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Abstract: We applied an element-based retrieval approach in this study to improve search accuracy for information
retrieval on small screen devices. Finer-grained retrieval units compared with document granules are expected in mo-
bile information retrieval because of limited screen size. An information retrieval system employing information units
(iUnits), i.e., text fragments that are relevant to a query and atomic in interpreting information, is one of the solu-
tions to finer-grained retrieval units. An iUnit-based mobile information retrieval task, called MobileClick, assumes
two-layered information access where the most important iUnits are arranged in the first layer and detailed iUnits for
individual intents are arranged in the second layer. This two-layered information access enabled useful information to
be presented with fewer page transitions. We first adopt element-based retrieval to identify elements containing rele-
vant descriptions in a document to tackle MobileClick. The next step is scoring the iUnits where we assigned higher
scores to iUnits that are similar to elements with higher scores. Our experimental evaluations demonstrated that our
method is more accurate than a baseline by 9.7%.
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1. Introduction

Google has reported that the number of Web searches from mo-
bile devices is superior to that from PCs in 10 countries including
the USA and Japan *1. The fact that the number of Web searches
from mobile devices is growing indicates appropriate information
access methodology is being materialized for mobile information
retrieval (IR), which is crucial and urgent. Information selection
for mobile IR is greatly required because mobile devices gener-
ally have a small screen mounted to them and simultaneously dis-
play limited amounts of information. In other words, document-
granular IR is not effective for mobile IR.

MobileClick [9] is a task conducted at the NII Testbeds and
Community for Information access Research (NTCIR) workshop.
The main aim of MobileClick is to present relevant search results
in mobile IR. When a query is issued, two-layered search results
are displayed to enable direct and immediate information acqui-
sition without unnecessary page/site transitions in MobileClick.
Figure 1 has an example of two-layered search results. The
first layer is comprised of important and general information to a
query and links to a details page (the second layer) of the intents
of the query. Thus, the two-layered search results are expected to
provide effective mobile IR even with limited screen sizes. The
retrieval units of MobileClick are information units (iUnits). The
definition of iUnits is text fragments that are relevant to a query
and atomic in interpreting information *2. An iUnit is composed
of arbitrary granular information, such as a few terms, a phrase,
and a sentence. General information in the first layer and details
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Fig. 1 Two-layered search results.

in the second layer contain multiple iUnits that are ranked by im-
portance.

MobileClick has been worked through with various ap-
proaches [2], [3], [4], [5], [15], [19], [27]. Apart from these, we
employed element-based retrieval [6], [14]. The retrieval units of
element-based retrieval are “elements” in structured documents,
such as those in Extensible Markup Language (XML) and Hyper-
Text Markup Language (HTML). More specifically, each con-
catenated text in an element node (plain text between a pair of
start and end tags) is treated as a search target. This means
element-based retrieval involves finer-grained IR as well as Mo-
bileClick. Document structures are leveraged in element-based
retrieval to identify the most appropriate elements that satisfy
users’ information needs. We assume that both MobileClick

This paper is an extended version of our NTCIR-12 Ref. [12].
*1 https://adwords.googleblog.com/2015/05/

building-for-next-moment.html (accessed: December 3rd, 2016)
*2 Although Tajima et al. [25] defined an iUnit as a subgraph containing all

distinct query keywords, this condition is not imposed in MobileClick.
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and element-based retrieval aspire toward the same direction and
many of their findings could be diverted to each other, although
their retrieval units are not exactly the same.

We hypothesize the following in this study:
Hypothesis. Relevant descriptions, i.e., important iUnits are

contained in elements highly scored by element-based retrieval.

We will now describe the outline of our proposal based on
this hypothesis. The first step is scoring elements with an ex-
isting element-based retrieval technique to generate a ranked el-
ement list per query. The second step is generating two-layered
search results with the ranked list. An intuitive explanation of our
method is that higher scores are assigned to iUnits that are similar
to elements with higher scores.

This paper is structured as follows. Overviews of MobileClick
and element-based retrieval are reported in Sections 2 and 3.
Next, we propose a method of generating accurate two-layered
search results with element-based retrieval in Section 4, followed
by its experimental evaluation in Section 5. We then review re-
lated studies in Section 6. Finally, Section 7 concludes the paper.

2. Overview of MobileClick

MobileClick is descended from 1CLICK-1 [24] at NTCIR-9
and 1CLICK-2 [7] at NTCIR-10. Then, MobileClick was dealt
with in MobileClick-1 [8] at NTCIR-11 and MobileClick-2 [9] at
NTCIR-12. MobileClick-1 and MobileClick-2 are not exactly the
same tasks since data provided by task organizers are different.
MobileClick implies MobileClick-2 in this paper, unless other-
wise stated. For more details, refer to MobileClick-2 overview
Ref. [9].

MobileClick is comprised of two steps, i.e., Step 1) ranking
iUnits and Step 2) constructing two-layered search results using
ranked iUnits. Steps 1) and 2) are tackled as an iUnit Ranking

subtask for the former and an iUnit Summarization subtask for
the latter.

2.1 Test Collection
The data provided by the task organizers are below:

Query One hundred ambiguous or underspecified queries are
sampled by the task organizers from query logs of a Web
search system. Queries are classified into four categories;
20 CELEBRITY queries (names of celebrities such as artists
and actors), 20 LOCAL queries (landmarks and facilities),
40 DEFINITION queries (ambiguous terms such as “bit-
coin,” “euro,” and “smartphone”), and 20 QA queries (natu-
ral language questions).

