
Vol. 47 No. SIG 12(ACS 15) IPSJ Transactions on Advanced Computing Systems Sep. 2006

Regular Paper

Improving Linpack Performance on SMP Clusters

with Asynchronous MPI Programming

Ta Quoc Viet† and Tsutomu Yoshinaga†

This study proposes asynchronous MPI, a simple and effective parallel programming model
for SMP clusters, to reimplement the High PerformanceLinpack benchmark. The proposed
model forces processors of an SMP node to work in different phases, thereby avoiding unnec-
cessary communication and computation bottlenecks. As a result, we can achieve significant
improvements in performance with a minimal programming effort. In comparison with a
de-facto flat MPI solution, our algorithm can yield a 20.6% performance improvement for a
16-node cluster of Xeon dual-processor SMPs.

1. Introduction

Our study was aimed at improving the perfor-
mance of the High Performance Linpack (HPL)
benchmark 9) on a cluster of Symmetric Mul-
tiprocessors (SMPs). HPL is a standard and
prestigious tool to evaluate the computation
capacity of modern super computing systems.
The HPL package applies a flat MPI model that
treats all processes equally, without taking the
dependency between the computation and com-
munication performance of processes running
on physical processors on the same SMP node
into account. Our study examines this depen-
dency and proposes an asynchronous MPI pro-
gramming model, which is proven to be more
effective for SMP clusters.

We noted that the performance of an SMP
node increases when its processors work asyn-
chronously, i.e., a number of processors per-
forms a computation task while the remain-
der performs a communication task. This phe-
nomenon can be explained based on limitations
with shared resources for computation and/or
communication. When all processors work syn-
chronously, they require the same kinds of re-
sources. This may lead to a scarcity of re-
sources, thereby forming an execution bottle-
neck. Network and memory bus bandwidth lim-
itations are respective root causes of communi-
cation and computation bottlenecks in our sys-
tem.

To overcome this situation, we propose an
asynchronous MPI model in which a node’s
processors perform computation and commu-

† Graduate School of Information Systems, University
of Electro-Communications

nication tasks asynchronously. The model re-
quires the execution of communication to be re-
arranged, which also avoids unnecessary intern-
ode communication. The programming effort
required to develop our new solution from ex-
isting flat MPI code is fairly small. The solution
is especially suitable for problems of matrix-
calculation problems including the HPL. The
basic principles behind our idea and its ef-
ficiency on executing a matrix multiplication
were also introduced in Ref. 12).

Our experimental environment consisted of a
cluster of 16 Intel Xeon 2.8-GHz dual-processor
nodes connected via a Gigabit Ethernet net-
work. Each node had 1.5GB of memory, Red
Hat Linux 9.0 was the operating system, and
MPICH 1.2.6 8) was the MPI library. The lo-
cal matrix calculation functions (e.g., dgemm())
were carried out with the Goto-BLAS library 7).

The significant features of our study were:
(1) a clear and easy-to-apply MPI-only asyn-
chronous parallel-programming model for SMP
clusters and (2) a formula for evaluating its im-
provement in performance using variables de-
fined for the nature of the problem, its size,
and system specifications.

The remainder of the paper is organized as
follows. Section 2 introduces related studies
that have also examined programming mod-
els for SMP clusters. Section 3 presents our
model in details. Section 4 describes the pro-
cess of applying the model to the HPL prob-
lem. Section 5 discusses the experimental re-
sults, and Section 6 concludes the paper.

340



Vol. 47 No. SIG 12(ACS 15) Asynchronous MPI Programming 341

2. Related Studies

2.1 Communication-Computation
Overlap

The main idea behinde the asynchronous
model is the node-level communication-compu-
tation overlap (referred to as “overlap” from
now). The proceeses inside a node are forced to
simultaneously execute computation and com-
munication tasks. In fact, another type of over-
lap, the global-level, has long been proposed
and discussed 1),3), where a collective commu-
nication function is divided into several stages,
and in each stage only a group of processes
of the communicator is involved. The remain-
ing processes can execute computation tasks at
that time. As a result, some processes at a point
in time are involved in communication while
the others are in computation phases. However,
other than for the node-level type, there is no
guarantee of overlap inside a node. For exam-
ple, we can enable global-level overlap with the
original HPL package by assigning a positive
value for parameter DEPTH defined inside its
data file, HPL.dat.

