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Abstract:
TensorFlow is a deep learning framework which is developed by Google. The computations in TensorFlow are
implemented and expressed as data flow graphs of multidimensional array data which is referred to as“Ten-
sor.”We know that, with TensorFlow we can implement parallel execution in a multi-GPU configuration and
distributed execution in a multi-node configuration, but it is not clear how effective it is in the real environ-
ment. In this paper, we measured these performances for several mini batch sizes and network settings. From
the experimental results, we confirmed that we can accelerate the execution in all the environment we have
tested. We also found that the mini batch size has a big influence in the distributed environment of 1Gbps
network. However, in the environment of 10Gbps network or the intra-node multipl-GPU configuration, we
could achieve the linear speed up regardless of mini batch size.
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1. Introduction

As the remarkable success of the deep learning neural net-

work technology, the applications of the technology widely

spreading in all the conceivable areas. To support the ap-

plication, there are so many deep learning frameworks are

proposed, including the TensorFlow. One of the challenges

of the deep learning technology is the fact that it is really

computationally expensive. To mitigate the problem, paral-

lelization is essentially required, and most of the deep learn-

ing frameworks supports parallelization method in some

form or the other. TensorFlow, the deep learning frame-

work from Google, also provides parallelization methods, as

a natural extension of the data flow execution. It supports

multi-GPU execution and multi-nodes execution. We evalu-

ate the parallelization performance of them, in several mini

batch size settings and two network configurations.

In section 2, we introduce the TensorFlow and its multi-

GPU and multi-node implementation. In section 3, we pro-

vide experiment setup and the results. In section 4, we sum-

marize our research and discuss future direction of the re-

search.

2. Background

2.1 Introduction to TensorFlow

TensorFlow [5][4] is an open-source software library which
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is developed by Google, and it can do machine learning

across a range of tasks. Google use TensorFlow to meet their

needs for systems capable of building and training neural

networks to detect and decipher patterns and correlations,

analogous to the learning and reasoning which humans use.

TensorFlow is developed as an interface for expressing ma-

chine learning algorithms, and an implementation for exe-

cuting such algorithms. A computation with TensorFlow

can be executed with little or no change on a wide vari-

ety of heterogeneous systems, such as the mobile computing

platforms including iOS and Android, Windows, OSX and

Linux, ranging from mobile devices like smartphones up to

large-scale distributed systems that have hundreds of ma-

chines or thousands of computational devices such as GPU

cards. TensorFlow can run on multiple CPUs and GPUs,

the system has great flexibility and can be used for express-

ing a wide variety of algorithms, including training and in-

ference algorithms for making deep neural network models.

And also it has been used for building machine learning sys-

tems into production across many different fields, such as

computer vision, robotics, speech recognition, information

retrieval, natural language processing and geographic infor-

mation extraction.

TensorFlow computations are expressed as data flow

graphs. The name TensorFlow is derived from the op-

erations which such neural networks perform on multi-

dimensional data arrays. These multi-dimensional arrays

are referred to as “tensors”. The data flow graphs can offer

a large degree of flexibility in the structure and placement

of operations. The nodes in the data flow graphs represent
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Fig. 1 TensorFlow computation in a single data flow graph
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Fig. 2 TensorFlow computation between different devices

for some mathematical operations, such as addition, sub-

traction, and multiplication, etc. Figure 1 shows the Ten-

sorFlow computation in a single data flow graph. The edges

in data flow graphs represent the multidimensional data ar-

rays communicated between them. This architecture is very

flexibile; it allows us to deploy computation to one or more

CPUs or GPUs in many different devices with a single API.

The TensorFlow computation using heterogenous devices is

shown in Figure 2.

2.2 Introduction to Distributed TensorFlow

As mentioned above, the computation of TensorFlow are

expressed as data flow graphs. As a result of the data flow

graphs offer a large degree of flexibility in the structure and

placement of operations, it allows for parallelizing compu-

tation across multiple workers. And it is often beneficial

in the training of neural networks, given a large number of

training data have to be processed. Besides, such paralleliza-

tion is useful when the size of the model becomes extremely

huge. Because some computations in the TensorFlow can

be distributed, comparing to single-process TensorFlow, the

distributed TensorFlow will be a better way when training

large model.

