Regular Paper

$\gamma_{k}(n)=\max \{\lfloor n /(2 k+1)\rfloor, 1\}$ for Maximal Outerplanar Graphs with $n \bmod (2 k+1) \leq 6$

Liang Zhao ${ }^{1, \text { a) }}$
Received: November 7, 2016, Accepted: February 9, 2017

Abstract

Let $G=(V, E)$ be an undirected graph with a set V of nodes and a set E of edges, $|V|=n$. A node v is said to distance- k dominate a node w if w is reachable from v by a path consisting of at most k edges. A set $D \subseteq V$ is said a distance- k dominating set if every node can be distance- k dominated by some $v \in D$. The size of a minimum distance- k dominating set, denoted by $\gamma_{k}(G)$, is called the distance- k domination number of G. The value $\gamma_{k}(n)$ is defined by $\gamma_{k}(n)=\max \left\{\gamma_{k}(G): G\right.$ has n nodes $\}$. This paper considers $\gamma_{k}(n)$ for maximal outerplanar graphs. There is a conjecture $\gamma_{k}(n)=\max \{\lfloor n /(2 k+1)\rfloor, 1\}$, which was proved for $k=1,2$. This paper gives a unified and simpler proof for $k=1,2,3$. In fact, a stronger result is shown that for all $n>2 k$ and $r=n \bmod (2 k+1) \leq 6$, there exist at least $2 k+1-r$ distinct distance- k dominating sets of size at most $\lfloor n /(2 k+1)\rfloor$, which can be found in linear time.

Keywords: distance domination, maximal outerplanar graph, linear-time algorithm

1. Introduction

Let $G=(V, E)$ be an undirected graph with a set V of nodes and a set E of edges, where $|V|=n$. A node v is said to distance $-k$ dominate a node w if w is reachable from v by a path consisting of at most k edges. A set $D \subseteq V$ is said a distance- k dominating set if every node can be distance- k dominated by some node $v \in D$. The size of a minimum distance- k dominating set, denoted by $\gamma_{k}(G)$, is called the distance- k domination number of G. Let
$\gamma_{k}(n)=\max \left\{\gamma_{k}(G): G\right.$ is a graph of n nodes $\}$.
In particular, $\gamma_{1}(\cdot)$ is the well-known domination number.
Domination is one of the fundamental topics in graph theory, see Refs. [1], [5], [6], [10], [11], [12]. This paper considers $\gamma_{k}(n)$ for maximal outerplanar graphs (MOG). A graph is said outerplanar if it can be drawn in the plane without crossing and the nodes belong to the unbounded outer face. It is maximal if adding an extra edge breaks this property. It is known that a graph is outerplanar if and only if it does not contain K_{4} or $K_{2,3}$ as a minor (Ref. [3]), and a MOG is a visibility graph, i.e., a triangulation graph of a simple polygon of n nodes (Ref. [4]). See illustrations in Fig. 1.

In general, it is not trivial to determine $\gamma_{k}(G)$ even for a MOG. Nevertheless, since the outer boundary C of a MOG is a Hamilton cycle in G, we see $\gamma_{k}(G) \leq \gamma_{k}(C)=\left\lceil\frac{n}{2 k+1}\right\rceil$. Hence $\gamma_{k}(G)=1$ if $n \leq 2 k$. Thus in the following we only consider for $n>2 k$.

The above argument shows $\gamma_{k}(n) \leq\left\lceil\frac{n}{2 k+1}\right\rceil$. But in general it is not tight. Instead there is a conjecture $\gamma_{k}(n)=\left\lfloor\frac{n}{2 k+1}\right\rfloor$, proved for $k=1,2$ (Refs. [1], [10]). In this paper, we give a unified and simpler proof for $k=1,2,3$. In fact, we show a stronger result that

[^0]

Fig. 1 An illustration of some graphs. Graph G_{1} is planar but not outerplanar since it has a $K_{2,3}$ minor. On the other hand, G_{2} is outerplanar but not maximal. G_{3} is a maximal outerplanar graph and it is a triangulation of the outer polygon.
for all $r=n \bmod (2 k+1) \leq 6$ (hence for all $k \leq 3$ and $n>2 k)$, there exist at least $2 k+1-r$ distinct distance- k dominating sets of size at most $\left\lfloor\frac{n}{2 k+1}\right\rfloor$, which can be found in linear time.
Related works Campos and Wakabayashi [2] showed $\gamma_{1}(n)=$ $\lfloor(n+t) / 4\rfloor$, where t is the number of degree- 2 nodes $(t \geq 2)$. This result was independently proved by Tokunaga [11] using a coloring-based and simpler proof.