2.2 Hybrid Programming Models
Several studies on SMP clusters, whose speci-

ficity is the hierarchical memory architecture,
have proposed hybrid MPI-OpenMP program-
ming models in which each SMP node only runs
a single MPI process and parallelization of com-
putation inside a node is deployed by OpenMP.
In comparison with flat MPI, hybrid models not
only replace internode communication by using
shared variables located in shared memory ar-
eas but they also reduce the number of MPI
processes.

Hybrid models are classified in terms of
process-to-process communication (hybrid PC)
and thread-to-thread communication (hybrid
TC). The hybrid PC model was examined ear-
lier but no positive results were obtained. Cap-
pello et al. found a common path to develop
a fine-grained hybrid PC code from an exist-
ing MPI model 5). Based on this path, they
derived a fine-grained hybrid PC solution to
the NAS benchmarks and compared its per-
formance with that of a flat MPI model for a
cluster of IBM SP nodes 4),6). Using COSMO,
a cluster of Intel dual-processor nodes, Boku,
et al. compared hybrid PC with flat MPI by
solving the smooth particle applied mechan-
ics (SPAM) problem 2). These studies revealed
that in most of the cases, hybrid PC is inferior

to flat MPI despite its three main advantages of
(1) low communication costs, (2) dynamic load
balancing capabilities, and (3) coarse-grained
communication capabilities 2). The poor per-
formance of the fine-grained hybrid PC model
is primarily due to its poor efficiency in intra-
node OpenMP parallelization 4) resulting from
an extremely low cache hit ratio 2).

In previous studies, we proposed an enhanced
hybrid version–the hybrid TC model 15),16),
which was also discussed by Wellein, et al. 17)

and Rabenseifner, et al. 10),11). We also pro-
posed a medium-grained approach that allowed
hybrid TC to achieve impressive performance
on different platforms in various types of ex-
periments 14). The essence of hybrid TC is
also node-level overlap. However, to gain that
level of performance, it requires huge program-
ming efforts with complicated task assignation
techniques. Moreover, hybrid TC suffers from
a critical problem with extra communication
costs with the prime numbers of SMP nodes due
to an unbalanced process grid. In these cases,
it even loses out to flat MPI in performance 13).

The asynchronous MPI model we propose in
this paper aims at overcoming these disadvan-
tages of hybrid TC. While yielding high per-
formance, it is still easy to implement and does
not suffer from the problem of an unbalanced
process grid.

3. Asynchronous Model

3.1 Flat and Asynchronous MPI
Figure 1 outlines the activities of a dual-

processor SMP node for flat and asynchronous
MPI solutions.

Fig. 1 MPI variations for a dual-processor SMP node.



342 IPSJ Transactions on Advanced Computing Systems Sep. 2006

All the processors of a node work in the same
phase for the flat MPI solution. They always
execute communication or computation simul-
taneously. The execution time Tflat is the sum
of the communication time Tm and the compu-
tation time Tp, which usually depends on the
size of the problem:

Tflat = Tm + Tp.
Node-level overlap is created for the asyn-

chronous MPI solution. The time in which
node’s processors work asynchronously is de-
noted by Toverlap. The time in which proces-
sors work simultaneously is denoted by Ts. The
sum of Toverlap and Ts yields the asynchronous
model execution time Tasync:

Tasync = Toverlap + Ts.
Communication speed-up Sm is defined by

the ratio between communication speeds dur-
ing Toverlap and Ts. Computation speed-up Sp

is defined similarly. Note that communication
and computation speeds during Ts are equiv-
elent to that of the flat MPI model. During
Toverlap, an SMP node has better communica-
tion and computation speeds than that of the
flat MPI model. In other words,

Sm > 1 and Sp > 1.
We now evaluate the benefits of the asyn-

chronous model. With regard to Fig. 1,

Toverlap = 2 × min
(

Tm

Sm
,
Tp

Sp

)
, (1)

and the difference in the execution times dT
between the two models is given by

dT = Tflat − Tasync = dT1 + dT2.

