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Abstract: This paper presents a component-based framework for robot technology middleware (RTM) to address
real-time issues with RTM. To handle real-time applications, the proposed framework achieves collaboration between
RTM and the TOPPERS embedded component system (TECS). TECS is employed to enhance real-time processing in
the proposed framework. To implement the collaboration of RTM and TECS, we have adopted remote procedure call.
In addition, extending a generator enables the generation of robot technology components from TECS components
with source code generated by a model-based development tool such as MATLAB/Simulink. We have evaluated the
processor cycle counts of the proposed framework in comparison with those of a conventional method. Moreover,
we evaluated the execution time of serial communication and a motor application using the proposed framework. The
evaluation results show that the proposed framework is functionally employed in a hard real-time system. Furthermore,
we evaluated the amount of code generated by the proposed framework. The evaluation results reveal that the code
generated by the proposed framework is reusable and can enhance productivity.
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1. Introduction

Robotic technology is recently becoming widespread for han-
dling complex situations and environments. Robotic technology
ranging from rescue robots used in disasters to industrial robots in
factors is being utilized on an ever larger scale. In addition, intel-
ligent spaces are being developed to support human activity, and
intelligent robots and network-embedded devices are being uti-
lized in such intelligent spaces. However, robotic functions can
rarely be reused because each conventional robot is developed
with a different architecture. Component-based development has
attracted significant attention due to its high reusability.

Robot technologies, such as robot technology middleware
(RTM) [1] and robot operating system (ROS) [2], have been pro-
posed to enhance productivity. RTM establishes basic technolo-
gies to integrate new functionality in robot systems using an RT-
component (RTC) modularized software component. ROS is a
collection of a software framework for robot software develop-
ment that provides operating system-like functionality on a het-
erogeneous computer cluster.

To improve the software productivity, component-based devel-
opment and model-based development (MBD) have been used.
Component-based development such as TOPPERS embedded
component system (TECS) [3], [4], AUTOSAR [5] is becoming
predominant. Component-based development constructs a sys-
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tem with reusable components. By applying component-based
development, developers can grasp the structure of software pro-
gram easily. Software components are reusable. MBD, such as
MATLAB/Simulink [6], is a concept of software development in
which models are developed as work products at every stage in
the development life cycle to save development cost and to im-
prove development efficiency.

Robotic technologies enhance productivity; however, they can-
not handle hard real-time and embedded systems, such as brush-
less DC motor control systems, because RTM uses common
object request broker architecture (CORBA). CORBA man-
ages packets in a FIFO manager. Therefore, RTM is not suit-
able for real-time systems. In addition, CORBA requires large
amounts of resources and so is difficult to use in environments
with limited resources such as embedded systems. Previous
works [7], [8], [9], [10], [11], [12] have attempted to address
these problems; however neither the real-time nor resource prob-
lems have been solved, and this work did not focus on software-
reusability.

This paper proposes a component-based framework for RTM
to support the development of intelligent robots that work with
embedded systems. The proposed framework realizes a collabo-
ration of RTM and TECS to handle real-time applications. There
are four reasons why we employed TECS. First, TECS has gen-
erator functionality. Thus, by developing an RPC generator for
RTM, a TECS generator can be extended as a plug-in. Software
components required by the developers are easily generated by
this TECS generator functionality. Second, TECS is employed
by ASP3 kernel, which is the latest TOPPERS ITRON kernel. As
such, TECS will be used in many scenes [13]. Third, as TECS
is optimized for RTOS, it is relatively straightforward for TECS
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to support real-time systems. TECS enables the use of several
real-time operating systems (RTOSs) [4]. In TECS, periodic tasks
are easily created [14]. Fourth, TECS already supports some de-
vice driver libraries. Further, developers can reuse these TECS
libraries.