2. Preliminaries

Let $P=u-w-v$ denote a path with nodes u, w, v and edges $(u, w),(w, v)$. A triangle ear (simply an ear in the following) with respect to a graph $G=(V, E)$ is such a path $P=u-w-v$ that $w \notin V, u, v \in V$, and $(u, v) \in E$ (see an illustration in Fig. 2). We use $G+P$ to denote the graph obtained by adding P to G, and similarly $G+P_{1}+\cdots+P_{i}=\left(G+P_{1}+\cdots+P_{i-1}\right)+P_{i}$ for $i \geq 2$. In this paper, we prove the following theorem.

Theorem 1 For any $k \geq 1, p \geq 1,0 \leq r \leq \min \{6,2 k\}$ and $n=p(2 k+1)+r, \gamma_{k}(G) \leq p=\left\lfloor\frac{n}{2 k+1}\right\rfloor$ for any graph $G=C+P_{1}+\cdots+P_{r}$, where C is a simple cycle of $p(2 k+1)=n-r$ nodes, P_{i} are ears with respect to $C+P_{1}+\cdots+P_{i-1}, i \geq 2$. Moreover, at least $2 k+1-r$ distinct distance- k dominating set of G consisting of at most p nodes of C can be found in $O(n)$ time.

Fig. 2 An illustration of an ear $P=u-w-v$ with respect to G.

Fig. 3 An illustration for Corollary 1: the $k=2$ case for graph G_{3} in Fig. 1.
Corollary $1 \quad \gamma_{k}(G) \leq\left\lfloor\frac{n}{2 k+1}\right\rfloor$ for a MOG G of $n \geq 2 k+1$ nodes and $k=1,2,3$.
Proof. Let $p=\left\lfloor\frac{n}{2 k+1}\right\rfloor \geq 1$ and $r=n-p(2 k+1)$. We have $0 \leq r \leq 2 k \leq 6$ since $k \leq 3$.

It is well-known (and easy to see) that any MOG with four or more nodes must have an ear $P=u-w-v$ on the outer boundary, where w is of degree two. Removing w we get a MOG with one fewer nodes. Repeating this procedure we can get an ear decomposition $G=G_{0}+P_{1}+\cdots+P_{r}$, where G_{0} is a MOG of $p(2 k+1)=n-r$ nodes and P_{i} are ears on the outer boundary of $G_{i-1}=G_{0}+\cdots+P_{i-1}, i=1, \ldots, r$.

Let C be the outer boundary of G_{0}. Clearly C is a Hamilton cycle of G_{0}. Thus P_{1} is an ear with respect to C too, and graph $G_{1}^{\prime}=C+P_{1}$ has the same outer boundary as G_{1}. Repeating the argument, we see P_{i} is an ear with respect to graph $G_{i-1}^{\prime}=C+\cdots+P_{i-1}$ too, and $G_{i}^{\prime}=G_{i-1}^{\prime}+P_{i}$ has the same outer boundary as $G_{i}, i \geq 2$. See an illustration in Fig. 3.

By Theorem 1, we have $\gamma_{k}\left(G_{r}^{\prime}\right) \leq p$. Since graph $G=G_{r}$ has the same node set as G_{r}^{\prime} but with a superset of edges, $\gamma_{k}(G) \leq$ $\gamma_{k}\left(G_{r}^{\prime}\right) \leq p=\left\lfloor\frac{n}{2 k+1}\right\rfloor$.

Since the tight example in Ref. [10] for $k=1$ also serves as a tight example for any $k \geq 2$, we have the next corollary.

Corollary $2 \quad \gamma_{k}(n)=\left\lfloor\frac{n}{2 k+1}\right\rfloor$ for MOGs of $n \geq 2 k+1$ nodes and $k=1,2,3$.