Document set At most the top 500 documents per query are
gathered with a Web search system, Bing *3.

iUnit The definition of an iUnit is a text fragment that is rel-
evant to a query and that is atomic in interpreting informa-
tion. Thus, an iUnit is composed of arbitrary granular infor-
mation, such as a few terms, a phrase, and a sentence. For
example, the iUnits of a query “christopher nolan” are “runs

the production company ‘Syncopy Inc.’,” “married to a film

producer, Emma Thomas,” and “Movie: ‘Interstellar’.” The

*3 http://www.bing.com/

provided iUnits are extensively extracted from the document
set by assessors hired by organizers.

Intent The notion of “intent” is introduced from NTCIR tasks
INTENT [23] and IMine [26]. An intent represents a spe-
cific interpretation of an ambiguous query or an aspect of a
faceted query. As examples, the intents of a query “jaguar”
are “Car” and “Animal,” while the intents of a query “real

Madrid” are “Players,” “Achievement,” and “History.” In-
tents in MobileClick are used to evaluate the importance of
iUnits and used as links to second layers in iUnit Summa-
rization subtasks. Each intent has its importance (“intent

probability”). An intent probability of a query is defined
as the ratio of voters who agreed to become interested in the
intent when the query is issued.

Importance of iUnits The importance of iUnits is used in eval-
uating the accuracy of a method. iUnit importance is as-
sessed by each intent (per-intent importance), because a cer-
tain iUnit can be important for an intent, although this iUnit
may not be important for other intents. The global impor-

tance, G(u), of an iUnit, u, is derived from the per-intent
importance of the iUnit and the intent probabilities as:

G(u) =
∑

i∈Iq

P(i|q)gi(u) (1)

where Iq is a set of intents for query q, i is an intent in Iq,
P(i|q) is the intent probability of q, and gi is the per-intent
importance of u in terms of i. This means an iUnit with a
high scores in terms of an intent can have low global im-
portance when the iUnit is not important for other intents.
Conversely, the global importance of an iUnit without a high
score in terms of any intent can be high when the iUnit is
important to some extent for many intents.

Note that each data item contains Japanese and English data. We
used English data in this study.

2.2 iUnit Ranking Subtask
Before two-layered search results are constructed, iUnits need

to be ranked by importance. The importance of each iUnit in the
ranking subtask is calculated by global importance.

Evaluation measures for the iUnit Ranking subtask are nDCGk

(k = 3, 5, 10, and 20) [1] and the Q-measure [21]. Metric nor-
malized discounted cumulative gain (nDCG) is commonly used
as a measure to evaluate document retrieval. The Q-measure is
a recall-based graded-relevance measure, while nDCG is a rank-
based graded-relevance measure. In other words, Q-measure is
used to not only evaluate the performance of top-k iUnits but the
overall performance of a list. Thus, Q-measure is defined as a
formal measure and effectiveness of a system is determined by
Q-measure score.

Metric nDCG is calculated as:

DCGK =

K∑

k=1

G(uk)
log2(k + 1)

(2)

nDCGK =
DCGK

iDCGK
(3)

where uk is the k-th iUnit and G(uk) is the global importance of
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uk. The iDCG is the DCG of an ideal ranked list and works as
normalization.

The Q-measure is calculated with Eq. (4).

Q =
1
R

M∑

r=1

IsRel(ur)

∑r
r′=1(G(ur′ ) + IsRel(ur′ ))∑r

r′=1 G(u∗r′ ) + r
(4)

where R is the number of iUnits with non-zero global importance,
M is the length of the ranked list, and u∗r′ is the r-th iUnit of an
ideal ranked list.

2.3 iUnit Summarization Subtask
The search result format for the iUnit summarization subtask

is composed of two-layered search results where the first layer is
comprised of iUnits with the most important and general infor-
mation and intents, and the second layer linked by the intents is
comprised of iUnits, whose details in terms of each intent are de-
picted in Fig. 6. Each of the first and second layers is comprised
of ranked iUnits gained in the iUnit ranking. This format helps
users to aquire information they need with fewer page transitions.

Each layer can only present at most 420 characters in the iUnit
summarization subtask because the screen size of mobile devices
is limited. Symbols and white spaces are not counted and the im-
portance of an iUnit in the second layer become zero when the
iUnit appears both in the first and the second layers.

An evaluation measure of the iUnit summarization subtask, M-
measure, is designed based on the user model as follows:
• A user becomes interested in only one intent based on intent

probability P(i|q).
• A user follows a rule in reading search results described be-

low:
( 1 ) A user starts to read search results from the beginning

of the first layer and continues to read until L characters,
excluding symbols and white spaces.

( 2 ) A user moves to and reads the search results of the sec-
ond layer, s j, when he/she has reached the end of a link,
li, if he/she becomes interested in the intent.

( 3 ) After reading the search results of the second layer, s j, a
user resumes reading the search results of the first layer
from the end of the link, l j.

Note that there are possible text trails to the number of in-
tents because a user only becomes interested in one intent. The
information gain of each text trail is measured by using the U-
measure [22], where the offsets of iUnits are taken into account.
More precisely, the U-measure increases when more important
iUnits are arranged in former positions of a text trail. Then, the
expected information gain of all text trails is measured by using
the M-measure where a user probabilistically reads search results
(text trails).