Furthermore, we employ a brushless DC motor as an exam-
ple of real-time application to evaluate the proposed framework.
For brushless DC motor control, we focus on MBD, vector engine
(VE), and RTOSs. A portion of the brushless DC motor control is
implemented by an MBD tool. We employed VE to support real-
time processing. VE [15] is hardware that calculates the optimal
pulse width modulation (PWM) duty in place of a processor. Us-
ing VE and RTOSs allows a low-power processor to process other
tasks associated with motor control, such as communication with
RTM in a sufficient amount of time. Software developers who
have minimal or no knowledge of real-time processing will ben-
efit from employing the proposed network. If there are existing
applications such as those involving motor control, even develop-
ers who are unaware of the specific details of motor control can
use this application from RTM.

To implement RTM and TECS collaboration framework, we
employ a remote procedure call (RPC). An RPC is a client/server
system that allows a subroutine to execute in another address
space. There are two reasons why we employed RPC. First, RPC
handles command data. Thus, using RPC, developers can reuse
various control applications. Second, TECS supports basic parts
of the RPC mechanism, such as marshaller and unmarshaller
functions, which make it relatively straightforward to implement
a collaboration of RTM and TECS. We extended OpaqueRPC (an
RPC mechanism in TECS [16]) for the proposed framework. A
stub for the RPC is generated automatically utilizing a plug-in in
the TECS generator. Thus, when RTM and TECS work collabo-
ratively, we can expect lower hardware costs because a low-order
control system, such as real-time control, can realize a system
that is not dependent on an advanced real-time Linux-based sys-
tem (ART-Linux) [17].

We chose RTM because TECS matches RTM services using
the RPC mechanism instead of ROS topics transport using a pub-
lish/subscribe model. RTM applications are mainly implemented
on the basis of RTM services. Although ROS supports ROS ser-
vices *1, ROS applications are basically implemented on the basis
of topics. Because TECS supports the RPC mechanism, it easily
handles RTM services. Further, the proposed framework can be
adapted for ROS services *2.

Experiments using the proposed framework enabled us to esti-
mate the WCET in environments using RTM, and we have proven
that RTM can be used in hard real-time and embedded systems.

Contributions:
• The proposed framework enables the use of hard real-time

systems using RTM applications. We adopt TECS because
it is suitable for RTOSs and handles real-time applications.
We conducted evaluations of real machines to confirm that

*1 A ROS service is a synchronous communication mechanism of the
client-server type of network. It is just like calling a function.

*2 By using an RTM-ROS bridge [18], the proposed framework can be
adapted for ROS services.

real-time applications are available. The results show that
the proposed framework achieves smaller variations com-
pared with those of an original RTM application. Moreover,
we evaluated brushless DC motor control using VE and the
proposed framework as an example of a hard real-time ap-
plication.

• The proposed framework enables the reuse of legacy code
(TECS code) including device drivers (e.g., sensors and ac-
tuators). Moreover, the proposed framework enhances the
range of RTM applications because TECS supports a vari-
ety of domains such as home electronics, sensor networks,
automobiles, and aerospace applications.

• The proposed framework attempts to reduce RTC developer
workload by generating RTC code and configuration files for
robot technology, and a developer can obtain the RTC code
by simply adding a single line of code.

• The proposed framework enables component-based devel-
opment and model-based development. Wrapping with
TECS, C code generated by model-based development can
be used in the proposed framework.

The remainder of this paper is organized as follows. Section 2
explains basic technologies, i.e., RTM, TECS, and VE. Section 3
describes the design and implementation of the proposed frame-
work. Section 4 shows experimental results obtained with the
proposed framework. Section 5 discusses related work, and Sec-
tion 6 concludes the paper with a summary.

2. System Model

Figure 1 shows a system model wherein a motor is controlled
by voice. In Fig. 1, TECS manages motor control. Note that the
motor control is a real-time system. An RTC is a robotic element
of RTM. The Microphone Control and Voice Processing RTCs
recognize a human voice, and then, the Control RTC executes the
Motor Control component in TECS. The actual motor control
is performed by the TECS Motor Control component including
code generated by an MBD tool (MATLAB/Simulink) [19]. In
addition, we employed VE because it can reduce the calculation
load. In particular, VE supports the ability to satisfy 100 μs dead-
lines within the brushless DC motor control period. The control
RTC calls up a TECS motor function using the proposed frame-
work.