Corollary 3 For a MOG with $n \geq 2 k+1$ nodes, at least $2 k+1-r$ distinct distance- k dominating set of size at most $\left\lfloor\frac{n}{2 k+1}\right\rfloor$ can be found in $O(n)$ time if $k \leq 3$, where $r=n \bmod (2 k+1)$.
Proof. An ear decomposition $G=G_{0}+P_{1}+\cdots+P_{r}$ can be found by repeatedly finding and removing degree- 2 nodes. For that purpose, we store the graph by an adjacency list and calculate the degrees in $O(n)$ time (notice that the number of edges is $2 n-3$). We store the nodes using a bucket by their degrees. This can be done in $O(n)$ time. Finding a node with (residual) degree two takes $O(1)$ time. Then we set its degree to zero and for all its neighbors in the adjacency list, subtract their degrees by one unless it is zero (notice that we do not change the adjacency list). Then we update the bucket and continue. It is easy to see that the total time for updating the bucket is $O(n)$ as there are $O(n)$ edges.

On the other hand, determining the Hamilton cycle C for G_{0}
requires $O(n)$ time (Ref. [8]). Finding $2 k+1-r$ distinct distancek dominating set for G_{r}^{\prime}, which is also a distance- k dominating set for G, requires $O(n)$ time by Theorem 1. Thus the total running time is $O(n)$.
Remark We remark that Theorem 1 can be applied to nonMOGs. For example, it can be applied to graph G_{1} in Fig. 1, which is even not outerplanar.

3. Proof for Theorem 1

In this section, we prove Theorem 1. Let $\operatorname{dist}_{G}(u, v)$ denote the distance between nodes u and v in a graph G, i.e., the minimum number of edges required to connect u and v in G. Given a set D of nodes, let $\operatorname{dist}_{G}(D, v)$ denote the distance between D and a node v, i.e.,

$$
\operatorname{dist}_{G}(D, v)=\min _{u \in D}\{\operatorname{dist}(u, v)\}
$$

Thus D is a distance- k dominating set for graph G if and only if $\operatorname{dist}_{G}(D, v) \leq k$ for all nodes v. The next lemma is obvious by the definition of ear.

Lemma 1 Let $G=(V, E)$ be an undirected graph, $D \subseteq V$ be a set of nodes, and P be an ear to G. Then $\operatorname{dist}_{G+P}(D, v)=$ $\operatorname{dist}_{G}(D, v)$ for all $v \in V$.

3.1 Case $\boldsymbol{r}=0$ (i.e., $\boldsymbol{G}=\boldsymbol{C}$ is a Cycle of $\boldsymbol{p}(2 k+1)$ Nodes)

Let the $p(2 k+1)$ nodes of cycle C be $v_{1}, v_{2}, \ldots, v_{p(2 k+1)}$ such that v_{i+1} is a neighbor of v_{i}. Obviously $\gamma_{k}(C)=p$. In fact, there are exactly $2 k+1$ size- p distinct distance- k dominating sets on C :

$$
S_{i}=\left\{v_{i}, v_{2 k+1+i}, \ldots, v_{(p-1)(2 k+1)+i}\right\}, i=1,2, \ldots, 2 k+1
$$

Finding and outputting all of them requires $O(n)$ time, proving this case.

3.2 Case $r \geq 1:$ a Glance of the Proof

Consider sets S_{i} defined in Section 3.1. First notice that for any adjacent nodes u and u^{\prime} on C, their distances to an S_{i} can have exactly one of the next two relations:

- $\operatorname{dist}_{C}\left(S_{i}, u\right)=\operatorname{dist}_{C}\left(S_{i}, u^{\prime}\right)=k$,
- $\operatorname{dist}_{C}\left(S_{i}, u\right)-\operatorname{dist}_{C}\left(S_{i}, u^{\prime}\right)= \pm 1$.

Moreover, knowing $u, u^{\prime}, \operatorname{dist}_{C}\left(S_{i}, u\right)$ and $\operatorname{dist}_{C}\left(S_{i}, u^{\prime}\right)$ (of valid values), we can uniquely determine S_{i} in $O(1)$ time.