The M-measure based on the discussion above is calculated as:

M =
∑

i∈Iq

P(i|q)Ui(ti) (5)

where Iq is a set of intents for query q, i is an intent in Iq, P(i|q) is
the intent probability of intent i for q, and Ui(ti) is a value of the
U-measure of i’s text trail ti. The U-measure is calculated with
Eqs. (6), (7), and (8).

Ui(t) =
|t|∑

j=1

gi(u j)d(u j) (6)

d(u) = max(0, 1 − post(u)
L

) (7)

post(u) =
j∑

j′=1

chars(u j′ ) (8)

where gi(ui) is the importance of iUnit u in terms of i, d is the
position-based decay function, and chars(u) is the number of
characters in i that excludes symbols and white spaces. Hence,
the iUnits in the first layer are evaluated with global importance
and the iUnits in the second layer are evaluated with importance
in terms of each intent.

3. Overview of Element-based Retrieval

This section overviews element-based retrieval. For more de-
tails, refer to overview paper of element retrieval [6].

3.1 Main Objective of Element-based Retrieval
The main objective of element-based retrieval lies in identi-

fying only and all relevant descriptions to a query, namely, rel-
evant elements, and ranking them in descending order of rele-
vance. Element-based retrieval is aimed at reducing user labor
in information retrieval activities, since users do not have to find
relevant descriptions by themselves.

3.2 Element and Text Overlaps
We have presented concrete examples in Figs. 2, 3, and 4 to

explain the definitions of elements of structured documents such
as XML and HTML.

Figure 2 illustrates an XML document of DocID 1. Figure 3
depicts a tree that has been translated from Fig. 2. Structured doc-
uments can be expressed as a tree, which helps to easily identify
document structures. The pair of start and end tags in Fig. 2 repre-
sents an element node in the tree in Fig. 3, and the nested structure
of elements represents an ancestor-descendant relationship. An

Fig. 2 XML document.

Fig. 3 Representation in tree.
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Fig. 4 Elements.

ElemID is assigned to each element in document order. Each ele-
ment in Fig. 4 corresponds to a text composed of text nodes in the
tree in Fig. 3. Thus, an element that corresponds to an article
node has the concatenated text of all text nodes in the tree. Simi-
larly, an element that corresponds to a body node has the concate-
nated text of text nodes in the three sec nodes. This demonstrates
why text overlaps occur between ancestor-descendant elements
in the same structured document. An ancestor element and a de-
scendant element are expressed as a larger-granular element for
the former and a smaller-granular element for the latter *4.

Let us suppose that a user is seeking information about “Early
life . . . ,” “Windows . . . ” and “Books · · · .” An element-based re-
trieval system tries to extract the element of ElemID 3 because
the element contains all the information that the user needs and
no further information.

3.3 Search Results for Element-based Retrieval
There are some approaches in constructing a ranked list as

search results. Some early researchers did not take into account
text overlaps and just constructed a list where elements were ar-
ranged in descending order of relevance. We have called the list
an “overlapping list” in this paper. After Kazai et al. [10] re-
ported that text overlaps adversely affect search accuracy, many
researchers remove text overlaps by eliminating duplicate ele-
ments *5. Consequently, “non-overlapping lists” is constructed
as search results. The largest element-based retrieval project of
the INitiative for the Evaluation of XML (INEX) *6 retrieval also
employs a non-overlapping list [6]. In this project, at most 1,500
elements can be proposed for each query.

We use three approaches in constructing a non-overlapping list:
OneElem Only one element, i.e., the element with the highest

score, can be extracted from each document. In other words,
the maximum number of search results (elements) is equal
to that of documents containing a query keyword. Given
an overlapping list gained from a certain query as shown in
Table 1, only the element of which ElemID is 5 (elem5 for
short) is extracted and contained in a non-overlapping list.

MultiElem Multiple elements from each document can be ex-
tracted in descending order of relevance if no text over-
laps occur. The maximum number of search results is more
than that of the document containing a query keyword. We
demonstrate the process of generating a non-overlapping list

*4 Precisely this is element overlap, however, this overlap is commonly
expressed as text overlap. Moreover, in this paper, it is not expressed
as text overlaps when elements not having ancestor-descendant relation-
ships contain the same text.

*5 We remove a whole element when text overlaps occur. In other word, we
do not remove duplicate text from overlapping elements.

*6 http://inex.mmci.uni-saarland.de/

Table 1 Overlapping list.

ElemID Score
5 .9
2 .6
3 .5
1 .4
6 .2

from the overlapping list in Table 1. First, elem5 is extracted.
Then, elem2 is successfully extracted since no overlaps oc-
cur. Extraction of elem3 fails because elem5, a descendant
of elem3, has already been extracted. Similarly, elem1 can-
not be extracted. Extraction is completed by extraction of
elem6. Consequently, a non-overlapping list is composed of
elem5, elem2, and elem6.

WholeDoc For each document, the largest granular element,
i.e., a whole document is extracted. Some of relevant de-
scriptions in a document may not be extracted with two for-
mer approaches. Conversely, this approach ensures all rele-
vant descriptions in a document are extracted. The problem
is that non-relevant descriptions are also extracted because
a document generally contains both relevant and irrelevant
descriptions. Thus, this approach deviates from the origi-
nal objective of element-based retrieval. The number of the
maximum search results (elements) is equal to that of docu-
ments containing a query keyword. In this approach, elem1

is extracted and a non-overlapping list is composed of only
elem1.