In the proposed framework, the target system is divided into
non-real-time and real-time components, as shown in Fig. 1. This
framework does not support real-time requirements for the non-
real-time components. Further, we must handle real-time appli-
cations for the real-time component. As mentioned in the Section
1, TECS supports real-time applications, thus we assume that all
real-time applications are executed on TECS using the proposed
framework.

Fig. 1 A system model.
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Fig. 2 Service port architecture of RTM.

For example, consider a mobile robot control system. A pro-
grammer creates non real-time components such as path plan-
ning in RTM and real-time components such as motor control in
TECS. Motor control is applied via the motor control compo-
nents while satisfying the 100 μs control cycle according to the
path planning.

This section describes RTM [1], which is a distributed compo-
nent middleware for robot technology, TECS [3], [14], which is a
component system that functions as a runtime environment in the
proposed framework, and VE, which is hardware that calculates
the optimal PWM duty in place of a processor to reduce processor
load.

2.1 RTM
RTM attempts to establish a common platform based on dis-

tributed object technology. RTM supports the configuration of a
variety of networked robotic systems by integrating a variety of
networks that enable RTCs. OpenRTM-aist [20] is an implemen-
tation based on the RTM framework.

2.2 RTC
An RTC is a component that can modularize a sensor, a de-

vice, or an algorithm. The RTC interface specification has been
standardized as component specification by the Object Manage-
ment Group [21], a software standardization organization. The
RTC can be modularized at a variety of granularities and pro-
vides a distributed component framework that can be executed
using various programming languages and OSs. It consists of the
following elements.

Developers can define a service port to have any service in-
terfaces, any interface, and any type of interface. Services are
defined using the interface definition language (IDL). The ser-
vice port has a service provider interface to provide services and
a service consumer interface to use the services. Figure 2 shows
the service port architecture.

The configuration can have various sets that include a list of
pairs of parameter names and values and can switch sets dynam-
ically during operation. Note that component parameters in the
configuration can be used as a reference and altered freely.

Two tools are provided for RTM development, i.e., the RTC
Builder [22] and RT System Editor [23]. The RTC Builder is a
template generator tool for RTCs that generates custom templates
based on user-configured parameters. The RT System Editor is an
editor that can connect, disconnect, or configure RTCs.

2.3 TECS
Here, we describe the features of TECS.

2.3.1 Component Model
A cell is an instance of a component in TECS. Cells are prop-

erly connected to develop an appropriate application. A cell has

Fig. 3 Component diagram of TECS.

Fig. 4 Signature description of TECS.

Fig. 5 Celltype description of TECS.

entry port and call port interfaces. The entry port is an interface
that provides services (functions) to other cells. The service of
the entry port is called the entry function. The call port is an in-
terface that uses the services of other cells. A cell communicates
in this environment through these interfaces. The entry port and
call port have signatures (i.e., sets of services) that define the in-
terfaces in a cell. The celltype defines a cell such as the Class of
an object-oriented language, and a cell is an entity of celltype.

Figure 3 shows an example of a component diagram. Each
rectangle represents a cell. The dual rectangle represents an ac-
tive cell that is the entry point of a program such as a task and
interrupt handler. The left cell is a Client cell, and the right cell

is a Motor cell. Here, tClient and tMotor are celltype names. The
triangle in the Motor cell represents an entry port. The connection
of the entry port in the cells describes a call port.
2.3.2 Component Description of Task Cell

A component in TECS is described using the component de-
scription language (CDL). The CDL can be divided into three
categories, i.e., signature, celltype, and build descriptions. The
signature and celltype descriptions are described by component
developers, and the build description is written by application de-
velopers.

The signature description is used to define a set of function
heads. TECS provides the in, out, and inout keywords to deter-
mine whether a parameter is an input and/or an output. Figure 4
shows an example signature description that defines the interfaces
of a motor. A signature name, such as sMotor, follows a signa-

ture keyword to define the signature. Here the s in sMotor denotes
signature. A set of function heads is enumerated in the body of
this keyword.