Observe that adding an ear P to C may make some S_{i} infeasible (i.e., cannot distance- k dominate $C+P$), but there can be exactly one of them. We conjecture that adding r ears can make at most r sets S_{i} infeasible, and thus Theorem 1 holds for all r. So far we can prove it for $r \leq 6$, as shown in the following subsections.

3.3 Case $r=1$ (One Ear)

Suppose that an ear $P_{1}=u_{1}-w_{1}-u_{1}^{\prime}$ is added to C and node w_{1} is not distance- k dominated by some S_{i} (see an illustration in Fig. 4). Clearly this can happen only if $\operatorname{dist}_{C+P_{1}}\left(S_{i}, u_{1}\right)=$ $\operatorname{dist}_{C+P_{1}}\left(S_{i}, u_{1}^{\prime}\right)=k$, thus $\operatorname{dist}_{C}\left(S_{i}, u_{1}\right)=\operatorname{dist}_{C}\left(S_{i}, u_{1}^{\prime}\right)=k$ by Lemma 1, hence S_{i} is unique and can be determined in $O(1)$ time as shown in Section 3.2. This proved for case $r=1$.

3.4 Case $r=2$ (Two Ears)

Let S_{i} be the unique set that cannot distance- k dominate $C+P_{1}$.

Fig. 4 Illustration for Case $r=1$.

Fig. 5 Illustration for Case $r=$ 2: In the first two sub-cases, P_{2} is an ear to C too (notice that the graph may not be outerplanar), hence the argument for Case $r=1$ can be applied again; In the last sub-case, P_{2} is an ear with respect to P_{1}.

(a) u_{1}^{\prime}

Fig. 6 Illustration for case $r=3$: We only need to consider these two subcases.

Suppose an ear $P_{2}=u_{2}-w_{2}-u_{2}^{\prime}$ is added to $C+P_{1}$ (see Fig. 5). Clearly if P_{2} is an ear with respect to C too, then we are done, because, by applying the argument for $r=1, P_{2}$ can make at most one more S_{h} infeasible to $C+P_{1}+P_{2}$. Thus we only need to consider when P_{2} is not an ear with respect to C but to P_{1}. Without loss of generality, assume $u_{2}=w_{1}$ and $u_{2}^{\prime}=u_{1}^{\prime}$.

Now suppose that w_{2} is not distance- k dominated by some set S_{h} that distance- k dominates $C+P_{1}$. This can happen only if $\operatorname{dist}_{C+P_{1}+P_{2}}\left(S_{h}, u_{2}\right)=\operatorname{dist}_{C+P_{1}+P_{2}}\left(S_{h}, u_{2}^{\prime}\right)=k$. Hence $\operatorname{dist}_{C}\left(S_{h}, u_{1}^{\prime}\right)=k$ and $\operatorname{dist}_{C}\left(S_{h}, u_{1}\right)=k-1$ by easy calculation. Therefore S_{h} can be uniquely determined as shown in Section 3.2. Thus we have at least $2 k-1$ sets $S_{j}(j \notin\{i, h\})$ that distance- k dominates both w_{1} and w_{2}, hence $C+P_{1}+P_{2}$.

Determining the sub-case and, if necessary, S_{h}, requires $O(1)$ time, hence the running time for case $r=2$ is $O(n)$ too. For $k=1$, since $r=n \bmod (2 k+1) \leq 2$, the proof finishes here.

3.5 Case $r=3$ (Three Ears, Thus $k \geq 2$)

So far we showed that adding two ears P_{1} and P_{2} can make at most two of the sets S_{j} infeasible to $C+P_{1}+P_{2}$. Now we show that adding a third ear $P_{3}=u_{3}-w_{3}-u_{3}^{\prime}$ to $C+P_{1}+P_{2}$ can make at most one more S_{j} infeasible.

It is easy to see that if P_{2} is an ear to C, or P_{2} is an ear to P_{1} but P_{3} is an ear to C or P_{1}, then we can apply the same argument for case $r=2$. In fact, by Lemma 1 , we only need to consider sub-cases in which every P_{i} is an ear to P_{i-1}. For $r=3$, they are illustrated by sub-cases (a) and (b) in Fig. 6.

