Vol. 47 No. SIG 7(ACS 14)

Regular Paper

IPSJ Transactions on Advanced Computing Systems

May 2006

Dynamic Estimation of Task Level Parallelism
with Operating System Support

Luonce DINH HUNG' and SHUICHI SAKATIt

The amount of task-level parallelism (TLP) in a runtime workload is useful information
for determining the efficient usage of multiprocessors. This paper presents mechanisms for
dynamically estimating the amount of TLP in runtime workloads. Modifications are made
to the operating system (OS) to collect information about processor utilization and task
activities, from which the TLP can be calculated. By effectively utilizing the time stamp
counter (TSC) hardware, the task activities can be monitored with fine time resolution, which
enables the TLP to be estimated with fine granularity. We implemented the mechanisms on
a recent version of Linux. Evaluation results indicate that the mechanisms can estimate the
TLP accurately for various workloads. The overheads imposed by the mechanisms are small.

1. Introduction

Multiprocessors are becoming increasingly
widely used, and as a result there has been
an increasing emphasis on thread-level and
process-level parallelism. The term task-level
parallelism (TLP) is used in this paper to refer
to these kinds of parallelism.

The effectiveness of multiprocessors largely
depends on the amount of TLP available in an
execution workload. Multiprocessors are bene-
ficial when the amount of TLP in the workload
is large. By executing the constituent tasks in
parallel across multiple processors, performance
can be improved. Alternatively, multiproces-
sors with scaled voltage and frequency can pro-
vide lower power consumption than a unipro-
cessor with the same performance.

On the other hand, multiprocessors are in-
effective for workloads with poor TLP. Since
there are various paradigms of thread usage
other than exploitation of parallelism®, mul-
tithreaded applications with poor TLP are not
uncommon 9. Simply allocating many pro-
cessors to execute such applications does not
improve performance, but leads to power in-
efficiency. Some processors often remain idle
while their tasks wait for data or synchroniza-
tion from counterpart tasks being executed on
other processors. The idle processors still re-
quire portions of power consumption; for ex-
ample, some power is consumed in maintaining
cache coherency?®), or by leakage. The leak-
age power already accounts for more than 30%

t Graduate School of Information Science and Tech-
nology, The University of Tokyo

43

of total power consumption in 90 nm technol-
ogy 19, and increases rapidly with technology
scaling?. When the TLP is poor, activating
only a few processors for execution and shut-
ting down the other processors definitely of-
fers lower power consumption with insignificant
performance degradation.

The amount of TLP in a workload is there-
fore important information for determining the
appropriate number of processors that should
be activated to execute the workload. If ap-
plications and their inputs are well understood
in advance, which is a possible assumption
for application-specific systems, the amount
of TLP and consequently the power-efficient
task scheduling can be determined statically 7).
However, such an assumption does not apply
to general-purpose systems, where the applica-
tions and their inputs are unknown until run-
time, so dynamic estimation of TLP is neces-
sary.

There exist mechanisms that estimate TLP
statically®?). Hooks are added to the operat-
ing system (OS) %, or multithreaded libraries *)
to collect information about tasks and proces-
sor utilization. TLP is then calculated off-line
from the collected information. Since these
mechanisms are intended for static analysis, the
amount of collected data and the calculation
overheads are not of concern. Indeed, the over-
heads are not reported in the abovementioned
publications. However, when TLP is dynami-
cally estimated for any online optimization, the
factors become very important. It is thus un-
clear whether the existing mechanisms can be
used for dynamic estimation of TLP.

This paper presents mechanisms for dynam-

44 IPSJ Transactions on Advanced Computing Systems

ically estimating the amount of TLP in run-
time workloads. The mechanisms are realized
through modifications to the OS to collect in-
formation about processor utilization and task
activities, namely the state transition and tran-
sition timing of tasks. The TLP is calculated
online from this information. By utilizing the
time stamp counter (TSC) hardware, the pro-
cess activities can be easily monitored in detail,
resulting in estimation of the TLP with a fine
granularity and with low overhead. Since no
modification is required to applications and li-
braries, implementations of the mechanisms are
transparent.

We implemented the mechanisms on Linux.
Evaluation results indicate that our technique
can estimate the TLP accurately for various
workloads. The overheads imposed by the
mechanisms are very small.

