17], which is usually used to esti-
mate the states of non-linear systems. A particle filter permits us
to robustly track a motif that appears non-linearly. To cope with
the third problem, we utilize our idea that sensor data unrelated to
operation processes, e.g., just after the logging start, are dissim-
ilar to sensor data corresponding to operation processes. Based
on this idea, we detect a sensor data segment collected before the
first operation process and then find a start time of the first oper-
ation period. For the second or later periods, we find their start
times using a sensor data segment corresponding to the start of
the first operation period based on their similarities.

1.4 Research Contributions
The research contributions of this paper are as follows: (1) To

the best of our knowledge, this is the first study that proposes an
unsupervised method for measuring the lead times of operation
periods and estimating start times of the operation periods of a
factory worker. (2) To deal with fluctuating and varying opera-
tion periods, we design a robust motif tracking method based on
particle filtering. (3) To reduce the computation cost of the parti-
cle filter based tracker, we quickly identify candidates of motifs
by symbolizing time-series acceleration data. (4) We evaluate our
method using sensor data obtained in real factories.

2. Related Work

Due to the recent growing interest in smart manufacturing and
Industry 4.0 [18], [19], studies on recognizing and supporting fac-
tory work using sensor technologies [20], [21] have been attract-
ing attention.

We introduce studies on monitoring and analyzing factory
work using wearable sensors. Koskimäki et al. [22] obtain ac-
celeration and gyro sensor data from a wrist-worn inertial sensor
device and analyze operation processes in a line production sys-
tem to ensure that all necessary operations are performed. The
study recognizes such activities as hammering and screwing by
using kNN search. Ward et al. [23] obtain acceleration and sound
sensor data from a wrist-worn device to recognize woodworking
activities by using hidden Markov models (HMMs) and a linear
discriminative classifier. Stiefmeier et al. [24] focus on assembly
work of automobiles and use inertial sensors attached to several
body parts such as the upper and lower arms to classify a sen-
sor data segment by computing the distance between the segment
and sensor data templates prepared in advance using discretized
sensor data. They attempt to classify activities such as opening
the engine hood and opening the trunk. Stiefmeier et al. [25] also
focus on work of bicycle repair and use motion sensors and ul-
trasonic hand tracking to recognize maintenance activities using
HMMs. All the above methods for analyzing factory work rely
on supervised machine learning approaches and require training
data collection.

Here we introduce studies on unsupervised activity recogni-
tion. Huynh et al. [26] use topic models to cluster activity data in
an unsupervised manner. Also, Khan et al. [27] symbolize accel-
eration data to discover the structure of surgical activities in an
unsupervised manner.

3. Assumed Environment

3.1 Sensor Setting
We assume that a worker wears body-worn inertial sensors

such as accelerometers. In our experiment, workers wore a smart
watch with a three-axis accelerometer on their right wrists. The
sensor sampling rate is about 60 Hz. We also assume that several
cameras that overlook an assembly line are installed. Because the
cost of the cameras is high and the data size of the video record-
ings is huge, small numbers of cameras are installed and each
camera captures multiple workers. We assume that, when a line
manager finds outlying operation processes from results of our
methods, the manager checks video recordings of these outliers.

3.2 Work Instructions
Work instructions are prepared in advance for each worker as-

sembly task. The work instructions specify a standard lead time
of the operation process and a flow of operations included in the
operation process, e.g., (1) placing a board on a work bench, (2)
checking a mode of a tester, and (3) changing a mode of a signal
monitor.

To estimate the lead time of an operation period, we apply the
standard lead time included in the work instructions. As men-
tioned in the introductory section, the work instructions can have
multiple standard lead times. For example, an assembly work
consists of two kinds of operation processes: operation process A
corresponding to assembling parts and operation process B corre-
sponding to boxing several assembled products. Therefore, oper-
ation process A, which is the main operation process in the work,
is iterated several times and then operation process B, which is
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sub-operation process, is performed to box products assembled
in preceding periods of operation process A. For each kind of op-
eration process, the standard lead time is defined, e.g., 2 minutes
for operation process A and 5 minutes for operation process B.