On the other hand,

dT1 =
1
2
× Toverlap(Sm − 1)

and

dT2 =
1
2
× Toverlap(Sp − 1).

Consequently,

dT =
1
2
× Toverlap(Sm + Sp − 2). (2)

The performance speed-up, S, of the model
is evaluated by

S =
Tflat

Tasync

= 1 +
1
2
× Toverlap×(Sm+Sp−2)

Toverlap+Ts
. (3)

Equations (1), (2), and (3) define the time
saved by and the speed-up of an asynchronous
solution through Tm, Tp, Sm, and Sp.

Fig. 2 Communication rearrangement.

Tm and Tp generally increase with the size
of the problem, which also increases dT . This
implies that as the size of the problem increases,
the time saved by the asynchronous model also
increases.

Speed-up S achieves a maximum value of

S =
(Sm + Sp)

2
if

Ts = 0,

i.e.,
Tm

Sm
=

Tp

Sp
.

3.2 Communication Rearrangement
The asynchronous model requires a communi-

cation to be rearranged, where internode com-
munication can only be performed between pro-
cesses with the same phase. The original flat
MPI communication pattern does not always
satisfy this requirement.

We propose a simple method of achieving the
required rearrangement, which is outlined in
Fig. 2, where the squares represent MPI pro-
cesses, the numbers inside these squares de-
note the process IDs, and the dotted elonga-
tions indicate communicators. The upper and
lower parts of the figure portray the commu-
nicators before and after rearrangement. We
assumed a flat MPI communicator with eight
processes originating from four dual-processor
nodes. This communicator is split into two
separate internode parity communicators, odd
and even, in terms of the process IDs. There
were four additional intranode communicators,
which are not shown in the figure. All com-
munication operations were rearranged to only
be performed inside the newly formed commu-
nicators. An internode communication opera-
tion between two processes of different parity
communicators is replaced by an intranode op-



Vol. 47 No. SIG 12(ACS 15) Asynchronous MPI Programming 343

eration and an internode operation inside the
same parity communicator. For example, com-
munication between processes 2 and 7 may be
replaced by that between processes 2 and 3 (in-
tranode communication) together with that be-
tween processes 3 and 7 (internode communica-
tion inside the odd communicator).

3.3 Task Dependency Problem
Data independence between communication

and computation tasks is another requirement
for the asynchronous model. We can only ar-
range tasks in any order if they are data in-
dependent. Section 3 of Ref. 14) has already
demonstrated how to eliminate these dependen-
cies. We will explain the process of eliminating
dependencies for HPL in Section 4.3,

4. Asynchronous Solution for HPL

4.1 Problem Description
HPL solves a random dense linear equation

system using a block LU decomposition algo-
rithm. Its major task is to factorize n × n
random dense square coefficient matrix A into
corresponding upper and lower triangulars, U
and L, such that A = U · L. When n is suffi-
ciently large, this factorization consumes more
than 99% of the overall execution time. Users
can set the problem size, n, upon execution.
HPL accepts any value for the nprocs processes,
which are organized into a P × Q process grid.
The multiplication between dense matrices in-
volves most of the computation cost.

The data in HPL are stored in nb×nb square
blocks, where nb is the block size and can be
adjusted on execution to obtain the best per-
formance. Blocks are distributed onto nprocs
processes according to a block-cyclic scheme,
i.e., they are cyclically dealt onto the P × Q
process grid. Such a data distribution assists in
decreasing communication costs 9).