The celltype description is used to define the entry ports, call

ports, attributes, and variables of a celltype. Figure 5 shows an
example of a celltype description that defines components for an
RTOS task.

A celltype name, such as tClient, follows a celltype keyword
to define the celltype. Note that a call keyword is used to declare
a call port. Two words follow the call keyword, i.e., the signa-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 7 Flow of a VE process.

Fig. 6 Build description of TECS.

ture name, such as sMotor, and call port name, such as cMotor.
Similarly, an entry keyword is used to declare an entry port.

The build description is used to declare cells and to connect be-
tween cells for creating an application. Figure 6 shows an exam-
ple of build description to connect the cells. To declare cell, a cell

keyword is used. Two words follow the cell keyword: a celltype

name, such as tMotor, and a cell name, such as Motor. In Fig. 6,
eMotor (entry port name) of Motor (cell name) is connected to
cMotor (call port name) of Client (cell name). The signatures of
the call port and entry port must be the same to connect the cells.
2.3.3 Development Flow

Three types of TECS developers exist, i.e., component, appli-
cation developer, and plug-in developers.

The component developer defines signatures and celltypes.
The TECS generator generates different interface codes (.h or .c)
in the C language and several template code of the function from
the signature and celltype. The component developer describes
a program in the generated template code, called a celltype code.
The application developer describes the build description to de-
velop an application. The interface and header code, i.e., the glue
code of the cells, are generated from the build description. Then,
the other celltype code that corresponds to a plug-in of the TECS
generator is generated using interface code. The plug-in devel-
oper describes plug-in code, such as an RPC and log trace. Fi-
nally, the header, interface, and celltype code are compiled and
linked. This process generates an application module.

2.4 VE
VE is hardware that calculates an optimal PWM duty in place

of a processor. This calculation referred to as vector control. Us-
ing VE, the processor can execute a motor control task and other
tasks simultaneously. In this paper, we adopt a brushless DC mo-
tor as a hard real-time application to evaluate the proposed frame-

work. In brushless DC motor control, the calculation of optimal
PWM duty is more complex than that of a brush motor, and a
control period is typically less than 100 μs typically. Therefore,
brushless DC motor control must meet hard real-time require-
ments. In addition, a low-power processor in an embedded sys-
tem can only process a motor control task.

The VE process flow is shown in Fig. 7. VE obtains three driv-
ing currents of a brushless DC motor from an AD converter. First,
VE transforms the three-phase signal into a two-phase signal to
avoid the simultaneous handling of the three signals. Next, the
two-phase signal is located on a fixed coordinate system and ro-
tated with the rotor of the motor; however, if this signal was lo-
cated on a rotating coordinate system, subsequent calculations
would be easier than with the fixed coordinate system. Thus, VE
performs a coordinate transformation from a fixed to a rotating
coordinate system. Further, VE outputs the resulting two-phase
current signal to the software on the processor which in turn cal-
culates the ideal current values and rotor angle for controlling
the motor speed. The software on the processor sends the ideal
current values for the brushless DC motor to VE, which then cal-
culates the PI control output as the voltage value. This voltage
value is located on the rotating coordinate system. VE returns the
voltage value to the fixed coordinate system and executes a space
vector conversion from the two-phase voltage signal to a three-
phase voltage signal to obtain the three-phase input signal for the
motor driver. Using this process, VE performs vector control.

3. Design and Implementation

This paper proposes a component-based framework for RTM
to handle real-time applications and use RTM in environment
with limited resources. To implement the proposed framework
for RTM and TECS, an RPC is utilized for an internal com-
ponent of a robot that handles real-time applications. In the
proposed framework, we assume that developers use existing
real-time applications and a corresponding environment. In
many cases, fixed-priority preemptive and fixed-priority non-
preemptive scheduling algorithms are used for real-time schedul-
ing [24].

3.1 TECS RPC
TECS supports two types of RPC [16], i.e., OpaqueRPC and

TransparentRPC. OpaqueRPC, as shown in Fig. 8 (1), is used for
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Fig. 8 Two types of TECS RPC.