Here, our method estimates the lead time of an operation pe-
riod by tracking a motif, which occurs once in each operation
period. Therefore, when there are no motifs that commonly oc-
cur in all the kinds of operation processes, our method cannot
measure the lead times of the processes. In the above example,
because operation processes A and B are completely different, it
is difficult to find a motif that occurs in both operation processes
A and B. To cope with this problem, we introduce a new kind
of operation process C, which consists of operation process A
followed by operation process B, instead of operation process B.
For example, when we observe a sequence of operation processes
“AAAABAABAAAAB,” we regard the sequence as “AAACA-
CAAAC,” i.e., “AB” is replaced by “C.” The standard lead time
of operation process C will be the sum of the standard lead times
of operation processes A and B, i.e., 7 minutes. By doing so,
we can find a motif that occurs in the first two minutes of opera-
tion process C. As discussed above, when sensor data (operation
flows) of different kinds of operation processes are completely
different, we should modify standard lead times described in the
work instructions. This is a limitation of our method. However,
in many cases, we can easily modify the standard lead times by
just concatenating a main operation process and a sub operation
process because a sub operation process is usually performed be-
tween iterations of a main operation process.

4. Detecting the Operation Period

The proposed method first finds a motif that repeatedly occurs
in accordance with an operation process model. The method then
tracks the found motif, which occurs once in each operation pe-
riod. Based on the occurrences of the motif, we estimate the ac-
tual start time of each period. Figure 3 shows an overview of
finding the best motif. Also, Fig. 3 shows an overview of find-
ing the start times of operation periods. Before explaining the
methods, we introduce an operation process model.

4.1 Operation Process Model
Our method employs an operation process model that defines

the standard lead time of the operation process of interest. In this
study, a Gaussian distribution is used to represent the standard
lead time of the process. Since periods of operation processes
sometimes have different standard lead times, an operation pro-
cess model is represented as a mixture of Gaussian distributions,
each of whose means corresponds to each case of standard lead

Fig. 3 Overview of finding the best motif from sensor data, tracking opera-
tion periods, and estimating their start times using the best motif.

time. The probability with which the lead time of a period is t is
described by

p(t|M) =
N∑

i=1

πiN(t, μi, σi),

where N is the number of mixtures, πi is the mixture weight of
the ith multivariate Gaussian distribution of the GMM (Gaussian
Mixture Model; πi = 1/N in our implementation), and μi and
σi are the mean and variance of the Gaussian distribution, re-
spectively. Also, the GMM parameters are collectively repre-
sented by M. For example, when an operation process has two
possible cases of standard lead time, e.g., 2 and 5 minutes, its
operation process model consists of two Gaussian distributions
whose means are 2 and 5 minutes. By comparing the occurrences
(intervals) of a motif and an operation process model, we judge
whether or not the motif occurs in accordance with the model.

4.2 Finding the Best Motif
4.2.1 Overview

The left portion of Fig. 3 shows an overview of finding the best
motif. We assume that an operation process model is created from
the predefined standard lead time(s) of a worker’s operation pro-
cess of interest in advance. Our method compares the model with
the first tms minutes of sensor data from the beginning of the sen-
sor data collection, and finds a motif that is suitable for measur-
ing lead times of the operation processes by using a particle filter.
In the initialize phase of the particle filtering, we randomly ex-
tract motifs (sensor data segments) with random durations from
the first tinit minutes of sensor data from the beginning of sen-
sor data collection, and we regard the motifs as particles. After
that we successively track the occurrences of the motif (particle),
and then calculate the likelihood (score) of the operation pro-
cess model for the occurrence intervals. We compute the score
for each randomly generated motif and the motif with the largest
score is used to find operation periods and estimate start times of
the periods. That is, after tms, we track the motif with the largest
score using the particle filter.