According to the right looking variant, LU
factorization is done by a loop with �n/nb� it-
erations. Data related to the ith iteration are
outlined in Fig. 3 (a). D is the ith block of the
main diagonal. L, U , and T are the current
parts of the lower, upper, and trailing matri-
ces, respectively. Table 1 lists the tasks for
such an iteration. Tasks 2, 3, 5, and 7 are com-
munication tasks. Task 1 depends on task 8 of
the previous iteration. Symbols U0 and L0 for
tasks 4 and 6 represent the current values of U
and L, respectively. Each of these should be
replaced by the root of the correlative equation
after the task finishes. Task 8 involves major

(a) HPL data pattern

(b) Original task graph

Fig. 3 HPL: data pattern and original task
dependency graph.

Table 1 HPL: original task list.

No. Description Cur. dep. Prev. dep.
1 Decom(D) - 8
2* Bcast(D, col comm) 1 -
3* Bcast(D, row comm) 1 -
4 Solve(DU = U0) 2 -
5* Bcast(U, col comm) 4 -
6 Solve(LD = L0) 3 -
7* Bcast(L, row comm) 6 -
8 T = T − LU 5, 7 -

*: Communication tasks
Cur. dep.: Current iteration’s dependencies
Prev. dep.: Previous iteration’s dependencies
Row comm: Process row communicator
Col comm: Process col communicator

computation. Meanwhile, tasks 5 and 7 occupy
almost all the communication volume. A task
dependency graph is created based on Table 1,
shown in Fig. 3 (b), where communication tasks
are represented by the shaded circles.

4.2 Process Grid and Communication
Rearrangement

The process grid is organized to minimizes
the amount of rearrangement. For example,
processors can be arranged such that all proces-
sors of a single node belong to the same process
row. In this way we developed a 4 × 8 pro-
cess grid for a 16-node cluster, in which a row



344 IPSJ Transactions on Advanced Computing Systems Sep. 2006

(a) Broadcast operations within flat MPI

(b) Rearrangement for bcast (a i, row comm)

Fig. 4 Communication rearrangement for a 16-node
dual-processor cluster.

communicator contains processes of the same
parity; thus, it is not necessary to rearrange
bcast(D, col comm) and bcast(U, col comm).
Only broadcasting over the row comm needs
to be rearranged.

The rearrangement in communication is out-
lined in Fig. 4 assuming that processor 0 is
the source of U and L. Figure 4 (a) illustrates
both of the two broadcast operations within
flat MPI. Figure 4 (b) shows the three oper-
ations that have replaced the original task 7
bcast(L, row comm):
• 71 share(half L, co proc): intranode com-

munication. In reality, this step is imple-
mented by a set of send and recv calls
evoked by the source process and co proc–
the remaining node process.

• 72 bcast(half L, row parity comm): in-
ternode communication. Even and odd row
communicators broadcast different halves
of L. After this step, every process has half
the L, while two processes of the same node
have different halves.

• 73 exchange(half L, co proc): intranode
communication. Each process exchanges
its half with its co proc. After this step,
all processes have a complete L.

Internode communication step 72 can be ex-
ecuted within the asychronous execution time.
The intranode communication steps should be

(a) New HPL data pattern

(b) New HPL task graph

Fig. 5 Construction of asynchronous task schedules.

executed simultaneously by all processes.
Similarly, task 3, bcast(D, row comm), can

be replaced by new tasks 31, 32, and 33. How-
ever, for a sufficiently large problem, the cost of
executing task 3 is quite small in comparision
with that for task 5 or 7, and thereby not worth
rearranging. As a result, we did not rearrange
task 3 in our implementation.

4.3 Asynchronous Task Schedules
We eliminated the data dependencies be-

ween the main computation and communica-
tion tasks to enable asynchronous sections. As
can be seen from Fig. 3 (b), all tasks of the cur-
rent iteration depend on task 8 of the previous
iteration that updates the “previous” trailing
matrix including the “current” D, U , L, and
T . To break up this dependency into several
smaller ones, we split task 8 into 81, 84, 86,
and 88 that updated D, U , L, and T , respec-
tively. We then have a new task dependency
graph shown in Fig. 5 (b). Tasks 1, 4, 6, and
8 now depend on the previous tasks 81, 84, 86,
and 88, respectively. Communication task 7 is
now rearranged and replaced by 71, 72, and 73

in the figure. Figure 5 (a) illustrates the corre-
sponding data pattern.