Fig. 9 Structure of OpaqueRPC.

systems without memory sharing functionality such as a network.
TransparentRPC, as shown in Fig. 8 (2), is used for systems with
memory sharing, such as multi-processor environments. We em-
ploy OpaqueRPC because we assumed that the systems used in
this research would not require memory sharing. The structure
and processing flow of OpaqueRPC are explained as follows.
3.1.1 OpaqueRPC

The components inside the dotted line in Fig. 9 represent the
OpaqueRPC structure. Each component is explained in the fol-
lowing.

The Marshaller component converts data to a suitable RPC
message format. It can be serialized in the Channel component
to communicate with data from the Client component. The Mar-

shaller de-serializes data from the Channel component for analy-
sis by the Client component.

The Unmarshaller component de-serializes data from the
Channel component for analysis by the Server component. Un-

marshaller calls the functions that correspond to the function IDs
of the Server functions. The Unmarshaller component serializes
the execution results and sends the results to the Channel compo-
nent.

TECS Data Representation (TDR) layer performs RPC byte or-
der by message, judgment, and type conversion.

The Channel component processes the data transmitted be-
tween the Client and Server components. The Channel compo-
nent opens and closes the communication channel and can send
and receive data. At present, two types of communication mech-
anisms are supported, i.e., TCP/IP and serial communication.

A Server task invokes the Unmarshaller component to wait for
a client request.
3.1.2 OpaqueRPC Procedure

The OpaqueRPC procedure is described as follows. 1) A Mar-

shaller sends a Start Of Packet (SOP) to begin transferring RPC
messages. 2) The Marshaller sends the function ID executing
in a server. 3) The Marshaller sends the arguments indicated in

or inout. 4) The Marshaller sends End Of Packet (EOP) to stop

Fig. 10 RTM-TECS framework.

Fig. 11 OpaqueRPC (RTM:Client, TECS:Server).

sending RPC messages. 5) The server executes the function. 6)
The Unmarshaller sends an SOP. 7) The Unmarshaller sends the
arguments indicated out or inout. 8) The Unmarshaller sends the
return value if one exists. 9) The Unmarshaller sends an EOP.

3.2 RTM-TECS (Proposed Framework)
An overview of the proposed framework is shown in Fig. 10. In

the proposed framework, TECS handles real-time control, such as
motor control, and RTM processes non real-time control, such as
sound control and image processing. We employ TECS, because
it utilizes several RTOSs such as OSEK [25] and ITRON [26], and
it is appropriate for embedded systems. The proposed framework
achieves communication between RTM and TECS for the RTC
service ports. For the RTC service port, we propose a TECS RPC
mechanism that adapts to RTM (Fig. 10, right). We employ an
RPC because developers can use TECS functions.
3.2.1 Service Port

Using an RTC service port as a TECS component (Sec-
tion 3.1.1) has been realized as an extension of OpaqueRPC. As
shown in Fig. 11, the Opaque RPC client has been replaced by
an RTC client. The RTC Marshaller component includes TDR
functionalities. The service port is used to communicate among
RTCs, e.g., between Client and Marshaller components on the
client side. CMake is used to configure and compile the RTC
code in an RTM development environment (Windows or Linux).

In Fig. 11, the RTCs generated by the proposed framework are
inside the dotted rectangle. Note that there are two types of gen-
erated code and a file.

The Marshaller must send and receive RPC messages in a
unique order for the RTM client side. The Marshaller behaves
in the same manner as the OpaqueRPC Marshaller and TDR.

Channel is an RTC that communicates with TECS compo-
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nents. Changing the Channel configuration can alter communi-
cation methods such as TCP/IP and serial communication, and
values (e.g., port number).

RTM uses a CORBA data type which differs from a TECS data
type; thus, the RTM data type must correspond to the TECS data
type.