To track randomly generated motifs using the particle filtering,
we calculate the similarity between each motif and each sliding
window segment extracted from the entire sensor data. Because
sensor data of a worker’s operation may vary in time or speed,
we employ DTW to calculate the similarity (distance) between
a motif and sensor data segment. DTW is designed to calcu-
late the similarity between two temporal sequences with different
lengths. Because our method should compute the similarity be-
tween each motif and each data segment extracted from the entire
sensor data, it takes a long time to find a suitable motif from the
sensor data. Therefore, before running the particle filter based
on DTW, we select several motif candidates with small compu-
tation costs by using the first tms minutes of sensor data from the
beginning of sensor data collection. In this study, we discretize
(symbolize) the sensor data and compute the similarity between
the discretized motif and sensor data segment by using the Ham-
ming distance, which permits us to substantially reduce compu-
tation costs as regards similarity calculation. Therefore, we first
use the discretized data to find several motif candidates that occur
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in accordance with the operation process model. After that, we
track only the selected motif candidates again in detail based on
DTW and find the best motif.
4.2.2 Selection of Motif Candidates

We first select a few motif candidates (k candidates) that oc-
cur in accordance with an operation process model from many
randomly generated motifs by using tms minutes of sensor data.
Here, tms determines the duration of sensor data that are used to
find the best motif. To select motif candidates with small com-
putation costs, we standardize and then discretize (symbolize) tms

minutes of time-series sensor data according to Ref. [28]. We
briefly explain the procedure proposed in Ref. [28]. After the
standardization, the time-series is represented as piece-wise ap-
proximations where the time-series is divided into equal-sized
frames and the mean value of data within each frame becomes
a representative value of the frame as shown in Fig. 4. Therefore,
we reduce the length of the time-series to the number of frames.

We then convert the reduced time-series into a series of sym-
bols such as cbaaabb· · ·. We set several breakpoints and map
each value of a frame into a symbol. For example, when an area
between breakpoints β1 and β2 corresponds to b, and a value of
a frame falls into the area, the value is mapped into b. From the
discretized time-series, we randomly extract motifs with random
lengths from the first tinit minutes of the sensor data, and then
track each motif by using the particle filter. The way of tracking a
motif is almost identical to that described in Section 4.2.3, which
tracks a motif in detail using DTW. Note that, since this process
deals with the discretized time-series, we employ the Hamming
distance instead of the DTW distance. Then, each tracked motif
is evaluated as to whether or not it occurs in accordance with the
operation process model, and we select the top-k motifs accord-
ing to the evaluated scores. After that, we track the selected top-k
motifs in detail by using original sensor data based on DTW and
find the best motif.
4.2.3 Tracking Motifs Using a Particle Filter

We achieve motif tracking that is robust against fluctuations
and variations in lead times by using the particle filter. Then we
find the best motif that occurs in accordance with the operation
process model. The particle filter estimates the states of a non-
linear system by iterating a three-step process: sampling, weight
calculation, and resampling. Our method tracks a motif according
to the procedures of the particle filter as follows.
Initialization: In the initialization process, we randomly extract
ninit motifs with random lengths from the first tinit minutes of the
sensor data. That is, tinit determines the duration of sensor data
that are used to randomly extract motif candidates. We assume an
extracted motif as a particle and a timestamp of the first data sam-
ple of the motif as the time when the motif first occurred. Then
we track the subsequent occurrences of the particle (motif). Note
that this random extraction is executed only when we select top-k
motif candidates using discretized sensor data. By using origi-
nal (non-discretized) sensor data of the top-k selected motifs, we
track the motifs again in detail based on DTW.
Sampling: Based on the predefined operation process model, we
randomly sample particles. When we assume that the time of the
ith occurrence of the nth particle xn is t(xn, i), the time of the i+1th

occurrence of xn (i.e., t(xn, i+1, j)) is determined according to the
operation process model as follows:

t(xn, i + 1, j) = t(xn, i) + Δt,

where Δt is an estimated interval of the occurrence of xn that is
randomly sampled from the operation process model, i.e., p(t|M),
and j shows the jth particle generated from xn according to the
operation process model. We generate ns particles from xn as the
estimated i + 1th occurrences of xn, i.e., prior estimations.
Weight calculation: We calculate a score of each particle that was
sampled according to the operation process model as the weight
of the particle. Specifically, we compare the prior estimated time
of the i + 1th occurrences of xn, i.e., t(xn, i + 1, j), with actual
sensor data, and evaluate the estimation. To achieve this, we first
calculate the similarity between the motif (xn) and each sliding
window segment extracted from the sensor data. The similarity
value is computed by cDTW(X,Y) (c < 1), where DTW(X,Y) shows
the DTW distance between X and Y . (Since we use a three-axis
accelerometer, we use the average distance of the three axes.)