Section 2 describes the estimation targets,
and defines of two kinds of TLP. Section 3
presents the estimation mechanisms. Imple-
mentation of the mechanisms in Linux is de-
scribed in Section 4. Section 5 presents the
evaluation results. Finally, Section 6 concludes
the paper.

2. Task-Level Parallelism

This section first describes the kinds of tasks
that are the estimation targets in this study.
Since estimation of the TLP is essentially based
on monitoring of tasks, we briefly cover task
states and state transitions. We then define
inter-processor TLP and intra-processor TLP,
which are the two types of TLP to be estimated.

2.1 Estimation Targets

The mechanisms presented in this paper can
estimate the parallelism of tasks that are the ex-
ecution contexts schedulable by the OS. Eligi-
ble tasks are processes and kernel-level threads.
Choosing them as the estimation targets allows
optimizations to be made by the OS on the
basis of the estimated parallelism. While the
mechanisms does not estimate the parallelism
of user-level threads, such parallelism to some
extent can be inferred from the parallelism of
kernel-level threads, or processes to which the
user-level threads are mapped. Not estimat-
ing the parallelism of user-level threads there-
fore does not impose any significant limitations.
Since no modification is required for applica-
tions and libraries, implementation of the mech-
anisms is transparent.

May 2006

Task is selected to
run by scheduler

Ready Running|
Task runs out of its timeslice
o preempted—

Event occurs “od
Blocked|

task is woken up
Fig.1 Task state transitions.

Task blocks for a
specific event

2.2 Task States and State Transitions

Three of the typical states that a task can
have are: running, ready, and blocked. Fig-
ure 1 shows the state transitions of a task.
When a task runs out of its timeslice, or is pre-
empted by a high-priority task, the OS tem-
porarily stops the running task and moves it to
a runqueue (running—ready transition). The
OS then selects a ready process from the run-
queue and allows it to run (ready— running
transition). When a running task needs to
wait for an event, it will be pending in a wait-
queue (running— blocked transition). The pro-
cessor may now start to execute another task.
When the event occurs, the blocked task is
moved from the waitqueue to the runqueue
(blocked—ready transition), making it eligible
for later scheduling.

2.3 Inter-processor and Intra-proces-

sor Task-Level Parallelism

Inter-processor TLP, or inter-TLP for short,
of a workload executed on a multiprocessor sys-
tem is defined as the degree of concurrency with
which the individual processors are busy dur-
ing the execution of the workload. Those tasks
executed on the same processor are treated as
parts of a large cumulative task. Inter-TLP rep-
resents the parallelism among these cumulative
tasks. Inter-TLP by this definition is identical
with the TLP concept defined in a previous pa-
per?).

Intra-processor TLP, or intra-TLP for short,
is defined as the TLP of those tasks that are ex-
ecuted on the same processor. TLP among the
tasks in this case is implicitly buried inside the
interleaving instruction streams from multiple
tasks executed by the processor.

Inter-TLP and intra-TLP provide comple-
mentary views of TLP. The former represents
the “global” view of TLP, while the latter rep-
resents TLP that is local to a processor. Poor
inter-TLP signifies that the number of active
processors should be reduced for power saving.

Vol. 47 No. SIG 7(ACS 14)

Conversely, large intra-TLP of tasks signifies
that more processors should be activated to ex-
ecute them. A heuristic algorithm can utilize
the estimated results of both kinds of TLP to
dynamically adjust the number of processors.

The mechanisms for estimating inter-TLP
and intra-TLP are described in the following
section.

3. Inter-TLP and Intra-TLP Estima-
tion Mechanisms

Different mechanisms are needed in order to
estimate Inter-TLP and intra-TLP. Estimation
of inter-TLP can easily be achieved by monitor-
ing processor utilization. Estimation of intra-
TLP is more difficult, since we need to derive
the parallelism information from the interleav-
ing execution streams that are sequentially ex-
ecuted by a processor. We estimate intra-TLP
by closely monitoring the activities of the indi-
vidual tasks.

3.1 Inter-TLP Estimation Mechanism

Estimation of inter-TLP is achieved by forc-
ing the OS to keep track of the durations that
individual processors are busy. Inter-TLP is
calculated from the degree of overlap among
these durations.

The OS maintains execution time in a unit
called a time slot. Each processor is required
to keep information about whether it is busy
or not in each time slot. The number of busy
processors represents the degree of concurrency
in the corresponding time slot. By collecting
such data for all time slots over an observation
period, the inter-TLP in that period can be de-
termined by using Eq. (1).

n .
TLp = il (1)
Di1 Ci
Here, ¢; denotes the number of time slots in
which exactly ¢ processors are busy. The value
of i ranges from 1 to n, where n is the number
of active processors.