Figure 3 shows a simple implementation of Distributed

TensorFlow. In this example, we have multiple machines

and are trying to put some variables on the CPU device of a

different process. Distributed TensorFlow treats the remote

devices in the same way as the local ones, we only need to

add a little bit of information to these device names, and the

/job: worker /task: 0/ /job: ps /task: 0/

cpu: 0 gpu: 0 cpu: 0

Process 1 Process 2

gRPC

TensorFlow Computation

Fig. 3 A simple implementation of Distributed TensorFlow

runtime will put the variables in a different process, splitting

up the graph between the devices in the different processes

and adding the necessary communication. In this case, it

will be using gRPC to transfer tensors between the process

instead of DMA from the GPU device.

The Distributed TensorFlow can give us the flexibility to

scale up to hundreds of GPUs; we can train outrageously

large models with tens of billions of parameters, and cus-

tomize every last detail of the execution or defining the

whole training process in just a few lines of code. There

are some core concepts in the distributed TensorFlow: Dis-

tributed device placement, In-graph replication, Between-

graph replication, Sessions and Servers.

2.2.1 Distributed device placement

Before releasing TensorFlow, Google developed a system

which was called DistBelief[6]. And in DistBelief, there are

two distinct kinds of processes. It has parameter servers

and worker replicas. Parameter Servers (PS) [7] are respon-

sible for holding onto all of the model states. The worker

replicas would do all the intensive part of the computation.

They would do the input processing and calculate the loss

for your network. And they do the backpropagation to cal-

culate those gradients. In TensorFlow, Google mimics this

architecture by designating some of the processes to be what

we call PS tasks.

Figure 4 shows the distributed device placement in Ten-

sorFlow. We put the variable nodes and the operations that

update them on those tasks. Then we put the rest of the

graph, the nodes that do the pre-processing, the forward,

and the backpropagation on the worker task, which tend to

be more powerful and have multi-course CPUs and GPUs.

Be different from DistBelief, the PS and the worker tasks

run the same code in TensorFlow. They are just servers

that you can send little bits of TensorFlow graph to, and it

will react to those bits of the graph and execute them very

quickly. This will give us more flexibility, we can use a GPU

to accelerate some of the parameter update computations

via a PS task, and we could have the workers store some

state locally to avoid network traffic, to cache some of the

reads. If the network was fast enough to deal with commu-

nication between the workers, we could even cut out the PS

altogether and use direct connections between the workers.
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Fig. 4 The distributed device placement in TensorFlow
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Fig. 5 In-graph replication in Distributed TensorFlow

2.2.2 In-graph replication

The replication works pretty well for distributed training,

especially when a single model will fit in a single machine.

Therefore, it has a strategy which is called In-graph replica-

tion in Distributed TensorFlow as shown in Figure 5.

By using this strategy, a single graph will be created on

the distributed master, and it will include all of the repli-

cas residing on its worker devices, and each task works on a

different subset of the data. Firstly, we start by putting the

variables on a PS task, and they would be in a central loca-

tion where they can be accessed by all of the workers. Then

split up a batch of input data into equal-sized chunks, loop

over the worker tasks, and put a subgraph on each worker

to compute a partial result. Finally, we combine all of the

partial results into a single loss value that we optimize by

using a standard TensorFlow optimizer.

TensorFlow will split up the graph across the workers

when we tell it to compute the loss, and it will run across

these worker tasks and the PS all in parallel. For small sys-

tems, the In-graph replication is an easy way to achieve, and

it will not make a big modification to our existing programs.

2.2.3 Between-graph replication

The In-graph replication should be a good choice if we

want to replicate across all the GPUs in a single machine.

But when we are training a large model, the graph will get

very big if we materialize all the replicas in it. And the client

gets bogged down trying to coordinate the computation and

to build this whole graph. To solve this problem, we should

use another strategy which is called Between-graph replica-

/job: worker /task: 0/

cpu: 0 gpu: 0

Process 1
(Client 1)

Process 2

/job: ps /task: 0/

cpu: 0

/job: worker /task: 1/

gpu: 0 cpu: 0

TensorFlow Graph 1

Process 3
(Client 2)

TensorFlow Graph 2

Fig. 6 Between-graph replication in Distributed TensorFlow

tion as shown in Figure 6.