3.4 Accurate Element-based Retrieval
Most scoring functions for element-based retrieval are derived

from those for document retrieval. Thus, some statistics used in
these scoring functions are common. The main difference be-
tween these scoring functions is that the notion of “attributes” of
elements is taken into account in element-based retrieval. More
concretely, global statistics for element-based retrieval are calcu-
lated with elements with the same attributes, while global statis-
tics for document retrieval are calculated with all documents.
Some approaches to the classification of element attributes have
been proposed. Typical approaches are tag-based classification
where elements with the same tags have the same attribute and
path expression-based classifications where elements with the
same path expressions have the same attributes.

Major scoring functions for element-based retrieval are term
frequency-inverse path frequency (TF-IPF) [16], BM25E [17],
and the query likelihood model for element-based retrieval [18].
We employed BM25E in this study, because it has been reported
to be the most accurate [13]. A weight, w(a, e, t), of a term, t, in
an element, e, with an attribute, a, is calculated in BM25E as:

w(a, e, t) =

(k1 + 1)t fe,t

k1((1 − b) + b ele
avela

) + t fe,t
· log

Na − a fa,t + 0.5
p fa,t + 0.5

(9)

where t fe,t is the term frequency of t in e, ele is the length of e

(the number of terms in e), and avela is the average length of el-
ements with a. Here, Na is the number of elements with a, a fa,t
is the number of elements with a containing t, and k1 and b are
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parameters. We set commonly used values for parameters, i.e.,
k1 = 2.5 and b = 0.85.

Although it has been reported that path expression-based at-
tribute classification is the most accurate for the INEX Wikipedia
test collection [6], our past investigation [14] found that global
statistics could not be accurately calculated with the path
expression-based attribute classification when there are insuffi-
cient numbers of elements with attributes. The number of docu-
ment sets we used in experimental evaluations is not large, as we
explained in Section 2.1. Hence, we apply the tag-based attribute
classification in this study, viz., a in Eq. (9) was set as a tag.

Finally, a score, S core(e), of element e is computed with:

S core(e) =
∑

ti∈T
w(p, e, ti) (10)

where T is a set of query keywords.

4. Proposed Method

Both important iUnits and relevant elements represent relevant
descriptions, which is a summary of Sections 2 and 3. Since an
accurate element-based retrieval technique has already existed,
we focused on identifying important iUnits using elements ex-
pected to be relevant. Thus, we propose a method based on Hy-
pothesis: “Relevant descriptions, i.e., important iUnits are con-
tained in elements highly scored by element-based retrieval.”

Our method of the iUnit Ranking and iUnit Summarization
subtasks will be discussed in what follows. Note that the pro-
posed method is an extension of naive one [12] presented at
NTCIR-12 conference.

4.1 Proposal for iUnit Ranking Subtask
iUnits provided by the task organizers are ranked by impor-

tance in the iUnit Ranking subtask.
Figure 5 illustrates the procedure for the proposed method.

First, elements are extracted from a HTML document set. Next,
a ranked list is constructed where elements are ordered by rel-
evance using element-based retrieval. Then, iUnits are ranked
by calculating similarities between elements and iUnits. Higher
scores are assigned in this step to iUnits that are similar to highly
ranked elements. Therefore, a score, S core(u), of iUnit u is cal-
culated as:

S core(u) =
∑

e∈E

sim(u, e)
decay(e)

(11)

where E is a set of elements used in iUnit scoring (elements con-
taining a query keyword), e is an element contained in E, and

Fig. 5 Procedure for iUnit Ranking subtask.

sim(u, e) is similarity between u and e. Here, decay(e) works as
a decay function using e’s rank order.

We will next describe methods of similarity calculation
sim(u, w), decay function of rank order decay(e), and selection
of E.

Since no appropriate method of calculating similarities be-
tween an arbitrary iUnit and an element is decisive, we examined
three methods of calculating similarities, i.e., Freq (12), Ratio

(13), and Jaccard (14).

simFreq(u, e) = count(u, e) (12)

where count(u, e) is the number of terms that co-occurred in both
an iUnit, u, and an element, e.

simRatio(u, e) =
count(u, e)
length(u)

(13)

where length(u) is the number of terms contained in u.

simJaccard(u, e) =
|u∩e|
|u∪e| (14)

We propose two variations of decay functions, i.e., Rank (15)
and LogRank (16), to emphasize the effect of highly ranked ele-
ments.

decayRank(e) = rank(e) (15)

where rank(e) is the rank order of e.

decayLogRank(e) = 1 + log(rank(e)) (16)

The main objective of LogRank is moderating a decay rate as
rank order increases.

We consider three variations for the selection of E used in iUnit
scoring:
EAllElem All elements in a ranked list are used.
ETopPerElem Elements of top-k percentage are used.
ETopElem Top-k elements are used.

4.2 Proposal for iUnit Summarization
Two-layered search results are constructed for the iUnit Sum-

marization subtask. We explore appropriate iUnit ranking meth-
ods for each layer and the intent ranking method. Then, we em-
ploy the baseline approach in arranging iUnits and intents in the
first layer [8].

We concretely show our approach to arrangement in Fig. 6.
( 1 ) All intents are arranged from the end of the first layer.
( 2 ) iUnits are arranged from the beginning of the first layer un-

less the number of characters extracted exceeds the thresh-
old.