Because the similarity value is computed for each sliding win-
dow in our method, we can obtain a time series of the simi-
larity values with the motif as shown in gs(t) of Fig. 5. Note
that we compute the time-series gs(t) between t(xn, i) − σ and
t(xn, i + 1, j) + σ. When the ith and i + 1th occurrences of xn

are actually at t(xn, i) and t(xn, i+1, j), respectively, the similarity
values around t(xn, i) and t(xn, i + 1, j) become large as shown in
gs(t) of Fig. 5. Ideally, only the similarity values around t(xn, i)
and t(xn, i+1, j) are large and the other similarity values are small
when the motif is suitable for measuring the lead times of the
operation process. (A motif that occurs only once during an op-
eration period is suitable for measuring the lead time. In other
words, a motif that occurs many times in each operation period
is unsuitable.) To evaluate whether or not the motif occurs in ac-
cordance with the operation process model, we define a function
fe(t, j) consisting of a mixture of a Gaussian function whose cen-
ter of the peak is t(xn, i) and whose peak center is t(xn, i + 1, j) as
shown in Fig. 6 and it is represented as follows:

fe(t, j) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
(t − t(xn, i))2

2σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
(t − t(xn, i + 1, j))2

2σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭.
We compute the mutual correlation between fe(t, j) and gs(t) to
evaluate whether or not the motif occurs in accordance with the
operation process model, i.e., whether or not the motif occurs
only at t(xn, i) and t(xn, i + 1, j) by using

r =

∑
t

( fe(t, j) − fe)(gs(t) − gs)

√∑
t

( fe(t, j) − fe)2
√∑

t

(gs(t) − gs)
2
,

where fe and gs are the means of fe(t, j) and gs(t), respectively.
For example, when the estimated i + 1th occurrence of the motif
t(xn, i+1, j) is close to the actual occurrence of the motif as shown
in the left and bottom portions of Fig. 6, the second peak of fe(t, j)
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Fig. 4 Discretizing time-series acceler-
ation data.

Fig. 5 Computing similarity of time se-
ries comparing acceleration data
and motif.

Fig. 6 Weight calculation of particle using mutual correlation.

and that of gs(t) overlap and thus the computed r value becomes
large. In contrast, as shown in the right and bottom portions of
Fig. 6, when t(xn, i+ 1, j+ 1) is not close to the actual occurrence
of the motif, the computed r value becomes small. We assume
the computed r value for fe(t, j) and gs(t) as the weight of the
particle.
Resampling: We resample the sampled particles according to
their computed weights. In the sampling process, we sampled
ns particles from one particle xn. In this study, we resample only
one particle from the ns particles according to their weights. That
is, the timestamp associated with the resampled particle corre-
sponds to the posterior estimation of the i + 1th occurrence of xn,
i.e., t(xn, i + 1).
4.2.4 Selection of the Best Motif

By iterating the above procedures until time tms, we can track
the occurrences of each motif randomly generated in the initial-
ization phase (or selected by using the discretized sensor data).
Finally, we determine the best motif (or top-k motifs) suitable for
measuring lead times of the operation process of interest from the
motifs in a similar way to the above weight calculation. Specif-
ically, we prepare a function fb(t) similar to fe(t) used in the
weight calculation process and evaluate a score (mutual corre-
lation r) of each motif by using the function. The function fb(t)
also consists of Gaussian functions where each of the Gaussian
functions corresponds to the occurrence of the motif estimated
by the above particle filter. For example, when the motif occurs
n times, the function is a mixture of n Gaussian functions whose
centers correspond to the times of the n occurrences. We also pre-
pare time-series of the similarity values comparing the motif with
sliding windows extracted from sensor data between time 0 and
tms. We then compute the mutual correlation r between the time-
series of the similarity values and fb(t). The computed mutual
correlation value becomes a score of the motif. We employ the
motif with the highest score to track the subsequent occurrences
of the motif after tms by using the above-mentioned particle filter.