Figure 2 shows an example of how inter-TLP
can be calculated. Figure 2 (a) shows the uti-
lization of a multiprocessors system consisting
of three processors P1, P2, and P3. The grey
and white areas respectively indicate the peri-
ods the processor is busy and idle. In Fig. 2 (b),
the utilization of each processor is quantized
in time slot granularity. The number of pro-
cessors busy in each slot is shown in Fig. 2 (c).
In this example, the numbers of time slots in
which exactly one, two, and three processors

Dynamic Estimation of Task Level Parallelism with OS Support 45
| [Busy [1dle |
= 0
1
1 1
i e
i 2 §3
. 1 &
g 1
a] 2
i 2
i 3
i 3
i 2
i 2
i 1
i 0
' P1P2P3 P1P2P3
(a) (b) ©

Fig.2 Illustration of the inter-TLP estimation mech-
anism. (a) Utilization of three processors P1,
P2, and P3. (b) Utilization quantized in time
slots. (c) Concurrency for each time slot.

are busy are respectively 5, 6, and 2. Follow-
ing Eq. (1), the inter-TLP for this example is
(5x1+6%x2+2%3)/(5+6+2)=1.77.

It is clear from Fig.2 that the accuracy of
inter-TLP estimation depends on the size of the
time slot. Using a fine time slot improves the
accuracy at the expense of increased estimation
overhead. Such a trade-off will be quantified in
the evaluation.

3.2 Intra-TLP Estimation Mechanism

To estimate intra-TLP, the OS keep track of
state transitions of tasks being executed on the
same processor. The blocked, ready, and run-
ning durations of each task are identified. The
collected sequence of durations represents the
real trace of the corresponding task.

An important observation is made here. The
existence of ready durations is merely due to a
shortage of processors, rather to any true data
dependency among tasks. Removing the ready
durations from the real traces allows us to sim-
ulate in which the case the same tasks are ex-
ecuted on a multiprocessor system with an un-
limited number of processors.

Removing ready durations from a real trace
creates a new trace consisting of only blocked
and running durations. The new trace is called
an imaginary trace. Whereas there is no over-
lap among running durations in the real traces
of tasks executed on the same processor, the

46

IPSJ Transactions on Advanced Computing Systems

May 2006

[Runing (Run) duration |

iReady (Rdy) duration

[IBlocked (BIK) duration

[Fh:RAy > Run 3

PR3k

A

T2:Run2Rd
e TR r;,:; dy s

I B

)

T3:RunRd
Ti :Rﬁ?gku%‘

J

R

Time

/

Imaginary

N J

< T2BIk>Rdy- 3|

Imaginary traces

...T1:Run>Rdy.

et bt (e of T1

T2:Rdy>Run

T2:Run>Blk Bt

v Real trace of

(@)

Fig. 3

T1

(b)

(©)

Illustration of the intra-TLP estimation mechanism. (a) Three tasks,

T1, T2, and T3 being executed on the same processor. (b) Real trace
and imaginary trace of T1. (c) Imaginary traces of all tasks and the
concurrency for each time slot.

running durations in their imaginary traces can
overlap. The resulting overlap represents the
intra-TLP.

After the imaginary traces have been gener-
ated, the degree of overlap among running du-
rations of the imaginary traces is derived. The
intra-TLP is then calculated on the basis of
Eq. (1). The term ¢; in this case represents the
number of slots having ¢ tasks in the running
state indicated in the imaginary traces.

Figure 3 shows an example of how intra-
TLP is estimated. Figure 3(a) shows three
tasks, T1, T2, and T3 being executed on the
same processor. The state transitions of the
tasks are shown on the timeline. Figure 3 (b)
focuses on the execution of task T1. The real
trace and imaginary trace, as well as the gener-
ation of the imaginary trace from the real trace,
are indicated. Figure 3 (c) shows the imagi-
nary traces of all tasks. Following Eq. (1), the
values of ¢y, cg, and c¢3 in Fig. 3 (¢) are respec-
tively 2, 2, and 4. The intra-TLP in this case
is (2x14+2%x2+4x3)/(24+2+4) = 2.25.