( 3 ) iUnits in the second layer are arranged for individual intents
unless they exceed the threshold. Note that iUnits that have
already been arranged in the first layers will not be arranged
in the second layer.

We will discuss intent and iUnit rankings in the following sub-
sections.
4.2.1 Intent Ranking

More accurate search results can be presented when higher
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Fig. 6 Construction of search results for the iUnit Summarization subtask.

Fig. 7 The overview of SumElemScore.

intent probabilities are arranged in higher rank order, since the
evaluation measure, M-measure, takes into account the position-
based decay function.

The proposed method of intent ranking aims at assigning
higher scores to intents expected to gain more information. We
considered three methods:
SumElemScore An expanded query where each intent added to

an original query is used for element-based retrieval to gain
scored elements. Then, an intent score is calculated by using
the sum of element scores of the scored elements. There is
an overview in Fig. 7. The intent score of an intent i, S Int(i),
is calculated as follows:

S Int(i) =
∑

e∈E
S EL(e, qi) (17)

where E is a set of scored elements, e is an element in E,
S EL(e, i) is a score of e queried with a original query and i.

NumResultElem The number of scored elements with an ex-
panded query becomes an intent score as flows:

S Int(i) = NEL(i) (18)

where NEL(i) is the number of elements containing an ex-
panded query of which intent is i.

NumWebSearch Both the two previous methods are based on
statistics given from an inner document set. It is possible that
these statistics stand for limited information because there
are at most 500 documents per query. Hence, we decided to
acquire outer information from the document set. We issue
an expanded query to a Web search system *7 and the number
of search results becomes an intent score.

S Int(i) = NWeb(i) (19)

where NEL(i) is the number of Web search results when is-
sued an expanded query of which intent is i.

4.2.2 Query for iUnit Ranking
Preferable iUnits to be arranged at the first layer are important

iUnits for many intents. Keeping this in mind, we considered two
iUnit ranking approaches:
AllIntent A full expanded query where all intents are added to

an original query is used for element-based retrieval to gain
scored elements.

EachIntent Expanded queries are issued and each element
score is calculated by using the sum of element scores of
all expended queries.

The expected condition of iUnits in the second layer is dedi-
cated to an intent. Two approaches were evaluated where:
ExpandedQuery An expanded query is used for element-based

retrieval.
IntentQuery An intent without an original query is used as an

intent query for element-based retrieval to emphasize the in-
tent itself.

5. Experimental Evaluation

This section explains how we verified the effectiveness of the
proposed method for the subtasks of iUnit Ranking and iUnit
Summarization. We used the data referred to in Section 2 and
BM25E as an element-based retrieval scoring function introduced
in Section 3.4.

5.1 Evaluation of iUnit Ranking Subtask
We discussed the iUnit ranking function in Eq. (11), methods

of calculating similarities (sim(u, w) in Eq. (11)), decay function
of rank order (decay(e) in Eq. (11)), and selection of elements
used in iUnit scoring (E in Eq. (11)) in Section 4.1. All their vari-
ations were evaluated and compared. The formal evaluation mea-
sure is the Q-measure. Among variations, LogRank, TopPerElem,
and TopElem require a parameter. To set a parameter, we con-
ducted two-fold cross-validation for avoiding overfitting. Specif-
ically, we classified queries into two groups where one group
comprises queries with odd ID (odd queries) and the other group
comprises query with even ID (even queries). One group is used
to tune a parameter and then the other group is evaluated with the
parameter. Eventual evaluation result is defined as the average
of two groups. Note that the best parameters vary for each test
collection.

*7 We used Bing as well as the engine used for collecting the document set.
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Table 2 Evaluation results for iUnit Ranking subtask: We found the best
settings were using simRatio(u, e) for the similarity calculations,
decayRank(e) for decay function using rank order, and ETopPerElem

for selection of elements used in iUnit scoring. A non-overlapping
list is more accurate than an overlapping list. We found the accu-
racy of element-based retrieval was worse than that of document
retrieval.

nDCG3 nDCG5 nDCG10 nDCG20 Q-measures
Freq .7237 .7510 .7966 .8654 .8947
Ratio .7325 .7499 .7995 .8707 .8969
Jaccard .6849 .7192 .7717 .8511 .8800
Rank .7443 .7632 .8060 .8748 .9005
LogRank .7341 .7518 .8017 .8727 .8983
TopPerElem .7453 .7627 .8065 .8751 .9007
TopElem .7437 .7614 .8045 .8743 .9001
AllIntent .7551 .7712 .8104 .8796 .9031
EachIntent .7511 .7688 .8112 .8776 .9025
OneElem .7641 .7764 .8140 .8815 .9047
MultiElem .7604 .7742 .8132 .8806 .9044
WholeDoc .7613 .7750 .8154 .8815 .9050

Table 3 Tuning of LogRank with Q-measure.

Odd queries Even queries
log1.1 .8906 .9048
log1.5 .8917 .9047
log2 .8918 .9048
loge .8918 .9034
log10 .8918 .9032
Tuned parameter .8918 .9048

We have used an overlapping list for the results of element-
based retrieval unless otherwise stated, although a non-
overlapping list is generally used, as we explained in Section 3.3.
This is because we had no idea on what kind of list was
appropriate for this situation.
5.1.1 Results from Evaluation of Proposed Method

The results we obtained from evaluation are listed in Table 2.
First, let us focus on the methods of calculating similarities,

i.e., Freq, Ratio, and Jaccard. Any decay function is not applied
to elements (decay(e) = 1) and all elements were used in iUnit
scoring (EAllElem). Out of the three methods of calculating simi-
larities, Ratio was the most accurate.