5. Tracking Operation Periods

5.1 Overview
Figure 3 also shows an overview of tracking each operation pe-

riod using the best motif. After tms, we track the motif using the
particle filter in almost the same way as the above method. Based
on the found occurrence of the motif, we find the start time of the
corresponding operating period.

5.2 Tracking with Particle Filter
The procedure is almost the same as that in the above method.

Note that, in real sensor data, data collected during a short break
or stoppage of the line caused by a sudden accident can be in-
cluded. (For simplicity, we assume that such accidental events do
not occur before tms.) To cope with the problem, when the maxi-
mum similarity value computed in the weight calculation phase is
smaller than a threshold, i.e., no occurrences of the motif can be
found, so we sample particles according to a uniform distribution.

5.3 Finding Start Time
After finding the occurrences of the motif, we find the start

time based on our idea that sensor data collected before the start
of working are dissimilar to sensor data collected during work-
ing. Therefore, we first find the start time of the first opera-
tion period based on the idea. We explain the procedures using
Fig. 7. We first extract a sensor data segment between time 0 and
time t(xb, 1), i.e., s(0, t(xb, 1)), and a segment between t(xb, 1) and
t(xb, 2), i.e., s(t(xb, 1), t(xb, 2)). Here, xb shows the best motif. We
then reverse the order of data points in each segment and obtain
reversed segments s(t(xb, 1), 0) and s(t(xb, 2), t(xb, 1)).

Assume that the actual start time of the first period is s1 and the
actual start time of the second period is s2. Here we can say that
0 ≤ s1 ≤ t(xb, 1) and t(xb, 1) ≤ s2 ≤ t(xb, 2) and, s(t(xb, 1), s1)
and s(t(xb, 2), s2) are similar to each other. In contrast, s(s1, 0)
and s(s2, t(xb, 1)) are not similar to each other because s(s1, 0)
corresponds to sensor data collected before working. We compare
X : s(t(xb, 1), 0) and Y : s(t(xb, 2), t(xb, 1)), and find ŝ1 and ŝ2 that
maximize the similarity between s(t(xb, 1), ŝ1) and s(t(xb, 2), ŝ2).

We compare s(t(xb, 1), 0) and s(t(xb, 2), t(xb, 1)) to estimate ŝ1

and ŝ2 based on DTW. In the standard DTW algorithm, the cumu-
lative distance g(i, j) is computed at each cell. (DTW algorithm
computes a cost matrix to find the optimal alignment between
two time series. For more details about the DTW algorithm, see
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Fig. 7 Finding start time of the 1st period.

Fig. 8 Finding start time of the nth period.

[29], [30].) After completing the computation at all the cells, we
compute the normalized cumulative distance for each cell by

g′(i, j) = g(i, j)/(i + j) − ln(i + j),

where the second term is a penalty on small i and j. With the nor-
malized cumulative distances, we can find similar sub-segments
s(t(xb, 1), ŝ1) and s(t(xb, 2), ŝ2) regardless of the lengths of the
sub-segments. We find a cell with the smallest g′(i, j) and the
time corresponding to i becomes ŝ1 and the time corresponding
to j becomes ŝ2.

Because ŝ1 is estimated, we can obtain a sensor data segment
from the beginning of the first period to the occurrence of the
best motif in the first period, i.e., s(ŝ1, t(xb, 1)), and we then re-

Fig. 9 Introducing zero cost paths to flexibly find the end of X.

verse the segment. Using the reversed segment, we can estimate
the start time of the nth period from the occurrence of the mo-
tif in the period by using DTW as shown in Fig. 8. We obtain
s(t(xb, n − 1), t(xb, n)) and reverse the segment. By comparing
the two reversed segments, i.e., X : s(t(xb, n), t(xb, n − 1)) and
Y : s(t(xb, 1), ŝ1), we find ŝn based on DTW (t(xb, n − 1) ≤ ŝn ≤
t(xb, n)). To achieve this, we introduce edges with zero distances
into the DTW computation as shown in Fig. 9. The edges permit
us to go to the (Nth,Mth) cell without comparing whole elements
in s(t(xb, n), t(xb, n−1)) with s(t(xb, 1), ŝ1). Therefore, we can find
sub-segment s(t(xb, n), ŝn) from s(t(xb, n), t(xb, n − 1)) that mini-
mizes the DTW distance between s(t(xb, n), ŝn) and s(t(xb, 1), ŝ1),
and the found ŝn is the estimated start time of the nth period *1.
The lead time of the n − 1st period is computed by |ŝn − ŝn−1|.
6. Evaluation