There is an RTM-TECS RPC plug-in for the TECS generator
to generate RTM stub code for the RTM client. The RPC plug-
in generates code or files, i.e., Marshaller or Unmarshaller code,
Channel code, IDL files, and an XML file. The RPC plug-in
matches the data size of TECS and RTM. The code is generated
in folders, which allows CMake to build RTCs. The details are
explained below.

An example of the ER start([in]int32 t speed) function is
shown in Fig. 12. Note that the function takes [in] or [out] ar-
guments. Since function name, function ID, arguments, and a
return value depend on the function, RPC plug-in generates suit-
able Marshaller code. The Marshaller code follows the order of
OpaqueRPC (Section 3.1.2).

The TECS signature and RTM IDL are different in function
type and argument format. However, both represent interfaces
between components. Therefore, mutual conversion is possible.
Figure 13 shows an example of converting the interface shown in
Fig. 4.

RTC Builder reads an XML template file to generate RTC tem-
plate code to communicate with a server or a client (Opaque-
RPC). Therefore, developers can use RTC Builder without prior
knowledge of OpaqueRPC structure.
3.2.2 Model-based Development for Component-based

Framework
In the proposed framework, we employ an MBD tool (MAT-

LAB/Simulink) to generate C code for embedded systems. Using
MBD, we can enhance productivity. However, in MBD, it is dif-
ficult to integrate generated code with hardware dependent parts
such as device drivers. In the proposed framework, TECS com-

Fig. 12 Example of Marshaller function.

Fig. 13 Example of converting the interface definition.

ponents handle device drivers, because TECS have some device
driver libraries. Developers can reuse TECS libraries. On the
other hand, MATLAB/Simulink codes handle control algorithm
such as motor control algorithm. In addition, we wrap generated
MATLAB/Simulink C code in TECS components [19] to adapt
TECS RPC. The proposed framework achieves coexisting MBD
and CBD.

4. Evaluation

We performed evaluations to demonstrate the effectiveness of
the proposed framework. We compared the service port cycle
counts.

In addition, we compared the execution time of a hard real-time
system (a brushless DC motor) for the proposed framework with
legacy code, and the amount of generated code compared with
code written by developers. In these evaluations, we performed
measurements on an actual implemented system.

4.1 Service Port Evaluation
The processor cycle counts of the proposed framework (RTM-

TECS) were compared with the cycle counts of the conventional
method (RTM-RTM). Measurement range from the server re-
ceives the RPC message to send the RPC message. The eval-
uation environment is shown in Table 1 and the evaluated con-
figuration is shown in Fig. 14. Figures 14 (a) and (b) illustrate
communication between RTM and TECS and between RTM and
RTM, respectively.

In this evaluation, TECS executes on a low-frequency H8 mi-
crocontroller, and RTM runs on a high-frequency ARM proces-
sor. In this evaluation, the H8 micro-controller and the ARM
processor are connected via Ethernet using TCP/IP. Owing to
the different frequencies, we converted execution time to cycle
counts. Therefore, we evaluated the proposed framework without
considering differences between the H8 and the ARM processors.
The average cycle count was based on 100 function calls.

The comparison of cycle counts in Fig. 15 indicates that the
proposed framework was able to control a hard real-time sys-

Table 1 Evaluation environment of service port.

- OS CPU Memory

TECS TOPPERS/ASP [27] H8/3069 512 KB

(an RTOS) (25 MHz) +16 K

RTM Raspbian (Linux) ARM1176JZF-S (700 MHz) 512 MB

Fig. 14 Structure of evaluation for service port.
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Fig. 15 Comparison of cycle counts.

Table 2 Evaluation environment of hard real-time system.