We will next explain our evaluation of decay functions of rank
order. We evaluated Rank and LogRank with simRatio(u, e) and
EAllElem. We varied the base for LogRank between 1.1, 1.5, 2, the
Napierian logarithm, and 10 to find the best value *8. As sum-
marized in Table 3, the best base value of both odd and even
queries was two, although rounded values of log1.1 and log2 for
even queries are the same (.9048). Odd queries were evaluated
with the parameter tuned with even queries, so as even queries.
Then, although both Rank and LogRank improved accuracy, Rank

was more accurate.
We moved on to select elements used in scoring iUnits. We

explored the best parameters for ETopPerElem and ETopPerElem with
simRatio(u, e) and decayRank listed in Tables 4 and 5. The parame-
ter, k, represents top elements of the k percentage for TopPerElem

and top k elements for TopElem. The results suggest the top 33%
of elements are best for both odd and even queries in terms of
TopPerElem. In contrast, the top 700 and 400 elements are best
for odd queries and even queries in terms of TopElem. Accuracy

*8 We also used the sigmoid function with some slope values. It turned out
the logarithm worked best.

Table 4 Best parameters for TopPerElem with Q-measure.

Parameter k Odd queries Even queries
3 .8918 .9031
5 .8927 .9039
10 .8937 .9048
20 .8950 .9053
25 .8950 .9059
33 .8951 .9063
50 .8946 .9055
Tuned parameter .8951 .9063

Table 5 Best parameters for TopElem with Q-measure.

Parameter k Odd queries Even queries
40 .8963 .9023
50 .8909 .9028
100 .8929 .9041
400 .8944 .9061
500 .8947 .9056
700 .8949 .9057
1,000 .8947 .9056
1,500 .8947 .9058
2,000 .8945 .9059
Tuned parameter .8944 .9057

improved by applying element selection TopPerElem, although
TopPerElem deteriorated in contrast. Because the number of el-
ements in a ranked list differs by query, selection based on per-
centage is more suitable.

We also evaluated all possible combinations, which re-
sulted in simRatio(u, e) being the best for similarity calculations,
decayRank(e) for decay function of rank order, and ETopPerElem for
selection of elements used in iUnit scoring, i.e., TopPerElem. We
therefore used TopPerElem as the method of iUnit ranking in the
experiments that are described in the following.
5.1.2 Further Investigations

We evaluated AllIntent and EachIntent that were proposed for
the iUnit Summarization subtask to confirm their potential. Al-
though both methods increased accuracy, AllIntent was better *9.

We next examined the effect of using a non-overlapping list on
iUnit ranking (the ranking method was AllIntent). We found that
all approaches for the three non-overlapping lists: OneElem, Mul-

tiElem, and WholeDoc described in Section 3.3, outperformed
the overlapping list. The document retrieval approach WholeDoc

was unexpectedly more accurate than element-based approaches
OneElem and MultiElem.

Our previous survey [11] on the document structure of Web
documents suggested that physical document structures do not
agree with logical document structures such as chapters, clauses,
and sections. This means element-based retrieval may fail to exert
full influence with unprocessed Web documents. Thus, the accu-
racy of OneElem and MultiElem are expected to be improved by
data trimming of Web documents.

Finally, we compared the results obtained with our methods
with formal run results from other iUnit Ranking subtask partici-
pants *10, as listed in Table 6 *11. Improvements in the table stand
for improved percentages compared with the baseline (ORG-L).

*9 INTENT [23] and IMine [26] work on automatic intent extraction. Al-
though we can apply these to intent extraction, this study exploited given
intents.

*10 Details of important methods are described in Section 6.
*11 Only the most accurate run is shown for a team who submitted multiple

runs. The run results for our team (titec) [12] were excluded.
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Table 6 Comparison with other iUnit Ranking subtask participants.

Team Is Q-measures Improvements
WholeDoc .9050 0.8%
OneElem .9047 0.8%
cuis .9042 0.7%
IRIT .9036 0.7%
UHYG .9028 0.6%
IISR .9004 0.3%
ORG-L .8975 –
RISAR .8972 0.0%
ALICA .8959 −0.2%
YJST .8953 −0.2%
ORG-R .8859 −0.3%
JUNLP .8859 −0.3%

Table 7 Evaluation results by category for iUnit Ranking subtask.

CELEBRITY LOCAL DEFINITION QA
WholeDoc .901 (1.7%) .896 (0.6%) .898 (0.6%) .932 (0.7%)
OneElem .899 (1.5%) .897 (0.7%) .899 (0.7%) .930 (0.5%)
cuis .906 (2.3%) .885 (−0.6%) .901 (0.9%) .928 (0.3%)
ORG-L .886 (–) .891 (–) .893 (–) .926 (–)

Table 8 Evaluated results for iUnit Summarization subtask: The best set-
ting was using AllIntent for the first layer, IntentQuery for the sec-
ond layer, and NumWebSearch for intent ranking. Experiments
with a non-overlapping list indicated element-based retrieval was
better than document retrieval.

