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Abstract: In this paper we propose a new construction method of Gray maps for groups. In a earlier paper, we suc-
ceeded the Type 1 construction for all groups of order 16 and confirmed that we can construct Type 2 maps for several
groups of order 16, but failed to construct such maps for other groups. Therefore, in this paper we try to apply the new
construction method to them.
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1. Introduction

Reza Sobhani [1] designed two classes of Gray maps called
Type 1 Gray map and Type 2 Gray map, for finite p-groups. Both
are constructed as extensions of a Gray map for a smaller group.
Type 1 method constructs a code for the target group from a code
for its maximal subgroup naturally, but it doubles the length of
the resulting code.

The Type 2 method in contrast generally construct a shorter
code than Type 1 that is just 1 bit longer than that for the based
maximal subgroup. However, in our trial [8], among all the
groups of order 16, only 6 groups allow Type 2 extension from
3-bit Gray codes for groups of order 8.

Marcel Wild [2] gave complete classification of the groups of
order 16 based on several elementary facts. He examined them
as the semidirect product of groups of order 8 by the cyclic group
C2 of order 2.

Based on Wild’s work, we examined Type 1 Gray maps and
Type 2 Gray maps for groups of order 16 [8] in the same way as
Sobhani. First, we summarize Sobhani’s approach in Section 2.
Next, we propose a new construction method of Gray maps for
an arbitrary finite group (not even necessary to be a p-group) in
Section 3. In later sections, we try to apply it to several groups
of order 16, among which there are some groups for which we
failed to apply Type 2 method.

We believe the method can also contribute to constructing non-
binary codes. However, in order to concentrate on binary codes
here, we assume that the information is encoded in Zn

2, throughout
this paper.
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2. Preliminaries

2.1 Hamming-distance, Hamming-weight and Gray Map
In this section we assume that G is a finite 2-group of order 2m.

We review some key definitions and a lemma on Gray maps in
Refs. [1], [5].

Definition 1 For any two elements u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) in Zn

2, the Hamming-distance between u and v
is defined by

dH(u, v)
def.
= |{i | 1 ≤ i ≤ n, ui � vi}|.

The Hamming-distance is indeed a distance on Zn
2 [5].

Definition 2 The Hamming-weight of an element u ∈ Zn
2 is

defined by

wH(u)
def.
= |{i | 1 ≤ i ≤ n, ui � 0}|.

Definition 3 A map φ : G → Zn
2 is said to be a Gray map, if

it is an injection and

wH(φ(a−1b)) = dH(φ(a), φ(b))

holds for all a, b in G. *1

Lemma 1 Let φ : G → Zn
2 be a Gray map. Then,

( 1 ) For g ∈ G we have wH(φ(g)) = 0 iff g = e, where e stands
for the identity of G,

( 2 ) For all g in G we have wH(φ(g)) = wH(φ(g−1)),
( 3 ) For all x, y in G we have wH(φ(xy)) ≤ wH(φ(x)) + wH(φ(y)).
proof : Assume that φ is a Gray map.
( 1 ) 0 = wH(φ(g)) = wH(φ(e−1g)) = dH(φ(e), φ(g)) ⇐⇒ φ(g) =

φ(e)⇐⇒ g = e,
( 2 ) wH(φ(g)) = wH(φ(e−1g)) = dH(φ(e), φ(g)) = dH(φ(g), φ(e)) =

wH(φ(g−1e)) = wH(φ(g−1)),
( 3 ) wH(φ(g)) + wH(φ(h)) = dH(φ(g−1), φ(e)) + dH(φ(e), φ(h)) ≥
*1 In Sobhani’s definion of the Gray map [1], function dφ is defined by

dφ(a, b) = wH(φ(ab−1)) and is required to be indeed a distance on G.
For simplicity in our definition, map φ is required just to be an injection,
accepting suggestion of a referee.
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Table 1 Aut(C4) and Aut(C8) 	 K4.

Aut(C4) effect on x Aut(C8) effect on x
ϕ1 x σ1 x
ϕ2 x3 σ2 x3

σ3 x5

σ4 x7

Table 2 Aut(K8) 	 D8.

Aut(K8) effect on x effect on y order of automorphism
ψ1 x y 1
ψ2 x3y x2y 4
ψ3 x3 y 2
ψ4 xy x2y 4
ψ5 xy y 2
ψ6 x3 x2y 2
ψ7 x3y y 2
ψ8 x x2y 2

dH(φ(g−1), φ(h)) = wH(φ(gh)).
We define map dφ : G × G → N ∪ {0} by dφ(a, b) = dH(φ(a),

φ(b)). Then, dφ is a distance on G clearly.