OS CPU Memory

TOPPERS/ASP [27] ARM Cortex-M3 256 KB

(an RTOS) (80 MHz) +10 KB

tem using RTM (Section 1), which was one of the target con-
tributions. In Fig. 15, the y-axis is cycle count, and the x-axis is
the number of trials. The average cycle counts of the proposed
framework were less than those of the conventional method. The
average TECS and RTM cycle counts were 2,062,614,000 and
5,969,742,330, respectively. TECS has less overhead than RTM
and is not a black box. As shown in Fig. 15, the cycle counts of
TECS have less variation than those of RTM. In the proposed
framework, the variance of the cycle counts is 3.10392× 1016. In
contrast, the variance of the cycle counts of the existing method
is 5.65211 × 1018. In real-time processing, for WCET estima-
tion, cycle count variation is more important than the average. It
is possible to estimate the WCET of TECS applications, as dis-
cussed in Refs. [4], [14], [26]. Therefore, TECS supports meeting
the difficult real-time constraints.

4.2 Evaluation of Hard Real-time System (Brushless DC
motor)

We evaluated the proposed framework in a hard real-time sys-
tem with a resource-limited device i.e., brushless DC motor con-
trol. The evaluation environment is shown in Table 2. The brush-
less DC motor used in this study is widely used in industry and
other fields. In this evaluation, motor control, log, and RTM
cooperation tasks run simultaneously. Moreover, the priority of
real-time tasks is higher than that of an RTM cooperation task.

The target speed of the motor was 3,000 rpm and the state of
the motor was stable. The measurement range was the period cov-
ering a motor control task. Further, the motor control command
was called up by such as RTM, etc.

This evaluation results indicate that the proposed framework
can reuse existing code to control embedded devices, which was
one of the target contributions (Section 1). Figure 16 shows the
execution time of a brushless DC motor application using the pro-
posed framework with an RTOS (TOPPERS/ASP [27]) compared
with using legacy code. The legacy code is an infinite loop pro-
gram that does not use an OS. In the brushless DC motor control

Fig. 16 Execution time in hard real-time systems.

Table 3 Execution time in a vector control process.

- Software Hardware (VE) Differences

Vector Control Process 46.393 μs 17.904 μs 28.489 μs

Table 4 Comparison of the amount of lines in description.

- Proposed Conventional

Marshaller code 0 191+α

IDL file 0 32+β

CDL file 1 0

SUM 1 943+α+β

α and β depend on the number of functions and arguments

system, the 100 μs limit maintains the motor in a stable state. In
the proposed framework, the variance of the cycle counts is as
small as that of the existing method. The effect of the proposed
framework on jitter is small as shown in Fig. 16. However, exist-
ing code also has an acceptable amount of jitter. Figure 16 shows
that the WCET is within 100 μs, thus, the proposed framework
facilitates WCET estimation and satisfies the 100 μs limit of the
motor control system.

Table 3 shows the execution time of a vector control process
using VE compared with the software method. As can be seen
in Table 3, owing to VE, the processor has a margin of approxi-
mately 28 μs to perform its tasks, and the processor can process
motor control and communication with RTM simultaneously.

In the proposed framework, we employed an RTOS to imple-
ment multi-tasking. Despite this RTOS, overhead was sufficiently
low, thereby allowing control of the brushless DC motor. We
confirmed that the hard real-time system (brushless DC motor)
ran normally in the resource-limited device using the proposed
framework. The evaluation results show that real-time perfor-
mance is not reduced in the proposed framework.

4.3 Amount of Code
In this evaluation, the amount of code was compared. The eval-

uation results indicate that the proposed framework can reduce
developer load, which was one of the target contributions (Sec-
tion 1). The amount of handwritten code required by an RTC to
realize the proposed framework is shown in Table 4 (“Proposed”
with the plug-in; “Conventional” without plug-in). If a developer
uses the plug-in, the RTC code is generated from the TECS code
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using the TECS generator.
It is evident that the proposed framework reduces the devel-

oper burden significantly. Creating an RTC to communicate with
TECS requires more than 943 lines of code. In contrast, generat-
ing components using the TECS generator requires only a single
line of code in the CDL file. Note that, in Table 4, comments and
blank lines are not included, and α and β variables are propor-
tional to the number of functions and arguments, respectively.

5. Related Work

This section discusses the work related to robot middleware
for real-time processing. According to a report about the archi-
tecture for Real-time Control and Autonomous Distributed Exe-
cution (ARCADE) framework [28], the demand for real-time pro-
cessing has increased. The ARCADE framework supports real-
time execution from low to high-level and therefore enables real-
time data transmission. However, developers cannot use embed-
ded device legacy code, because the ARCADE framework does
not provide a function call system.