Comparison with another mechanism.
One may argue for a simpler mechanism that es-
timates the intra-TLP on the basis of the num-
ber of ready tasks in the runqueue. However,
such a mechanism does not produce a correct
TLP. The reason may be explained as follows.
The OS usually contains numerous low-priority

daemons to handle miscellaneous housekeeping
jobs. These daemons wake up frequently, run
briefly and then go back to sleep. If the OS exe-
cutes high-priority task(s), these daemons may
wait for a long time in the runqueue for their
turn to execute. Simply counting the number
of tasks in the runqueue in such a case overesti-
mates the TLP. We confirmed that the TLP of
a DVD playback application estimated by this
mechanism is more than twice as large as the
actual TLP.

The TLP can be estimated by not counting
those daemons. To provide responsiveness, the
OS tends to reduce the priority of computation-
intensive tasks. We therefore cannot filter out
the daemons on the basis of priority alone, since
the daemon tasks and computation-intensive
tasks may have the same priority levels. The
filtering must also take into account the pro-
cessor occupation time. How to maintain such
information and how to properly set the thresh-
old values are not straightforward.

In the proposed intra-TLP estimation mech-
anism, since the lengths of the running dura-
tions are used in the calculation, these dae-
mons, which typically have short run time, have

little effect on the estimated TLP.
4. Implementation

We implement the proposed mechanisms on

Vol. 47 No. SIG 7(ACS 14)

Linux. To Linux, there is no concept of kernel-
level thread; Linux implements all threads as
normal processes®. We therefore just need
to consider TLP estimation for normal pro-
cesses in Linux. However, the implementation
can easily be extended to support kernel-level
threads in other OSs.

4.1 Implementation of Inter-TLP Es-

timation

The OS allocates an array shared by all pro-
cessors. Each element of the array corresponds
to a time slot in the observation period. If a
processor is busy in a time slot, the value of
the corresponding array element is increased by
one. The update of the array is handled by a
specific code added to a periodic timer (called
every one millisecond), and also to the context
switch routine. The code updates the array for
those time slots since the time of its last execu-
tion until the current time slot.

The number of non-zero elements, and the
sum of the values of the array elements, col-
lected at the end of the period, respectively rep-
resent the denominator and the numerator in
Eq. (1). The resulting inter-TLP is output and
the array is reset at the end of the period to be
ready for the next observation period.

4.2 Implementation of Intra-TLP Es-

timation

Figure 4 illustrates main modifications
made to the OS in order to estimate intra-TLP.
In Linux, process-related information is kept in
instances of task data structure, with one in-
stance per process. We newly add the vari-
ables blocked_ts, ready_ts, and img_trace_length
to the task structure. Timestamps indicat-
ing that a process enters or exits the blocked
state are respectively recorded in blocked_ts
and ready_ts by the state_tran function in
Fig.4. img_trace_len represents the length of
the process’s imaginary trace. The length of
the blocked duration, which is equivalent to
ready_ts—blocked_ts, is added to img_trace_len
when the process resumes its execution after
having been blocked.

A bit array is maintained for each processor
(the busy variable in the cpu struct in Fig. 4). If
a process is in running state during a time slot,
the element of the array indexed by the current
value of img_trace_len of the process, is set to 1.
The value of img_trace_len is then incremented
by 1. Updates of the array and img_trace_len
are incrementally done in the update_slot func-
tion in Fig. 4, which is called from an interrupt

Dynamic Estimation of Task Level Parallelism with OS Support 47

struct task{ //per-task info
//newly added variables
int blocked_ts;
int ready-ts;
int img_trace_len;

struct cpu{ //per-cpu info
//newly added variable
bit busy[NSLOT];

//change the state of a task
func state_tran(task ¢, int newstate){
if(newstate == BLOCKED)
t.blocked_ts = now;
else if (newstate == READY)
t.ready_ts = now;

// update cpu usage in recent slots
func update_slot(task t){
while(t.slot < now) {
thiscpu.busy|[t.slot%NSLOT] = 1;
t.slot++;
}

//context switch function
func ctz_sw(task prev, task next){
update_slot(prev);
next.img_trace_len =
next.ready_ts - next.blocked_ts;
next.ready_ts = next.blocked_ts = now;

//timer called every one millisecond
func timer(){
//cur: currently executed task
update_slot(cur);

Fig.4 Pseudo code indicating the main modifications
made to the OS in order to estimate intra-TLP.

timer and the context switch routine.