2.2 Cyclic Extensions
For notational convenience, we use the standard presentation

〈X | Δ〉 of groups by generator X and relation Δ [4].
For example, the cyclic group Cn of order n is represented

as 〈x | xn = e〉 and the Klein four group K4 = C2 × C2 as
〈x, y | x2 = y2 = e, xy = yx〉.

The direct product of C4 and C2 is represented as 〈x, y | x4 =

y2 = e, yx = xy〉. Since this group appears frequently in this
paper we denote it by K8 as in Ref. [2]. Similarly, we denote the
dihedral group 〈x, y | x4 = y2 = e, yx = x3y〉 of order 8 by D8,
and the quaternion group 〈x, y | x4 = e, y2 = x2, yx = x3y〉 of
order 8 by Q8.

We follow Wild’s fashion [2] for the classification of groups of
order 16. Let N be a normal subgroup of G (in symbol N � G).
We denote by ta the inner automorphism of N defined by an ele-
ment a ∈ G (namely ta(x)

def.
= axa−1 for any element x ∈ N).

Suppose that G/N 	 Cn and pick any a in G such that the coset
Na has order n in G/N. If we put v = an and τ = ta, then v ∈ N,
τ(v) = ta(v) = aana−1 = an = v, and τn = tn

a = tan = tv.
Definition 4 A quadruple (N, n, τ, v) is said to be an extension

type if N is a group and if v in N and τ in Aut(N) are such that
τ(v) = v and τn = tv.

Remark 1 An extension type determines the structure of
group G = 〈N, a〉 uniquely.

Definition 5 The extension types (N, n, τ, v) and (N′, n, σ, w)
are equivalent if there is an isomorphism φ : N → N′ such that
σ = φ ◦ τ ◦ φ−1 and w = φ(v).

Remark 2 The set Aut(G) of all automorphisms of a group
G forms a group under composition of mappings. Let X generate
G. Each θ : G → G in Aut(G) is determined by its values on X.
In particular Aut(C4), Aut(C8), Aut(K8) and Aut(D8) consist of
the functions in Tables 1–3.

Remark 3 In Ref. [2], Marcel Wild denote the 14 groups of
order 16 (besides the outsider G0 = C2 ×C2 ×C2 ×C2) as follows
(the last column shows an extension type of each group.):

G1 = C2 ×C8 (C8, 2, σ1, e)
G2 = C2 �3 C8 (C8, 2, σ2, e)

Table 3 Aut(D8) 	 D8.

Aut(D8) effect on x effect on y order of automorphism
α1 x y 1
α2 x xy 4
α3 x x2y 2
α4 x x3y 4
α5 x3 y 2
α6 x3 xy 2
α7 x3 x2y 2
α8 x3 x3y 2

G3 = C2 �5 C8 (C8, 2, σ3, e)
G4 = C2 �7 C8 (C8, 2, σ4, e)
G5 = Q16 (C8, 2, σ4, x4)
G6 = C16 (C8, 2, σ1, x)
G7 = K4 ×C4 (K8, 2, ψ1, e)
G8 = D8 ×C2 (K8, 2, ψ3, e)
G9 = C4 �τ K4 (K8, 2, ψ5, e)
G10 = C2 �τ Q8 (K8, 2, ψ6, e)
G11 = C2 × Q8 (K8, 2, ψ3, x2)
G12 = C4 �τ C4 (K8, 2, ψ5, x2)
G13 = C4 ×C4 (K8, 2, ψ1, y)

2.3 Type 1 Gray Maps
In this subsection, we assume that H is a maximal subgroup of

G with [G : H] = 2, and x is an arbitrary element in G\H and h is
an arbitrary element in H. Type 1 Gray map for G is constructed
as follows based on a Gray map for H.

Let us denote by 0 and 1 the vectors in Zn
2 whose components

are all 0 and 1, respectively. Also we denote the usual concate-
nation of vectors by ( | ). Suppose φ : H → Zn

2 is a Gray map
and define the map φ̂ : G → Z

2n
2 by φ̂(h) = (φ(h) | φ(h))

and φ̂(xh) = (φ(h) | φ(h) + 1) [1]. We can easily see that
wH(φ̂(g)) = 2wH(φ(g)) for g ∈ H and wH(φ̂(g)) = n for g � H. So
the proofs of the following lemmas and theorem are routines.