Component-Integrated ACE ORB (CIAO) [7] is an implemen-
tation of the lightweight CORBA component model and Real-
time CORBA. CIAO provides a component paradigm for DRE
systems by abstracting DRE-critical systemic aspects, e.g., real-
time QoS policies, as installable/configurable units supported by
the component framework. CIAO implements the Component
Implementation Definition Language compiler which extends the
IDL compiler.

To reduce power consumption and develop distributed RTCs
on microprocessors, Light-Weight RTC (LwRTC) [8] has been
proposed to implement RTCs on embedded microprocessors.
LwRTC supports CAN communication. RTC-Lite [9] realizes
communication between the RTCs and the sensor nodes.

RTC-Lite provides a bridge component to communicate with
small devices such as sensor nodes. However, RTC-Lite requires
a proxy component for each device to communicate with the other
RTC-Lites. Thus, the number of proxy components and RTC-
Lites have been increasing in proportion to those of small de-
vices. Consequently, it is difficult to use many sensor nodes with
RTC-Lites.

An extended RTC framework [10] that considers timing con-
straints has been proposed. An extended RTC interface provides
priority management and manages multiple periodic tasks and
modified GIOP packets to notify the attributes of tasks to other
RTCs. Since the framework is based on ART-Linux [17] which is
an advanced real-time Linux for a real-time kernel developed for
robotics, it is difficult to use the extended RTC framework [10]
for embedded systems with limited resources.

Moreover, RTM runs on VxWorks [11] which is an RTOS.
Since CORBA does not work with embedded systems, light-
weight CORBA and libraries running on VxWorks have been
proposed. As a result, RTM can run on embedded devices
with VxWorks; however, real-time requirements were not consid-
ered [11]. In addition, this system does not work in a distributed
environment, because it uses global variables.

The hybrid real-time ROS architecture on a multi-core proces-
sor (RT-ROS) consists of a non-real-time general operating sys-

Table 5 RTM-TECS vs prior work.

- RTM CIAO RTC Extended RTM on RT-ROS

-TECS -Lite RTC VxWorks

reusability x

real-time application x x x x

embedded system x x x x

distributed system x x x

MBD x

tem (GPOS) and an RTOS [12]. In the RT-ROS, each OS has its
own processor, memory, interrupts, and peripheral devices. The
RT-ROS provides real-time and non-real-time nodes that run on
the RTOS and GPOS, respectively. The real-time performance of
the RT-ROS has been tested [29]. The RT-ROS demonstrates ef-
ficient real-time performance, however it is difficult to use legacy
code without modification in the RT-ROS, because the gap be-
tween the code and ROS nodes must be filled.

Table 5 shows a comparison of RTM-TECS and the above-
mentioned previous work. Note that RTM-TECS demonstrates
all of the features shown in Table 5.

6. Conclusion

This paper has proposed a real-time framework for RTM. The
proposed framework has solved the problems of RTM, such as
not being usable for real-time applications and not being suitable
for embedded systems. Moreover, the proposed framework has
enhanced the real-time processing of RTM using TECS. RPC
mechanisms have been employed to use TECS components from
RTCs. A new plug-in for a TECS generator has been developed
to generate RTC code. Moreover, the proposed framework has
supported code generated by the MBD tool. The evaluation re-
sults of the service port demonstrate that we have achieved an
available hard real-time and embedded system using RTM. We
have confirmed that the average and variance of cycle counts of
an evaluation application were less than those of existing meth-
ods, thereby demonstrating that the proposed framework is suit-
able for real-time systems. Our examination of code generation
indicates that reusing existing code can reduce the developer bur-
den, e.g., developers can reuse existing device driver code by sim-
ply adding a single line to TECS code. The proposed framework
currently provides its service to a single-client system, such as a
motor control system. In the future work, the framework should
support multi-client systems.
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