M-measures
Simple (TopPerElem) 18.105
AllIntent & ExpandedQuery 18.442
EachIntent & ExpandedQuery 18.315
AllIntent & IntentQuery 18.447
EachIntent & IntentQuery 18.313
SumElemScore 18.428
NumResultElem 18.365
NumWebSearch 18.469
OneElem 18.530
MultiElem 18.508
WholeDoc 18.363

Our methods WholeDoc and OneElem achieved higher accuracy
than the state-of-the-art cuis. There were no statistically signif-
icant differences between our methods and ORG-L in the results
of sign tests. Table 7 summarizes the evaluated results by cate-
gory. The values in brackets represent improvements compared
with ORG-L. Our methods improved accuracy in all categories
compared with ORG-L. However, cuis was more accurate than
our methods in CELEBRITY and DEFINITION categories. The
sign tests confirmed that there were no statistically significant dif-
ferences between any pairs of methods in any categories.

5.2 Evaluation of iUnit Summarization Subtask
Section 4.2 discussed how two-layered search results were con-

structed for the iUnit Summarization subtask. We provided query
candidates for the first and second layers and also intent ranking
methods. The M-measure was the formal measure.
5.2.1 Evaluated Results for Proposed Methods

Table 8 lists the accuracy of the proposed methods.
The proposed method TopPerElem is the simple method where

an original query was used for the first layer, an expanded query
(concatenation of an original query and an intent) was used for
the second layer, and intent order was random (ordered by intent
IDs).

There were four query combinations since we considered

Table 9 Comparison with other iUnit Summarization subtask participants.

Team IDs M-measures Improvements
OneElem 18.530 9.7%
ORG-T 16.898 –
YJST 16.887 0.0%
IRIT 16.563 −0.2%
cuis 16.419 −0.3%
RISAR 16.047 −0.5%
ORG-R 14.105 −16.5%
UHYG 13.055 −22.7%
JUNLP 11.703 −30.7%
ALICA 8.497 −49.7%

AllIntent and EachIntent for the first layer and ExpandedQuery

and IntentQuery for the second layer. The results indicated the
pair of AllIntent and IntentQuery was the most accurate.

The fact that the combination with ExpandedQuery was better
than that with IntentQuery by focusing on EachIntent suggests
that iUnits with higher scores in terms of a specific intent are not
arranged in the second layer but in the first layer with EachIntent.
Simultaneously, iUnits with higher scores in terms of multiple
intents are not arranged in the first layer. This is why the pair
of AllIntent and IntentQuery was the best. The experiments de-
scribed in the following employed AllIntent and IntentQuery.

Intent ranking methods SumElemScore, NumResultElem, and
NumWebSearch will be explained. NumWebSearch increased ac-
curacy, while SumElemScore and NumResultElem decreased it.
This indicates the number of Web search results can be a use-
ful criterion in identifying an intent that is expected to gain more
information. It also indicated that it was difficult to identify in-
formative intent from the statistics gain of a small-scale data set.

As a result of these experiments, we found accuracy was the
best with AllIntent for the first layer, IntentQuery for the second
layer, and NumWebSearch for intent ranking.
5.2.2 Further Investigations

We conducted experiments with a non-overlapping list as well
as the iUnit Ranking subtask with AllIntent, IntentQuery, and
NumWebSearch. Consequently, we obtained different trends from
that for the iUnit Ranking subtask. The three approaches to the
non-overlapping list were more accurate in the order of OneElem,
MultiElem, and WholeDoc. This is to say, element-based retrieval
was better than document retrieval. We presumed that element-
based retrieval would be appropriate for a task where relevant
descriptions are extracted with limited characters because the iU-
nit Ranking subtask ranked all provided iUnits, while the iUnit
Summarization subtask extracted at most 420 characters.

We compared our method OneElem with formal run results
from other iUnit Summarization subtask participants in the fi-
nal experiments, as listed in Table 9 *12. Improvements in the
table stand for improved percentages compared with the base-
line (ORG-T). OneElem attained the highest accuracy. There
were statistically significant differences between OneElem and
the second highest method, ORG-L, in the results for sign tests
(p < 0.01). Additionally, we evaluated OneElem and ORG-T by
category, as shown in Table 10. The values in brackets represent
improvements compared with ORG-T. OneElem improved accu-

*12 Only the most accurate run is indicated for a team that submitted multiple
runs. The run results for our team (titec) [12] were excluded.
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Table 10 Evaluated results by category for iUnit Summarization subtask.

CELEBRITY LOCAL DEFINITION QA
OneElem 30.0 (9.1%) 12.8 (7.6%) 17.6 (12.7%) 14.7 (5.8%)
ORG-T 27.5 (–) 11.9 (–) 15.6 (–) 13.9 (–)

racy in all categories compared with ORG-L. Improvements in the
DEFINITION category were especially remarkable unlike the re-
sults for the iUnit Ranking subtask. We executed sign tests and
statistically significant differences between ORG-L and ORG-T

in all categories were confirmed (p < 0.05 for the CELEBRITY
category and p < 0.01 for LOCAL, DEFINITION, and QA cate-
gories).

5.3 Discussion
The Hypothesis: “Relevant descriptions, i.e., important iUnits

are contained in elements highly scored by element-based re-
trieval” were likely to be true throughout the experiments, since
our method where element-based retrieval was applied to Mo-
bileClick outperformed the comparison methods and document
retrieval. Additionally, even our document retrieval approach ex-
ceeded the comparison methods.