Assume that w_{3} is not distance- k dominated by some S_{ℓ} that distance- k dominates $C+P_{1}+P_{2}$. Sub-case (a) can happen only
if $\operatorname{dist}_{C}\left(S_{\ell}, u_{1}^{\prime}\right)=k-1$ and $\operatorname{dist}_{C}\left(S_{\ell}, u_{1}\right)=k$. Hence we can determine the unique S_{ℓ}. For sub-case (b), it can happen only if $\operatorname{dist}_{C+P_{1}+P_{2}+P_{3}}\left(S_{\ell}, u_{1}^{\prime}\right)=\operatorname{dist}_{C+P_{1}+P_{2}+P_{3}}\left(S_{\ell}, w_{2}\right)=k$, implying $\operatorname{dist}_{C+P_{1}}\left(S_{\ell}, w_{1}\right)=k-1$, hence $\operatorname{dist}_{C}\left(S_{\ell}, u_{1}\right)=k-2$. This is impossible since $\operatorname{dist}_{C}\left(S_{\ell}, u_{1}^{\prime}\right)=k$, showing that such an S_{ℓ} does not exist in sub-case (b). Determining the sub-case and S_{ℓ} requires $O(1)$ time, proving Case $r=3$.

3.6 Case $r=4$ (Four Ears)

We showed that there can be at most three of S_{j} infeasible to $C+P_{1}+P_{2}+P_{3}$. Now we want to show that adding a fourth ear $P_{4}=u_{4}-w_{4}-u_{4}^{\prime}$ can make at most one more infeasible. As a conclusion, this is a false proposition. Nevertheless, we show how to overcome this difficulty by careful argument. Again, we only need to consider the sub-cases in which every P_{i} is an ear of P_{i-1}, as shown in Fig. 7.

Assume that w_{4} is not distance- k dominated by some S_{q} that distance- k dominates $C+P_{1}+P_{2}+P_{3}$. This can happen only if $\operatorname{dist}_{C+P_{1}+\cdots+P_{4}}\left(S_{q}, u_{4}\right)=\operatorname{dist}_{C+P_{1}+\cdots+P_{4}}\left(S_{q}, u_{4}^{\prime}\right)=k$. Then we can calculate feasible labels $\operatorname{dist}_{C}\left(S_{q}, u_{1}\right)$ and $\operatorname{dist}_{C}\left(S_{q}, u_{1}^{\prime}\right)$. Easy calculation shows that it is impossible for sub-cases (a-1) and (b1). For sub-case (a-2), the unique feasible distance labeling is $\operatorname{dist}_{C}\left(S_{q}, u_{1}\right)=k-2$ and $\operatorname{dist}_{C}\left(S_{q}, u_{1}^{\prime}\right)=k-1$. For sub-case (b-2), however, there are two feasible labelings:

- $\operatorname{dist}_{C}\left(S_{q}, u_{1}\right)=k-2$ and dist $\left(S_{q}, u_{1}^{\prime}\right)=k-1$,
- $\operatorname{dist}_{C}\left(S_{q}, u_{1}\right)=k$ and dist $C_{C}\left(S_{q}, u_{1}^{\prime}\right)=k-1$.

Nevertheless, recall that sub-case (b-2) is derived from subcase (b) (see Section 3.5), for which all sets S_{i} feasible to $C+P_{1}+P_{2}$ are feasible to $C+P_{1}+P_{2}+P_{3}$ too. Therefore the total number of sets S_{j} infeasible to $C+P_{1}+\cdots+P_{4}$ for subcase (b-2) is still no more than $2+0+2=4$. On the other hand, since it is clear that the total running time is $O(n)$, we finished proving Case $r=4$. For $k=2$, since $r=n \bmod (2 k+1) \leq 4$, the proof for $\gamma_{2}(G) \leq \max \{1,\lfloor n / 5\rfloor\}$ finishes here.

3.7 Cases $r=5,6$ (Hence $k \geq 3$)

Again, we only need to consider the sub-cases in which every P_{i} is an ear of P_{i-1}. For each sub-case, define

$$
\begin{aligned}
& k_{i}=\text { the number of } S_{j} \text { that cannot distance- } k \text { dominate } \\
& C+P_{1}+\cdots+P_{i} .
\end{aligned}
$$

All we want to show (see Section 3.2) is that for all $r, k_{r} \leq r$. So far we have shown it for $r \leq 4$. Now we prove it for $r=5,6$. See Figs. 8, 9, in which we start from $r=4$ and have marked k_{r} for each sub-case. The detail of the distance labels are omitted since it is much technical and not interesting.