Instead of running one all-powerful client program that

knows about all of the worker replicas, this strategy runs

a smaller client program on each task. The client program

just builds up the graph for a single replica of the model.

And this client program is essentially doing the same thing

with one key difference in the device placement. It takes

kind of the non-parameter part of the graph, and it puts

it on the local devices or the devices that are local to that

worker replica. Each program is running its smaller graph

independently when we run it, and they get mapped to dif-

ferent subsets of the devices that intersect on the PS task

in the middle. And each replica places its variables on the

same PS task. When we are running in distributed mode,

any two clients that create a variable with the same name

on the same device will share the same backing storage for

that variable by default. Exactly this is what we want to

see when we are doing replicated training.

2.2.4 Sessions and Servers

When we create a TensorFlow session, this session will

only know about the devices on the local machine. There-

fore, we need to create a thing called TensorFlow server on

each machine. And we can configure those servers in a clus-

ter; then they can communicate over the network as shown

in Figure 7.

One TensorFlow cluster has lots of tasks that participate

in the distributed execution of a TensorFlow graph, and each

task is associated with a TensorFlow server, which includes

a master server that can be used to create sessions. Also, a

cluster can be divided into many jobs, and there will have

one or more tasks on every job. At first, we need to provide

a cluster specification to tell TensorFlow about the machines

that we want to run on. A cluster specification is a direc-

tory of the type of the jobs: ps (parameter server) or worker.

And after the name of the job, we also need a list of one or

more network addresses that correspond to the task in each

job. It is not necessary to type in all of these addresses

by hand if we use some cluster manager software. (such as

Borg, Kubernetes, and Mesos) The cluster manager will run

an instance of our program on each machine in the cluster,

giving it the same cluster specification, then it will start a

TensorFlow server in each program, and pass it a particular
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Fig. 7 Sessions and Servers in Distributed TensorFlow

Table 1 Cluster Setup

# nodes 17
CPU Intel(R) Xeon(R) W5590 x 2
GPGPU NVIDIA GeForce GTX 980 x 1

1126 MHz, 4GB
Memory/node 48GB
Operating System Ubuntu 16.04
Network Interface 10G / 1G

Table 2 Multiple GPU node

CPU Intel(R) Xeon(R) E5-2630
GPGPU NVIDIA GeForce GTX TITAN X x 4

(Maxwell) 1000 MHz, 12GB
Memory 64GB
Operating System Ubuntu 16.04
Network Interface 1G

job name and task index that matches the address of the

local machine in that cluster. Finally, we create our session,

and the session can run code on any device in the cluster. It

will specify the local server’s address as the target, which is

what enables it to connect through the server to any of the

machines mentioned in cluster specification.

The worker starts a training loop that just iterated over

its partition of the data, running a training operation over

and over again, it performs the heavy computation. And

the behavior of the ps is not implemented at the low level in

these servers or the execution engine, but instead it is built

out of TensorFlow programming primitives, as these little

bits of data flow graph that the worker ships to a server to

say, managing some parameters for us and updating them

in this way.

3. Experiments

We have performed two experiments; multi-node ex-

periment and multi-GPU experiment. The former uses

’Between-graph replication’, whereas the latter uses the ’In-

graph replication’

3.1 Experimental Enviroment

We used a cluster shown in Table 1 for multi-node ex-

periments, and other node shown in Table 2 for multi-GPU

experiment.
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Fig. 8 The performance when implementing in 1GPU

3.2 Evaluation procedure and Dataset

We used the Cifar10[3] dataset to implement the evalu-

ation. Cifar10 is one of the object recognition benchmark

dataset, and it is widely used because the data size is small.

The Cifar10 dataset consists of 50000 training images and

10000 test images in 10 classes, and each image is a 32x32

color image.

The network used for evaluation is as same as the one

described by the tutorial of TensorFlow. It is a standard

network that two full bonding layers were provided behind

the two layers composed of convolution and pooling.