6.1 Data Set
The aim of our research project is to optimize assembly work

by factory workers with small burdens. Toshiba corporation op-
erates many factories that manufacture electrical appliances and
devices such as CCD cameras and personal computers, so opti-
mizing the assembly tasks there is important. To investigate the
feasibility of a system for automatically measuring lead time and
visualizing rough structure of an operation process, we collected
sensor data from eight different workers (workers A - H) in the
factories. We used Sony SmartWatch3 SWR50 attached to their
right wrists to observe their daily tasks. The sensor sampling rate
is about 60 Hz and collected data were analyzed off-line. Their
work was also video recorded to obtain the ground truth data.
Figure 10 shows an example of an image collected in the factory.
We show overviews of work of workers A, B, and C in Table 1.
Due to the page limitation, we only show a brief overview of work
of workers D, E, F, G, and H in Table 2. The standard lead times
of the work of workers B and C were modified because the work
has two kinds of operation processes and they are completely dif-
ferent. Refer to Section 3.2 for that reason. Since workers D
and E performed the same operation process, their standard lead
times were identical. Also, workers F, G, and H performed the
same operation process.

*1 Assume an operation process consisting of the main operation process
A and operation process B. When operation process B is performed
(inserted) between the start time of A and that of a selected motif, our
method cannot find the start time of A. In such case, we should find
the end time of A. (We judge it using the DTW distances.) This is a
limitation of our method.
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Table 1 Overview of factory tasks by workers A, B, and C. Work of workers B and C has two types of operation processes.

Worker A Worker B Worker C

operation process Testing board Testing board (B-1) Boxing (B-2) packing (C-1) Boxing (C-2)

standard lead time (sec) 130 140 420 50 70

modified standard
n/a 140 560 50 120

lead time (sec)

data length (sec) 1,440 1,682 838 559 63

flow of operations 1: Placing board 1: Placing board 1: Closing 1: Configuration 1: Closing
(To keep a 2: ABB 2: Checking image 2: Preparing box 2: Labeling 2: Preparing box

secret of a factory, 3: RBOffset 3: Gamma characteristic 3: Labeling 3: Packaging 3: Labeling
we show only 4: Setting bench 4: White balancing 4: Preparing pack 4: AP 4: Preparing pack

abstracted 5: Setting head voltage 5: Auto shutter 5: Preparing AP 5: Packing 5: Preparing AP
operation flows.) 6: Checking AGC 6: Modulation 6: Preparing board 6: Scanning 6: Preparing board

7: Blooming 7: Shading
8: Flex filter 8: Checking scratches

9: Removing board 9: Preset
10: Removing board

Fig. 10 Example of image captured during task.

6.2 Evaluation Methodology
To investigate the effectiveness of our method, we prepare the

following methods.
- Proposed: This is our proposed method.
- w/o disc: This method is also based on our method. This
method does not employ the motif candidate selection using the
discretization. In other words, this method randomly extracts ninit

motifs from raw sensor data and evaluates them using DTW.
- SV: This is a supervised method where a sensor data segment
between s1 and s1+Δ is given. By tracking the segment using the
particle filter tracker based on DTW, this method finds the start
time of each period. (Δ is 3 seconds.)

In addition, we test FFT and autocorrelation, which are com-
monly used methods for frequency analysis.
- FFT: We simply analyze the entire sensor data sequence using
Fast Fourier transformation. This method provides only the am-
plitude values for frequencies and cannot estimate the lead time
of each period.
- Autocorrelation: Similar to FFT, this method also reveals the
frequency of the sensor data using the autocorrelation.