4. Conclusion and Future Work

This paper showed $\gamma_{k}(n)=\max \left\{\left\lfloor\frac{n}{2 k+1}\right\rfloor, 1\right\}$ for $k \leq 3$ and MOGs with a linear-time construction algorithm. In fact, letting $r=n \bmod (2 k+1)$, it shows a stronger result that at least $2 k+1-r$ distinct distance- k dominating sets of size at most $\left\lfloor\frac{n}{2 k+1}\right\rfloor$ can be found in linear time for all $n \geq 2 k+1$ and $r \leq 6$. Currently we are working on a simple proof for $n \bmod (2 k+1) \geq 7$ cases (or to develop a counterexample), and trying to improve the results for guarding numbers and vertex cover numbers as considered in Ref. [1].

(b-1)

Sub-cases for $r=4$. (a-*) and (b-*) are deri
In all sub-cases, P_{i} is an ear of P_{i-1} for all i.

Fig. 8 Sub-cases for $r=5,6$ (part 1 of 2).

Acknowledgments This work was supported by JSPS KAKENHI Grant Numbers 23700018, 25330026 and John-man Program of Kyoto University. The author would like to thank Prof. Dr. Dorothea Wagner for her kind support. Most of the work was done when the author was visiting her group at KIT, Germany.

Finally the author would like to thank the anonymous referees for their valuable comments.

Fig. 9 Sub-cases for $r=5,6$ (part 2 of 2).

References

[1] Canales, S., Hernandez, G., Martins, M. and Matos, I.: Distance domination, guarding and vertex cover for maximal outerplanar graph, arXiv:1307.2043 [cs.CG] (2013)
[2] Campos, C.N. and Wakabayashi, Y.: On dominating sets of maximal outerplanar graphs, Discrete Applied Mathematics, Vol.161, No.3, pp.330-335 (2013).
[3] Diestel, R.: Graph Theory, p.107, Springer-Verlag (2000)
[4] ElGindy, H.A.: Hierarchical decomposition of polygons with applications, Ph.D. thesis, School of Computer Science, University of McGill (1985).
[5] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J.: Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
[6] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J.: Domination in Graphs: Advanced Topics, Marcel Dekker, New York (1998).
[7] Hansberg, A., Meierling, D. and Volkmann, L.: Distance Domination and Distance Irredundance in Graphs, The Electronic J. Combinatorics, Vol.14, No.R35 (2007).
[8] Mitchell, S., Beyer, T. and Jones, W.: Linear Algorithms for Isomorphism of Maximal Outerplanar Graphs, J. ACM, Vol.26, No.4,
pp.603-610 (1979).
[9] Meir, A. and Moon, J.W.: Relations between packing and covering number of a tree, Pacific J. Math., Vol.61, pp.225-233 (1975).
[10] Matheson, L.R. and Tarjan, R.E.: Dominating Sets in Planar Graphs, European Journal of Combinatorics, Vol.17, No.6, pp.565-568 (1996).
[11] Tokunaga, S.: Dominating sets of maximal outerplanar graphs, Discrete Applied Mathematics, Vol.161, No.18, pp.3097-3099 (2013).
[12] Tian, F. and Xu, J.M.: A note on distance domination numbers of graphs, Australasian J. Combinatorics, Vol.43, pp.181-190 (2009).

Liang Zhao received his B.S. and B.E. degrees from Tsinghua University (Beijing) in 1995, M.E. and Ph.D. degrees from Kyoto University in 1999 and 2002 respectively. Then he worked for Utsunomiya University for four years and since 2006, he has been engaged in Kyoto University. His research interests include algorithms and applications. He is a member of IEEE, ACM, IEICE and ORSJ.

[^0]: 1 Graduate School of Advanced Integrated Studies in Human Survivability (Shishu-Kan), Kyoto University, Kyoto 606-8306, Japan
 a) liang@gsais.kyoto-u.ac.jp