The number of elements of the bit array
whose bits have been set, collected at the end
of the observation period, is the value of the de-
nominator in Eq. (1). The numerator in Eq. (1)
is calculated by summing up the lengths of all
running durations of the processes over the pe-
riod. At the end of the period, the inter-TLP is
computed and output. The bit arrays and the
img_trace_len of each process are reset accord-
ingly.

Since the estimations of inter-TLP and intra-
TLP are independent of each other, the OS can
support simultaneous estimations of both kinds
of TLP. The estimation accuracy is unchanged
and the estimation overheads are additive.

48 IPSJ Transactions on Advanced Computing Systems

4.3 Timekeeping Using a Time Stamp
Counter

The size of the time slot affects the accuracy
of the estimated TLP. A small time slot al-
lows estimation of the TLP with fine granular-
ity. However, if an existing time management
facility in the OS (e.g., the gettimeofdate system
call) is used for high-resolution time manage-
ment in our estimation mechanisms, frequent
timing requests unavoidably incur large over-
heads.

Our TLP estimation mechanisms instead
manages timing by utilizing the time stamp
counter (TSC), which is provided in most re-
cent processors. TSC is a counter whose value
is incremented by 1 in every clock cycle. Each
processor in the multiprocessor system has its
own TSC, and these counters are synchronized
at boot time. Access to the TSC is simply a
matter of reading an on-chip register. A desired
timing resolution is easily obtained by reading
the TSC and shifting the result appropriately.
For instance, for a 1GHz processor, reading
the TSC and shifting the result to the right by
15 bits achieves a time resolution of 32 us. The
overhead of maintaining time in this manner is
very small.

5. Evaluation

5.1 Evaluation Methodology

Our evaluation machine is a two-way multi-
processor system with 1.8 GHz Athlon proces-
sors and 1 GB of main memory. The machine
runs a recent Linux OS (version 2.6.5). The OS
is modified to incorporate the TLP estimation
functions described in Section 4.

Two types of workloads are used for evalu-
ation. The first type of workload consists of
independent tasks from various single-threaded
applications. The second type of workload con-
sists of multithreaded applications. Table 1
shows a list of benchmarks along with brief de-
scriptions.

When we evaluate the inter-processor TLP,
both processors are activated. When we evalu-
ate intra-TLP, we activate only one processor.
The effectiveness of the intra-TLP estimation
mechanism can be evaluated on an uniproces-
sor without losing generality. The impacts of
varying the size of the time slot on the accuracy
and overheads of the proposed mechanisms are
studied.

The overheads incurred by the TLP estima-
tion mechanisms are defined as the increases

May 2006

Table 1 Evaluation benchmarks.

Benchmark | Description
Single-threaded benchmarks

mcf, twolf, bzip2 | Integer applications in
SPECCPU 2000
Multithreaded benchmarks
mencoder Video encoder software
mozilla Web browser
dvdplayer DVD playback
openssl Cryptography toolkits
pigimp Benchmark for GIMP
2 — —
@ 1000us
@ 125us
a O31us
2
i 1
o
£
0 ‘
& $ & IS > @
>’<°4>Q \x‘§ <\°06 6\00 bQ\rz;\ QQ'(\% Q‘q\@
$§\ & N s ©
6\2‘
N

Fig. 5 Estimated inter-TLP for three different sizes
of time slot.

in the execution times of the chosen workloads
executed on the modified OS, compared with
the execution times of the same workloads ex-
ecuted on the original OS. Applications from
SPECINT benchmarks are chosen for overhead
evaluations.

5.2 Results

5.2.1 Inter-TLP Estimation Results

Figure 5 shows the estimated inter-TLP for
several workloads. The size of time slot is varied
among 1,000 us, 125 us, and 31 us.

The leftmost two workloads consist of multi-
ple computation-intensive, single-threaded ap-
plications executed concurrently. The real TLP
is expected to be roughly equal to the num-
ber of applications in the workloads. The
estimated inter-TLP of the mcf+twolf work-
load, i.e., approximately 2, is reasonable. How-
ever, since the number of applications in the
mcf+twolf+bzip2 workload is larger than the
number of available processors, the inter-TLP
in this case is estimated as 2, not as 3.

For those multithreaded applications, men-
coder, dvdplayer, and openssl exhibit very lim-
ited TLP, confirming the fact that many ap-
plications are multithreaded for purposes other
than to exploit parallelism®. mozilla exhibits
slightly higher TLP than other multithreaded
applications.