Lemma 2 For all g ∈ G we have wH(φ̂(g)) = wH(φ̂(g−1)).
Lemma 3 For all a, b ∈ G we have wH(φ̂(ab)) ≤ wH(φ̂(a)) +

wH(φ̂(b)).
Theorem 1 With notation as above, the map φ̂ is a Gray map.
Refer to Ref. [1] for the details *2.
Remark 4 In [8], we constructed Type 1 Gray maps for all

groups G0,G1, . . . ,G12 and G13 of order 16.

2.4 Type 2 Gray Maps
In this subsection, we assume that G is isomorphic to the

semidirect product of two finite 2-groups H of order 2a and K

of order 2b, i.e. G = H �ψ K where ψ : H → Aut(K) is a group
homomorphism. Suppose further that both H and K accept Gray
maps θ1 : H → Zn1

2 and θ2 : K → Zn2
2 , where θ2 is compatible

with ψ in the sense that for all h ∈ H

wH(θ2(k)) = wH(θ2(ψh(k))).

Then Type 2 Gray map θ for G is constructed as θ(hk) = (θ1(h) |
θ2(k)).

Theorem 2 With notation as above, the map θ is a Gray map.
Refer to [1] for the proof of Theorem 2.

*2 The proof of Theorem 1 written in Ref. [1] contains a small error caused
by the definition of distance dφ, but it is not essential.
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Remark 5 In [8], we constructed Type 2 Gray maps for G0,
G7, G8, G9, G12 and G13.

3. New Construction Method for Gray Maps

In this section, we assume that G is an arbitrary finite group
(not even necessary to be a p-group). Cayley’s theorem says that
every finite group can be embedded in the symmetric group of
degree |G| as a subgroup.

Define the mapping g : Zn
2 → Zn

2 as g(u) = uP+c for all u in Zn
2,

where c is a fixed element in Zn
2 and P is a fixed permutation ma-

trix of order n. (A permutation matrix of order n is a n× n-matrix
which has exactly one 1 in each row and column and whose other
entries are all 0. As is well known, a permutation matrix rep-
resents just a replacement of coordinates of vectors.) Since the
mapping g above is an affine transformation over Zn

2, we call a
mapping of this form an affine permutation [5] of degree n.

Our ideas to construct a Gray map for an arbitrary group is re-
alizing Cayley’s theorem over the group of affine permutations,
instead of the symmetric group. The key points are that the set
of all the affine permutations forms a group with respect to com-
position as a transformation from Zn

2 to itself and every affine
permutation is an isometry with respect to Hamming distance.

In fact, let g(u) = uP+c and h(u) = uQ+d (we denote them by
[P, c] and [Q, d], respectively) be two affine permutations. Since

(h ◦ g)u = (uP + c)Q + d = uPQ + cQ + d,

the composition h ◦ g = [Q, d] ◦ [P, c] is denoted by [PQ, cQ+ d]
and is itself an affine permutation since PQ is a permutation ma-
trix again.

Moreover, it is easily verified that the identity permutation is
[E, 0] and the inverse permutation of [P, c] is [P−1, cP−1]. Thus,
the set of all the affine permutations form a group, which we de-
note byAP.

Next, let us confirm that every affine permutation g = [P, c] is
an isometry. Since P is a permutation matrix and c is a constant
vector, clearly from definition of Hamming-distance, for any u

and v in Zn
2

dH(g(u), g(v)) = dH(uP + c, vP + c) = dH(uP, vP) = dH(u, v)

holds.
Suppose that G is isomorphic to a subgroup G′ of AP. For

simplicity, in what follows, we regard G as identical with G′.
Therefore, an element g ∈ G can be written in form [P, c] by a
permutation matrix P and a constant c ∈ Zn

2. We call c the code-

part of an affine permutation [P, c]. The idea is that we employ
the code-part c as the codeword for element [P, c] in G.

Theorem 3 Let G be a subgroup of AP and consider the
function φ : G → Zn

2 that maps each element [P, c] ∈ G to its
code-part c. Then, φ is a Gray map, if and only if it is an injection.
proof. Let a = [P, c], b = [Q, d]. Then,

wH(φ(a−1b)) = wH(φ([P−1, cP−1][Q, d]))

= wH(φ[QP−1, dP−1 + cP−1])

= wH(dP−1 + cP−1) = wH(d + c)

= dH(c, d) = dH(φ(a), φ(b)).