3.3 The baseline performance with 1GPU

As the baseline performance we measured the perfor-

mance with 1GPU, on one of the nodes of the cluster shown

in Table 1 and the node shown in Table 2. In this measure-

ment, we changed the mini batch size to 1, 10, 50, 100, 200,

400; and recorded how many images will be learned in one

second. The result of this measurement is shown in Figure

8. Note that the X-axis is represented in logscale.

We can observe that the performance is improved as mini

batch size increases. This is a well-known phenomenon; be-

cause the reuse ratio of data which has been loaded into

memory on GPUs is improved. In our experiment, we got

the maximum of the learning speed when mini batch size is

100; the performance degrade slightly with batch size 200

and 400. We are now investigating the result. We also real-

ized TITAN X is slower than GTX 980, the reason is that

the clock of TITAN X is somewhat lower.

3.4 The performance when implementing in

multiple-GPUs

We used the nodes shown in Table 2 to implement the

experiment of multiple GPUs. The mini batch sizes we used

are 100, 200 and 400.

Figure 9 shows the result of the experiment. In all the

cases, the performance has greatly improved along with the

increasing of the number of GPUs. We got the fastest speed
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Fig. 9 The performance when implementing in multiple-GPUs

with the mini batch size 100. This is consistent with the

results with single GPU execution shown in Figure 8.

The gray thin line in the figure shows the ideal speed up

with parallelization, based on the single GPU performance.

As can be seen, in all the cases, the performance is higher

than in the ideal case, showing so called “super linear” per-

formance improvement. This is quite unusual and we are

investigating the reason.

3.5 The performance when implementing in mul-

tiple nodes

For the implementation of multiple-Nodes, we used the

environment shown in Table 1. We changed the number of

parameter servers to 1,2, and the number of workers was

changed to 1,2,3,4,8; then measured the respective process-

ing performance (number of processed sheets/second). In

this case, the mini batch size was set to 100, 200, 400, and

the network was set to 1 Gbps and 10 Gbps.

The result of experiments with 1 Gbps network is shown

in Figure 10. The mini batch size of red line is 100, the green

line is 200, and the blue line is 400. In either case, the per-

formance improves as the number of workers increases; but

it saturated with about 3 worker when mini batch size was

100, and saturated with about 4 workers when mini batch

size was 200, while with mini batch size 400 the performance

scales up to 8 workers. This is because the frequency of com-

munication decreases with larger batch size.

The result of experiments with 10 Gbps network is shown

in Figure 11. We can observe that the performance is im-

proved by using the 10G network, which is quite reasonable.

The performance with 10 Gbps network with different mini

batch size is not as same as the result with 1 Gbps network;

we cannot see a regular pattern.

The effect of having extra parameter servers are not obvi-

ous in our experiments. We suppose that the reason is the

load (parameter) distribution imbalance among the param-

eter servers.
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Fig. 10 The result of implementing in 1Gbps network
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Fig. 11 The result of implementing in 10Gbps network

4. Conclusion

We evaluated the distributed TensorFlow in multi-GPU

and multi-node settings. We employed Cifar10 as the

dataset. The evaluation results showed that we could suc-

cessfully speed up the execution in all the settings, while

the speed up ratio depends the settings. The most influen-

tial parameter was the network link speed. With fast net-

work link (10Gbps) we could gain linear speed regardless of

other settings, whereas with slow network link (1Gbps) the

mini-batch size dominates the speed up ratio.

Our future work includes the following research directions;

• Our evaluation settings are quite small in several as-

pects. We will ’scale-up’ the evaluation in all the

aspects; with larger datasets, larger neural networks,

larger clusters. We will also use multiple multi-GPU

nodes.

• In this paper, we focused on parameter server based

method. Parameter server based methods are easy to

implements, while it is slow. We will implement and

evaluate the direct data exchange methods, like Chain-
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erMN[1] of Chainer[2][8].

• We could not achieve the speed up with multiple pa-

rameter servers in our experiments. This might be due

to the unbalanced load between parameter servers. We

will investigate this issue.
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