This research is focused on MobileClick and cannot directly be
applied to more general automatic summarization tasks because
our method requires that iUnit, i.e., relevant text fragments are
available and targeted documents are structured. In other words,
our method is applicable to more general automatic summariza-
tion tasks by achieving automatic iUnits extraction and structur-
ing documents. We expect that iUnits can be extracted from ele-
ments with highly scored as inferred by the Hypothesis. Regard-
ing structuring documents, some researches attempt to structure
a plain text to a structured document, such as XML [20].

6. Related Work

This section reviews methods for the baseline and top-ranked
runs of MobileClick.

The baseline method [9] uses the odds ratio to calculate a term
weight in an iUnit. Then, an iUnit score is calculated by using the
sum of term weights of query keywords in the iUnit as follows:

OR(u) =
∑

w∈u

Pq(w)

Po(w)
(20)

Pq(w) =
nDq ,w

nDq

(21)

Po(w) =
nDo ,w

nDo

(22)

where u is an iUnit for a query q, Pq(w) is the probability of a
word w in a document set retrieved by q, and Po(w) is the prob-
ability of w in document sets, nDq ,w is the frequency of w in a
document set Dq retrieved by q, nDq is the number of words in
Dq, nDo ,w is the frequency of w in a document set Do retrieved by
other than q, and nDo is the number of words in Do. Intuitively, a
term weight increases as the term frequently occurs in documents
containing query keywords. Similarly, a term weight decreases as
the term does not frequently occur in documents containing query
keywords.

Lai et al. [15] proposed a latent Dirichlet allocation (LDA)-
based approach where topics generated by LDA are regarded as

intents and achieved the highest formal run results for the iUnit
Ranking subtask. First, a LDA model is build with document
set. Then, intent probability of each query is calculated with the
LDA model. Specifically, a query is treated as a short document
and latent topic distribution of the query is inferred. Supposed a
query Q consists of r terms (q1, q2, . . . , qr), the latent topic rep-
resentation of an intent i of a query keyword q j(∈ Q), P(i|q j), is
calculated as follow:

P(i|q j) =
P(q j|i)P(i)

P(q j)
(23)

where P(q j|i) is inferred by the LDA model. Next, a latent topic
is sampled n times for each q j. Consequently, a total of nr latent
topics are accumulated. Finally, the probability of the latent topic
i given the query q, P(i|q), is formulated:

P(i|q) =
ci

nr
(24)

where ci is the number of latent topic i being sampled. After the
probability of each latent topic, i.e., intent probability, is calcu-
lated, a topic is assigned to each document. i∗ is the assigned
topic of a document d if a topic probability of i∗ of d is highest as
follow:

i∗ = arg max
i∈I

P(i|d) (25)

where I is a set of latent topics. As a result, a document list for
each topic was constructed. The next step is to rank documents by
extracting a document from each topic in a round-robin manner.
Once documents are extracted from all topics, extraction re-starts
from the first topic until all documents are ranked. Finally, an
iUnit score is calculated by the number of co-occurring terms of
an iUnit and a document. Normalization by document rank order
is then applied.

Chellal and Boughanem [2] proposed a term weighting scoring
function that was based on Shannon entropy and expanded with
term frequency, document frequency, and word2vec. Then, an
iUnit score is calculated by a sum of weights of terms in the iU-
nit. Among some variations of their methods, they reported the
best one is following formula.

S core(u, q) = −
∑

w∈u
P(w|Dq) log2(P(w|Dq))(1 + f rq(w))

(26)

P(w|Dq) =
f rDq (w)

|Dq| (27)

where S core(u, q) is an iUnit score of an iUnit u in terms of a
query q, w is a term in u, Dq is a document set on q, f rq(w) is the
number of occurrence of w in q, f rDq (w) is the frequency of Dq,
and |Dq| is the number of words in Dq.

An appropriate procedure in iUnit ranking is conceivable
where iUnits are not scored directly but scored with scored doc-
uments (elements for our method), since both Lai et al. [15] and
our approaches achieved accurate search results. We interpreted
that this is because iUnits with short lengths (many iUnits were
composed of a few terms) are difficult to be assigned appropriate
scores.

On the other hand, the reason why Chellal and Boughanem [2]
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attained higher accuracy than other odds ratio-based approaches
is because they took into account term frequency and more com-
plex statistics, unlike the odds ratio that just distinguishes whether
or not a term occurs in a document.

7. Conclusion

We employed element-based retrieval to improve the accuracy
of mobile information retrieval where two-layered search results
are presented. The proposed method was first used to construct
a ranked element list with element-based retrieval. Then, iUnits
similar to highly ranked elements are ranked highly in the search
results.

Methods of similarity calculations, decay function of rank or-
der, and selection of elements used in iUnit scoring were pro-
posed for the iUnit Ranking subtask. The best combinations in
the proposed method outperformed state-of-the-art approaches.
The intent ranking method to identify intents to gain more in-
formation and query candidates for the first and the second lay-
ers were investigated for the iUnit Summarization subtask. The
proposed method statistically and significantly improved search
accuracy by 9.7% compared with the baseline.

Automatic extraction of iUnits from elements is expected to
be part of future work since this study exploited iUnits that were
provided. Data formatting or logical structure extraction of Web
documents could be another direction for future work.
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