Thus, in order to construct an n-bit Gray code for group G, we
only need to search in the group of affine permutation of degree
n for a subgroup isomorphic to G such that map φ is injective.
This method is different from both Type 1 and Type 2. As exam-
ples we show how to construct some known Gray codes by this
method in the rest of this section, and try to construct ones for
more complicated groups in the later sections.

Since our matrices work only on binary vectors, all the vectors
are denoted simply as bit strings (without commas or parenthe-
ses) in the examples.

Example 1 Let P =
( 0 1

1 0
)

and c = 01. Then, 〈[P, c]〉 	 C4 =

〈x | x4 = e〉. Therefore C4 has the following Gray map:

φ(e) = φ[E, 0] = φ[E, 00] = 00
φ(x) = φ[P, c] = φ[P, 01] = 01
φ(x2) = φ[P2, cP + c] = φ[P2, 11] = 11
φ(x3) = φ[P3, cP2 + cP + c] = φ[P3, 10] = 10

Example 2 Let P1 = P2 = E, c1 = 01 and c2 = 10. Then
〈[P1, c], [P2, c2]〉 	 K4 = 〈x, y | x2 = y2 = e, xy = yx〉. Therefore
K4 has the following Gray map:

φ(e) = φ[E, 0] = φ[E, 00] = 00
φ(x) = φ[P1, c1] = φ[E, 01] = 01
φ(y) = φ[P2, c2] = φ[E, 10] = 10
φ(xy) = φ[P2P1, c2P1 + c1] = φ[E, 11] = 11

4. New Construction Method for Gray Maps
for a Group of Order 8

In the literature a permutation matrix is denoted by symbol Pπ,
where π is a permutation of n elements, namely Pπ is the ma-
trix in which the (i, π(i)) entries are 1 and all the other entries are
0. Henceforth, we mainly employs this notation for permutation
matrices. Note that multiplying a row vector by Pπ permutes the
components of the vector in the following way:

(a1, a2, . . . , an)Pπ = (aπ−1(1), aπ−1(2), . . . , aπ−1(n)),

and that PT
π = P−1

π = Pπ−1 , so (a1, a2, . . . , an)PT
π = (aπ(1), aπ(2),

. . . , aπ(n)).
( 1 ) C8 = 〈x | x8 = e〉 � 〈[PT

π , c]〉, where c = 0001 and
π =
(

1 2 3 4
2 3 4 1

)
.

( 2 ) K8 = 〈x, y | x4 = y2 = e〉 � 〈[PT
π1
, c1], [PT

π2
, c2]〉, where

c1 = 100, c2 = 001, π1 =
(

1 2 3
2 1 3

)
, and π2 is the identity

permutation.
( 3 ) D8 = 〈x, y | x4 = y2 = e, xy = yx3〉 � 〈[PT

π , c1], [PT
π , c2]〉,

where c1 = 100, c2 = 001, and π1 = π2 =
(

1 2 3
2 1 3

)
.

( 4 ) Q8 = 〈x, y | x4 = e, x2 = y2, xy = yx3〉 � 〈[PT
π1
, c1],

[PT
π2
, c2]〉, where c1 = 1100, c2 = 0110, π1 =

(
1 2 3 4
3 4 1 2

)
, and

π2 =
(

1 2 3 4
2 1 4 3

)
.

The cyclic group C8 and the quaternion group Q8 need 4 bits
for their Gray codes.

5. New Type Gray Maps for a Group of Order
16

( 1 ) G2 = 〈x, a | x8 = a2 = e, ax = x3a〉 � 〈[PT
π1
, c1], [PT

π2
, c2]〉,

where c1 = 0001, c2 = 0010, π1 =
(

1 2 3 4
2 3 4 1

)
, and π2 =

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

(
1 2 3 4
1 4 3 2

)
.