Vol. 47 No. SIG 7(ACS 14)

Table 2 Overheads of inter-TLP estimation for three
different sizes of time slot.

Size of time slot (us) | Overhead (%)
1,000 0.04
125 0.12
31 0.23
3
W 1000us
Il 125us
o 2 L O31us
= Diinter-TLP
g
£
0
NS X . X >
G I P
& & & N K Q
& N & s
&
Fig. 6 Intra-TLP estimates for three different time
resolutions.

For most workloads, the estimated TLP
changes very little when the size of time slot is
varied. One exception is pigimp. Since pigimp
consists of communication processes that ex-
hibit parallelism with fine granularity, the ac-
curacy of inter-TLP estimation improves with
a small time slot.

Table 2 shows the overhead of the inter-TLP
estimation mechanism as the size of the time
slot is varied. The overhead increases almost
linearly with a reduction in the size of the time
slot. The overhead is fairly low.

5.2.2 Intra-TLP Estimation Results

Figure 6 shows the estimated intra-TLP.
The size of the time slot is also varied among
1,000 ps, 125 us, and 31 us. For reference, the
inter-TLP estimated with a time slot of 31 us,
derived from the results in Section 5.2.1, is also
shown in Fig. 6.

For a workload consisting of multiple single-
threaded applications, the estimated intra-TLP
of a workload is almost equal to the number of
applications in the workload. It is noteworthy
that while the inter-TLP for mcf+twolf+bzip2
is estimated as 2, the intra-TLP is estimated
as 3, which correctly matches the real TLP of
the workload. Since the TLP extracted from
concurrent execution of independent tasks rep-
resents the most common type of TLP found in
practice, the ability of the mechanism to cor-
rectly estimate the TLP is encouraging.

For multithreaded applications, the esti-
mated intra-TLP closely matches the inter-
TLP. Since those multithreaded applications

Dynamic Estimation of Task Level Parallelism with OS Support 49

Table 3 Overheads of the intra-TLP estimation at
different sizes of time slot.

Size of time slot (us) | Overhead (%)

1,000 0.11

125 0.21

31 0.35

; {ﬁ\ v —
WA A A N L W L WA W R W
‘ LW VAL VULV

F A

1 1 21 31 “ 51 61
Time(s)

Fig.7 Estimated inter-TLP, intra-TLP of pigimp
vary with time.

exhibit poor TLP, the estimated inter-TLP rep-
resents the real TLP of these applications. The
estimate of intra-TLP is therefore accurate. A
smaller time slot improves the accuracy of the
estimate, as indicated by pigimp.

Table 3 shows the overhead of the intra-TLP
estimation mechanism as the size of the time
slot is varied. Since more computation is in-
volved in estimation of intra-TLP, the overhead
of intra-TLP estimation is larger than that of
inter-TLP estimation. Nevertheless, the over-
head is still fairly small (e.g., up to 0.35%).

The upper and lower area of Fig.7 respec-
tively show the variation over time of estimated
inter-TLP and intra-TLP for pigimp. Since the
multiprocessor machine used in inter-TLP es-
timation provides higher performance than the
single-processor used in intra-TLP estimation,
the time in the upper graph is stretched to
match the time in the lower graph. The es-
timated intra-TLP closely matches the inter-
TLP. The proposed mechanisms work effec-
tively for applications in which TLP varies with
time.

6. Conclusions

This paper has presented two mechanisms for
dynamically estimating the amount of task level
parallelism (TLP) in runtime workloads. The
first estimates the TLP among tasks executed
on different processors of a multiprocessor sys-
tem, and the second estimates the TLP among

50 IPSJ Transactions on Advanced Computing Systems

tasks executed on the same processor. Appro-
priate modifications are added to the OS to col-
lect information about processor utilization and
task activities, on the basis of which the TLP is
deduced. Utilization of the time stamp counter
(TSC) allows such information to be collected
with high time resolution and with low over-
head.

The mechanisms are implemented on a recent
version of Linux. The results indicate that the
proposed mechanisms estimate the TLP accu-
rately for workloads consisting of multiple in-
dependent processes as well as the workloads
of multithreaded applications. The overheads
imposed by the mechanisms are negligible.

The efficacy of dynamic estimation of TLP
has been demonstrated in this work. We are
working toward evaluating the effectiveness of
power reduction through dynamic adaptation
of the number of processors based on the es-
timated TLP on a real multiprocessor system.
The ability to adaptively shutdown processors
in order to save power on MPCore multiproces-
sor systems ! makes them valuable platforms
for future experiments.