The evaluation criteria of this study are the mean absolute er-
rors (MAEs) for the start time estimation and lead time estima-
tion. When we calculate an error of lead time of a period, we
find a period of the ground truth with the largest overlap with the
estimated period and compare their lead times. When we calcu-
late an error of a start time, we find a start time of the ground truth
closest to the estimated start time and compute the difference. We
employ this evaluation methodology because the methods do not
always find all the operation periods. (Our method could find all
the periods in the data.) Experimental parameters used in this
study are shown in Table 3, which are determined based on our
preliminary experiments.

Table 2 Overview of factory works of workers D, E, F, G, and H.

Worker D E F G H

operation process Screwing Final test

standard lead time (sec) 55 55

data length (sec) 677 692 867 710 682

Table 3 Experimental parameters.

parameter value

tinit standard lead time [sec]

tms 5×standard lead time [sec]

ninit 0.5×standard lead time

ns 60

c 0.6

k 10

# symbols 5

frame length for
5 [sample]

symbolization

6.3 Results
6.3.1 Frequency Analysis

Here we show results of conventional frequency analysis meth-
ods. Since the FFT method cannot output the lead time of each
period, we show the power spectrum for worker A in Fig. 11. As
shown in the result, the amplitude corresponding to the standard
lead time (130 seconds) is not high and the result captured longer
periods (about 180 seconds). Note that the actual average lead
time was 127 seconds. Figure 12 shows a correlogram of Auto-

correlation for worker B. The second period of her work started
133 seconds after the start of sensor data collection, the third pe-
riod started 274 seconds after the start of the collection, and the
fourth period started 828 seconds after the start of the collection.
As shown in the figure, Autocorrelation could not output mean-
ingful results due to the fluctuation and variation in lead times.

We also show results of local FFT and autocorrelation where
five-period of sensor data were input. As shown in Fig. 13, this
method could roughly capture the standard lead time of the work
since short-term data were not greatly affected by global (long-
term) signal fluctuation. However, capturing precise lead time
using this approach is still difficult. Also, as shown in Fig. 14, the
peak of the correlogram is different from the worker’s standard
lead time. (Actual average lead time for the first five periods was
138 seconds.)
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Fig. 11 Power spectrum for sensor data from worker A.

Fig. 12 Correlogram of autocorrelation for sensor data from worker B.

Fig. 13 Power spectrum for short-term sensor data from worker A.

Fig. 14 Correlogram of autocorrelation for short-term sensor data from
worker B.

6.3.2 Lead Time Estimation Accuracy
Table 4 shows the MAEs for lead time estimation. As shown

in the results, Proposed achieved almost the same accuracy as
w/o disc. The MAEs of SV were much poorer than those for
our method even though SV uses a motif that corresponds to a
sensor data segment of the beginning of an operation process.
This is because the motif was not identified and the particle fil-
ter could not track the motif. Furthermore, since SV output only
five periods of worker B while our sensor data contain twelve
periods of the worker, the MAE for worker B was much larger
than the MAEs for other workers. In contrast, our method can
automatically find the best motif that occurs according to an op-
eration process model. As above, the MAEs of our method were
only about three seconds. We showed our estimation results to

Table 4 MAEs for lead time estimation (seconds).

Worker A B C D E F G H

Proposed 1.8 4.2 3.3 0.8 1.6 4.0 2.5 1.2
w/o disc 2.8 3.4 3.3 0.6 5.0 3.5 2.3 1.2

SV 3.2 35.0 6.1 0.8 5.9 7.7 4.4 7.0

Table 5 Error ratios for lead time estimation (%).

A B-1 B-2 C-1 C-2

Proposed 1.4 2.9 1.1 6.0 5.0
w/o disc 2.2 2.5 0.6 6.0 5.0

SV 2.5 5.0 21.9 11.0 9.2

D E F G H average

Proposed 1.5 2.9 7.3 4.5 2.2 3.5
w/o disc 1.1 9.1 6.4 4.2 2.2 3.9

SV 1.5 10.7 14.0 8.0 12.7 9.7

Fig. 15 Transitions of estimated and ground-truth lead times for worker C.

engineers of production management in the factory and they ex-
pressed the view that our lead time estimation has sufficient ac-
curacy for finding outlying periods of operation processes in the
real factory such as delays because the MAEs were much smaller
than the lead times. Also, since the durations of many operations
included in operation processes are longer than 10 to 20 seconds,
and our method can easily detect the omission of necessary oper-
ations and addition of unnecessary operations.