( 2 ) G3 = 〈x, a | x8 = a2 = e, ax = x5a〉 � 〈[PT
π1
, c1], [PT

π2
, c2]〉,

where c1 = 0001, c2 = 0101, π1 =
(

1 2 3 4
2 3 4 1

)
, and π2 is the

identity permutation.
( 3 ) G7 = 〈x, y, a | x4 = y2 = a2 = e, xy = yx, xa = ax, ya =

ay〉 � 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 1000, c2 =

0010, c3 = 0001, π1 =
(

1 2 3 4
2 1 3 4

)
, and π2 = π3 is the identity

permutation.
( 4 ) G8 = 〈x, y, a | x4 = y2 = a2 = e, xy = yx3, xa = ax, ya =

ay〉 � 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 1000, c2 =

0010, c3 = 0001, π1 = π2 =
(

1 2 3 4
2 1 3 4

)
, and π3 is the identity

permutation.
( 5 ) G9 = 〈a, y, x | a2 = y2 = x4 = e, ax = xya, ay = ya, xy =

yx〉 � 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 1100, c2 =

1111, c3 = 0001, π1 = π2 is the identity permutation, and
π3 =

(
1 2 3 4
4 3 2 1

)
.

( 6 ) G12 = 〈a, x | a4 = x4 = e, ax = xa3〉 � 〈[PT
π1
, c1], [PT

π2
, c2]〉,

where c1 = 0100, c2 = 0010, π1 =
(

1 2 3 4
2 1 3 4

)
, and π2 =(

1 2 3 4
2 1 4 3

)
.

( 7 ) G13 = 〈a, x | a4 = x4 = e, ax = xa〉 � 〈[PT
π1
, c1], [PT

π2
, c2]〉,

where c1 = 0100, c2 = 0110, π1 =
(

1 2 3 4
2 1 3 4

)
, and π2 =(

1 2 3 4
2 1 4 3

)
.

6. New Type Gray Maps for General Groups

In this section we show that our method can also construct Gray
maps for several non-p-groups.
( 1 ) C3 = 〈x | x3 = e〉 � 〈[PT

π , c]〉, where c = 011 and
π =
(

1 2 3
2 3 1

)
.

( 2 ) C5 = 〈x | x5 = e〉 � 〈[PT
π , c]〉, where c = 00011 and

π =
(

1 2 3 4 5
3 4 5 1 2

)
.

( 3 ) C6 = 〈x | x6 = e〉 � 〈[PT
π , c]〉, where c = 001 and

π =
(

1 2 3
2 3 1

)
.

( 4 ) For n ∈ N, C2n = 〈x | x2n = e〉 � 〈[PT
π , c]〉, where

c = 0 . . . 01, and π =
(

1 2 ... n−1 n
2 3 ... n 1

)
.

( 5 ) For n ∈ N, C2n+1 = 〈x | x2n+1 = e〉 � 〈[PT
π , c]〉, where

c = 0 . . . 011 and π =
(

1 2 ... 2n−1 2n 2n+1
3 4 ... 2n+1 1 2

)
.

( 6 ) D6 = 〈x, y | x3 = y2 = e, xy = yx2〉 � 〈[PT
π1
, c1], [PT

π2
, c2]〉,

where c1 = 011, c2 = 010, π1 =
(

1 2 3
2 3 1

)
, and π2 is the identity

permutation.
( 7 ) D10 = 〈x, y | x5 = y2 = e, xy = yx4〉 � 〈[PT

π1
, c1], [PT

π2
, c2]〉,

where c1 = 00101, c2 = 01101, π1 =
(

1 2 3 4 5
2 3 4 5 1

)
, and π2 is

the identity permutation.
( 8 ) D12 = 〈x, y | x6 = y2 = e, xy = yx5〉 � 〈[PT

π1
, c1], [PT

π2
, c2]〉,

where c1 = 0010, c2 = 0111, π1 =
(

1 2 3 4
2 3 1 4

)
, and π2 is the

identity permutation.

7. Summary

In Ref. [8], we constructed a Type 1 Gray map for C8, K8, D8

and Q8 over Z4
2, and we constructed a Type 2 Gray map for K8 and

D8 over Z3
2 and showed that neither C8 nor Q8 can have 3-bit Gray

maps. Similarly we constructed Type 1 Gray maps for all groups
G1,G2, . . . ,G13 of order 16 over Z8

2, and Type 2 Gray maps for
G7, G8, G9, G12, G13 over Z4

2, but failed to construct 4-bit Gray
maps for the other eight groups of order 16.

In this paper we showed that our method can reconstruct 3-bit

Gray maps for K8 and D8, and can construct 4-bit Gray maps for
C8, Q8. Similarly, the method can reconstruct 4-bit Gray maps
for G7, G8, G9, G12, G13, and such ones also for G2, G3.

Finally, we showed that our method is effective to several non-
p-groups of simple type, namely, C2n, C2n+1, D6, D10 and D12.

Since our method is not constructive, we are trying to find a
constructive method.
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