Since tasks 5 and 72 (major communication)
and the previous task 88 (major computation)
are data independent, we reconstructed the



Vol. 47 No. SIG 12(ACS 15) Asynchronous MPI Programming 345

Table 2 Updated task list for asynchronous MPI.

No. Description Dependencies
1 Decom(D) -
2 Bcast(D, col comm) 1
3 Bcast(D, row comm) 1
4 Solve(DU = U0) 2
5* Bcast(U, col comm) 4
6 Solve(LD = L0) 3
71 Share(haft L, co proc) 6
72* Bcast(haft L, row parity comm) 71

73 Exchange(haft L, co proc) 72

81 D1 = D1 − LU 5, 73, 88

84 U1 = U1 − LU 5, 73, 88

86 L1 = L1 − LU 5, 73, 88

88* T1 = T1 − LU -

*: Tasks placed inside asynchronous section

Fig. 6 Asynchronous task schedules.

loop such that they were in the same itera-
tion and become available for the asynchronous
phase. In Fig. 5 (a), the tasks for a new loop
iteration are bounded by the shaded polygon.
This includes tasks belonging to the two orig-
inal iterations: task 88 from the previous and
the remaining tasks from the current iteration.
The updated task list is shown in Table 2
wherein tasks that have been planned to over-
lap have been marked with an asterisk.

Figure 6 outlines the new task schedules to
be applied to asynchronous MPI. Tasks from
1 to 71 are executed simultaneously by all pro-
cesses. The even and odd processes then fol-
low the left and right branches of the diagram,
respectively. That is, even processes perform
computation first with task 88, then carry out
communication with tasks 5 and 72. Odd pro-

· · ·
MPI Comm rank(MPI COMM WORLD, &pid);
Loop Initialize();
for (i=0; i < number of iterations; i++)
{

task 1();
task 2();
task 3();
task 4();
task 6();
task 71();
// Asynchronous section
if (pid%2==0) {

task 88();
task 5();
task 72();

}
else {

task 5();
task 72();
task 88();

}
// End of asynchronous section
task 73();
task 81();
task 84();
task 86();

}
· · ·

Fig. 7 Asynchronous MPI pseudo-code.

cesses run in a reverse order: tasks 5 and 72,
then 88. After that, all processes work to-
gether once again with tasks from 73 to 86.
Figure 7 shows the pseudo-code that strictly
follows these task schedules. The code is rela-
tively simple and easy to implement.

Since tasks 5, 72, and 88 consume the major
computation and communication costs for the
problem, node-level overlap is archieved during
most of the execution time.

5. Experimental Results

The communication speed-up, Sm, and com-
putation speed-up, Sp, of the overlaping sec-
tions in the asynchronous model over the flat
MPI model can be estimated by implement-
ing some simple simulations. Their values gen-
erally change under different computation and
communication conditions. Figure 8 shows a
pseudo-code for a simulation that defines Sm

for HPL, wherein communcation always occurs
with large messages and major computation is
carried out by BLAS level 3 function dgemm().
While odd processes do a typical HPL com-
munication task (broadcasting a large amount
of data over a process column), even processes
perform a typical HPL computation task (exe-
cuting a local dgemm() function). The compu-
tation task is set so that it is large enough to
cover the entire communication time. Then, the



346 IPSJ Transactions on Advanced Computing Systems Sep. 2006

· · ·
// Simulating overlap condition, Tm < Tp.
if (pid%2==0)

large HPL typical comp task();
else {

t 0 = MPI Wtime();
HPL typical comm task();
t overlap = MPI Wtime() - t 0;

}
// Simulating flat MPI condition.
t 0 = MPI Wtime();
HPL typical comm task();
t flat = MPI Wtime() - t 0;
// Evaluating Sm.
Sm = t flat / t overlap;

Fig. 8 Simple simulation to define Sm for HPL.

communication pattern for the flat MPI model
is simulated. The ratio between the communi-
cation times for flat MPI and the overlap stages
to solve the same communication task yields
Sm. The value of Sp can be defined in a simi-
lar way, where the communication task is set so
that it is large enough to cover the computation
time.