Table 5 shows the error ratios of lead time estimation. As for
data from workers A and B, Proposed and w/o disc achieved low
error ratios about 3%. The error ratios for worker C were much
higher than those for workers A and B. This is because opera-
tion process C-1 was similar to operation process C-2. Figure 15
shows the transitions of estimated lead times by Proposed and
actual lead times for worker C. The actual lead time of the fifth
period, which corresponds to operation process C-2, was 121 sec-
onds and the estimated lead time was 116 seconds. Also, the ac-
tual lead time of the sixth period, which corresponds to operation
process C-1, was 61 seconds and the estimated lead time was 68
seconds. This is because our method could not find the correct
start time of the sixth period. However, as shown in Fig. 15, our
method could capture changes in lead times with small errors.
Also, the error ratios for worker F were somewhat large as shown
in Table 5. This is because the worker performed an operation in
each period after tms that was not performed before tms.
6.3.3 Start Time Estimation Accuracy

Table 6 shows the MAEs for start time estimation. The MAEs
for Proposed and w/o disc were small and Proposed achieved al-
most the same accuracy as w/o disc. Also, Proposed and w/o disc

greatly outperformed SV. The MAEs of start time for workers A
and B were larger than those of lead time for workers A and B.
This is caused by the shift of estimated periods from periods of
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Table 6 MAEs for start time estimation (seconds).

Worker A B C D E F G H

Proposed 4.6 4.9 1.8 1.5 2.9 2.6 4.2 1.0
w/o disc 7.1 2.6 1.8 3.1 7.0 2.4 4.2 1.0

SV 3.7 66.0 27.2 4.9 5.4 7.6 6.6 48.4

Table 7 Computation times of methods (seconds).

select select track estimate
totalmotif best after start

candidates motif tms time

A
Proposed 2.0 223.6 38.6 3.9 268.1
w/o disc n/a 1434.8 39.8 0.3 1474.9

B
Proposed 1.3 350.3 66.9 37.9 456.4
w/o disc n/a 2303.3 66.0 58.6 2427.9

C
Proposed 0.3 97.0 17.3 2.0 116.6
w/o disc n/a 265.2 17.3 2.0 284.5

the ground truth.
6.3.4 Computation Time

Table 7 shows computation times of the methods run on Win-
dows PC with Core i5 CPU and 8 GB memory. As shown in the
results, the computation time of Proposed was much shorter than
that of w/o disc. This is because the computation time for finding
the best motif for Proposed was much shorter than that for w/o

disc. By selecting motif candidates, we could reduce the number
of motifs evaluated using DTW. As for sensor data from worker
A, our method found the best motif within 225.6 seconds after
tms. It corresponds to the duration of two periods of her operation
process. After finding the best motif, our method can track the
motif in real time.

For data from workers A and B, we could reduce the number
of motifs evaluated by about 15% (from 65 to 10 and 70 to 10
motifs, respectively). As shown in Table 7, the computation time
for selecting motif candidates was very short because motifs were
evaluated using discretized data.

7. Conclusion

This study investigates the feasibility of unsupervised under-
standing of operation processes in line production systems. Our
method achieves highly accurate lead time estimation of factory
work in an unsupervised manner. The estimation error of our
method was only about 3 seconds and our method has a sufficient
accuracy for finding outlying periods. As part of our future work,
we will endeavor to understand the structure of operation periods
in detail using operation flows described in work instructions as
prior knowledge. In addition, because data used in the evaluation
section includes about ten operation periods for each participant,
the data may not capture fluctuations of lead times caused due
to worker fatigue. Investigation of our method with long-term
sensor data is also one of the most important future work of this
study.
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Activity recognition using a wrist-worn inertial measurement unit: A
case study for industrial assembly lines, 17th Mediterranean Confer-
ence on Control and Automation (MED 2009), pp.401–405 (2009).
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