Acknowledgments This research is par-
tially supported by Grants-in-Aid for Funda-
mental Scientific Research B(2) #13480077 and
B(2) #16300013 from Japan’s Ministry of Ed-
ucation, Culture, Sports, Science and Technol-
ogy Japan, and from the Semiconductor Tech-
nology Academic Research Center (STARC)
Japan, the CREST project of Japan Science
and Technology Corporation, and the 21st cen-
tury COE project of Japan Society for the Pro-
motion of Science.

References

1) ARM: http://www.arm.com/products/
CPUs/MPCoreMultiprocessor.html.

2) Borkar, S.: Design Challenges for Technology
Scaling, IEEE Micro, Vol.19, No.4, pp.23-29
(1999).

3) Ekman, M., Dahlgren, F. and Stenstrom,
P.:. TLB and Snoop Energy-Reduction us-
ing Virtual Caches in Low-Power Chip-
Multiprocessors, Proc. 2002 International Sym-
posium on Low Power Electronics and Design,
pp.243-246 (2002).

4) Flautner, K., Uhlig, R., Reinhardt, S. and
Mudge, T.: Thread-Level Parallelism of Desk-
top Applications, Proc. Workshop on Multi-
threaded Execution, Architecture and Compila-
tion (MTEAC 2000) (2000).

5) Hauser, C., Jacobi, C., Theimer, M., Welch,

May 2006

B. and Weiser, M.: Using Threads in Interac-
tive Systems: A Case Study, Proc. 14th Sympo-
stum on Operating Systems Principles, pp.94—
105 (1993).

6) Lee, D.C., Crowley, P.J.,, Baer, J.-L.,
Anderson, T.E. and Bershad, B.N.: Character-
istics of Desktop Applications on Windows NT,
Proc. 25th International Symposium on Com-
puter Architecture, pp.3—14 (1998).

7) Li, J. and Martinez, J.F.: Power-Performance
Implications of Thread-level Parallelism on
Chip Multiprocessors, Proc. 2005 IEEE Inter-
national Symposium Performance Analysis of
Systems and Software, pp.124-134 (2005).

8) Love, R.: Linux Kernel Development, Sams
Publishing (2004).

9) Lundberg, L.: Predicting and Bounding the
Speedup of Multithreaded Solaris Programs,
Journal of Parallel and Distributed Computing,
Vol.57, No.3, pp.322-333 (June 1999).

10) Schutz, J. and Webb, C.: A Scalable X86 CPU
Design for 90 nm Process, Proc. IEEE Interna-
tional Symposium on Solid-State Circuits Con-
ference, pp.62-63 (2004).

(Received September 29, 2005)
(Accepted February 1, 2006)

Luong Dinh Hung is cur-
rently a Ph.D. student in Infor-
mation and Communication En-
A9 gineering in The University of

> Tokyo. He received the M.E.

‘ /. degree in Information and Com-
“ munication Engineering from

The University of Tokyo in 2004. His research
interests are in microprocessor architecture and

circuit techniques for low-power consumption
and soft-error tolerance.

Vol. 47 No. SIG 7(ACS 14) Dynamic Estimation of Task Level Parallelism with OS Support

Shuichi Sakai received the
B.S., M.E. degree and D.E. from
The University of Tokyo in 1981,
1983 and 1986 respectively. He
worked in Electrotechnical Lab-

‘3 ’-.—.
oratory Japan from 1986 to

-
‘ a 1990. From 1991 to 1992, he

became a visiting scientist in Laboratory for
Computer Science, Massachusetts Institute of
Technology. From 1993 to 1996, he was a chief
at Massively Parallel Architecture Laboratory
in Real World Computing Partnership. He be-
came an Associate Professor in University of
Tsukuba in 1996 and came to The University
of Tokyo in 1998 as an Associate Professor.
From 2001, he has been a Professor in Grad-
uate School of Information Science and Tech-
nology in The University of Tokyo. His re-
search interests include dependable computer
systems, microprocessor architecture, compiler,
parallel computing, and multimedia processing.
He wrote several books on logic circuits and
computer architecture, including “Introduction
to Logic Circuits” and “Computer Architecture
with Illustrated Explanation”. He is a member
of IPSJ, IEEE, ACM, IEICE, and JSAI.

51