Broadcasting a 112×3,000 matrix over a pro-
cess row was used as a communication task in
our simulation, and multiplication between a
3,000 × 112 and a 112 × 3,000 matrix was used
as a computation task. By running this com-
putation (communication) task several times,
we could create a computation (communcation)
task large enough to cover the communication
(computation) time to estimate Sm (Sp). Un-
der these conditions, we obtained

Sm ≈ 1.32 and Sp ≈ 1.18.
Further simulations we did with different data
sizes also revealed that, when the matrix size
was large enough, the values for Sm and Sp were
relatively stable.

The experimental results for flat MPI, hybrid
TC, and asynchronous MPI on all 16 nodes
corresponding to different-sized problems are
plotted in Fig. 9. Matrix size n varies be-
tween 20,000 and 50,000, which is sufficiently
large to stabilize the local Goto-BLAS functions
and small enough to accommodate the memory
limit. The block size, nb, was fixed to 112.

The results clearly prove the asynchronous
MPI outperformed flat MPI. At n = 20,000,
the difference was approximately 20.6% (13.2
GFlops). However, the distance between the
two performance lines gradually reduced. At
n = 50,000, the difference was only 8.6% (7.9
GFlops). These results can be explained by
Eqs. (2) and (3) together with the nature of the

Fig. 9 Performance with 16 nodes, GFlops by
problem size, n.

Table 3 Theoretic and actual time saved, dTt and
dTa.

n Tm (sec.) Tp (sec.) dTt (sec.) dTa (sec.)

20,000 37.4 45.1 14.2 13.6
25,000 53.7 88.9 20.3 19.7
30,000 73.6 153.9 27.9 27.0
35,000 99.8 244.8 37.8 36.4
40,000 128.5 372.9 48.7 47.2
45,000 155.0 519.6 58.7 57.2
50,000 188.4 713.8 71.4 69.4

HPL problem. That is, the growth rate of Tp

is O(n3), while that of Tm is only O(n2). Con-
sequently, the growth rates of dT and Tasync

are O(n2) and O(n3), respectively. This im-
plies that the increase in dT is slower than that
in Tasync, and the overall speed-up, S, becomes
smaller with an increase in n.

The difference in execution time of flat MPI
and asynchronous MPI, on the other hand, in-
creases with the size of the problem. Table 3
lists the theoretic and actual values for the re-
duced time, dTt and dTa, respectively. The the-
oretic values were evaluated with Eq. (2). The
actual values are in good agreement with these,
although there is a small disparity of several
percent that may result from (1) various mea-
surement errors and (2) changes in execution
conditions, i.e., the actual values for Sm and Sp

are not completely stable with different-sized
problems, while the theorical values are de-
fined by simulations with a certain fixed prob-
lem size. This small disparity may also reslult
from (3) the influence of the communication
rearrangements, i.e., althought rearrangement
avoids unnecessary internode communication,
it also cuts the communication data size to half
while broadcasting L over the process row and
this may slow down the communciation speed
to some degree. Although the above-mentioned



Vol. 47 No. SIG 12(ACS 15) Asynchronous MPI Programming 347

Fig. 10 Performance with n = 35,000, GFlops by
number of nodes.

factors do affect overall performance, their in-
fluence is relatively small, and we assume that,
they are not worth further analysis in more de-
tails.

The performance lines for asynchronous MPI
and hybrid TC nearly coincide, which can be
explained by the similar way they perform
computation and communcation. Although
they are completely different in their imple-
mentation, both of them aim at exploiting
the advantages of node-level communication-
computation overlap. However, the program-
ming effort needed by hybrid TC is much
greater than that by the asynchronous model.
As discussed in Section 2, apart from compli-
cated task assignation, hybrid TC requires the
knowledge and skill of both MPI and OpenMP
programming. Meanwhile, asynchronous MPI
retains the original flat MPI computation pat-
tern and does not require OpenMP support.

In addition to simplicity, asynchronous MPI,
in some cases, also surpasses hybrid TC in per-
formance. Figure 10 plots HPL performance
with a fixed value of n = 35,000 correspond-
ing to different numbers of nodes. Due to the
problem with the unbalanced process grid, hy-
brid TC obtains extremely poor performance
with prime numbers of nodes. Running 11 or 13
nodes, hybrid TC is even slower than flat MPI.
Its process grid is then 1 × 11 or 1 × 13, which
critically increases the communication cost 14).
This degradation does not happen with asyn-
chronous MPI. It can always organize a less un-
balanced process grid (2×11 or 2×13), thereby
obtaining a similarly shaped performance line
to that of flat MPI.

6. Conclusions and Discussions

The proposed asynchronous MPI model is

a simple and effective parallel programming
approach. We demonstrated its advantages
through solving the HPL problem on a cluster
of dual SMP nodes. Asynchronous MPI signifi-
cantly outperformed the traditional and widely
accepted flat MPI model. Apart from saving a
significant amount of programming effort, asyn-
chronous MPI also solved the problem of an un-
balanced process grid within prime numbers of
SMP nodes compared with a strong but com-
plicated hybrid TC model.

The formulas for evaluating the increase in
performance were also remarkable. They were
used to evaluate the benefits of the asyn-
chronous model without implementing the en-
tire solution. They also proved its scalability.

For problems where the computation and
communication costs have different growth
rates (e.g., HPL), the increase in performance
decreases with large problems. For problems
of different sizes with constant computation
and communication cost ratios (e.g., NAS-CG),
we expect steady improvement with the asyn-
chronous model.

Although the analyses and experiments in
this paper were mainly for a dual-processor
cluster, the conclusions can be expanded to
other clusters with more processors per node.
In these cases, it would be necessary to deter-
mine an effective number of phases and corre-
sponding task schedules.

We would like to verify the efficiency of our
novel model on different hardware platforms in
future studies, including clusters of Intel dual-
core or AMD Opteron multiprocessors, with
different types of interconnection networks. In
addition, we plan to build an asynchronous MPI
library that includes major matrix calculation
functions for an SMP cluster environment.

Acknowledgments This research was sup-
ported in part by Grants-in-Aid for Scien-
tific Research made available by the Japan
Society for the Promotion of Science (JSPS)
(Nos.15500033(C) and 17360178(B)), and a
Sasakawa Scientific Research Grant made by
the Japan Science Society (JSS) (No.17-251).

References

1) Baden, S.B. and Fink, S.J.: Communication
Overlap in Nulti-tier Parallel Algorithms, Proc.
1998 ACM/IEEE Conference on Supercomput-
ing, pp.1–20, San Jose, US (1998).

2) Boku, T., Yoshikawa, S. and Sato, M.: Im-
plementation and Performance evaluation of



348 IPSJ Transactions on Advanced Computing Systems Sep. 2006

SPAM article code with OpenMP-MPI hybrid
programming, Proc. European Workshop on
OpenMP 2001 (2001).

3) Brightwell, R. and Underwood, K.D.: An
Analysis of the Impact of MPI Overlap and In-
dependent Progress, Proc.18th Annual Interna-
tional Conference on Supercomputing, pp.298–
305, France (2004).

4) Cappello, F. and Etiemble, D.: MPI versus
MPI+OpenMP on IBM SP for the NAS Bench-
mark, Proc. Supercomputing 2000 (2000).

5) Cappello, F. and Richard, O.: Intra Node Par-
allelization of MPI Programs with OpenMP,
Technical Report TR-CAP-9901, http://www.
lri.fr/˜fci/goinfreWWW/1196.ps.gz (1998).

6) Cappello, F., Richard, O. and Etiemble, D.:
Investigating the Performance of Two Pro-
gramming Models for Clusters of SMP PCs,
Proc. High Performance Computer Architec-
ture, pp.349–359 (2000).

7) Goto, K.: High-Performance BLAS by
Kazushige Goto. http://www.cs.utexas.edu/
users/flame/goto/

8) MPICH Team: MPICH, a Portable MPI Im-
plementation. http://www-unix.mcs.anl.gov/
mpi/mpich/

9) Petitet, A., Whaley, R.C., Dongarra, J.
and Cleary, A.: HPL—A Portable Imple-
mentation of the High-Performance Linpack
Benchmark for Distributed-Memory Comput-
ers. http://www.netlib.org/benchmark/hpl/

10) Rabenseifner, R.: Hybrid Parallel Program-
ming: Performance Problems and Chances,
Proc. 45th CUG (Cray User Group) Confer-
ence 2003 (2003).

11) Rabenseifner, R. and Wellein, G.: Commu-
nication and Optimization Aspects of Paral-
lel Programming Models on Hybrid Architec-
tures, The International Journal of High Per-
formance Computing Application, Vol.17, No.1
(2003).

12) Viet, T.Q. and Yoshinaga, T.: Asynchronous
Parallel Programming Model for SMP Clus-
ters, Proc. 17th IASTED International Con-
ference on Parallel and Distributed Computing
and Systems (PDCS2005 ) Phoenix, US (2005).

13) Viet, T.Q., Yoshinaga, T. and Abderazek,
B.A.: Performance Enhancement for Matrix
Multiplication on an SMP PC Cluster, IPSG
SIG notes 2005-HPC-103, pp.115–120 (2005).

14) Viet, T.Q., Yoshinaga, T., Abderazek, B.A.
and Sowa, M.: Construction of Hybrid MPI-
OpenMP Solutions for SMP Clusters, IPSJ
Transactions on Advanced Computing Systems,
Vol.46, No.SIG 3(ACS 8), pp.25–37 (2005).

15) Viet, T.Q., Yoshinaga, T., Abderazek, B.A.
and Sowa, M.: A Hybrid MPI-OpenMP Solu-
tion for a Linear System on a Cluster of SMPs,
Proc. Symposium on Advanced Computing Sys-
tems and Infrastructures, pp.299–306 (2003).

16) Viet, T.Q., Yoshinaga, T. and Sowa, M.:
A Master-Slaver Algorithm for Hybrid MPI-
OpenMP Programming on a Cluster of SMPs,
IPSJ SIG notes 2002-HPC-91-19, pp.107–112
(2002).

17) Wellein, G., Hager, G., Basermann, A. and
Fehske, H.: Fast sparse matrix-vector mulipli-
cation for TeraFlop/s computers, Proc. Vector
and Parallel Processing (2002).

(Received January 27, 2006)
(Accepted May 16, 2006)

Ta Quoc Viet received
his M.E. degree from Gradu-
ate School of Information Sys-
tems, University of Electro-
Communications (UEC) in 2004
and is currently a Ph.D. stu-
dent. His research interests

include high performance computing, cluster
computing, and parallel programming models.
He is a member of IEEE.

Tsutomu Yoshinaga re-
ceived his B.E., M.E., and D.E.
degrees from Utsunomiya Uni-
versity in 1986, 1988, and 1997,
respectively. From 1988 to July
2000, he was a research asso-
ciate of Faculty of Engineering,

Utsunomiya University. He was also a visit-
ing researcher at Electro-Technical Laboratory
from 1997 to 1998. Since August 2000, he
has been with the Graduate School of Informa-
tion Systems, UEC. His research interests in-
clude interconnection networks for MPPs, clus-
ter computing, and P2P networks. He is a
member of IEEE and IEICE.


