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Abstract: Simple folding (folding along one line at a time) is a practical form of origami used in manufacturing such
as sheet metal bending. We prove strong NP-completeness of deciding whether a crease pattern can be simply folded,
both for orthogonal paper with assigned orthogonal creases and for square paper with assigned or unassigned creases
at multiples of 45◦. These results settle a long standing open problem, where weak NP-hardness was established for
a subset of the models considered here, leaving open the possibility of pseudopolynomial-time algorithms. We also
formalize and generalize the previously proposed simple folding models, and introduce new infinite simple-fold mod-
els motivated by practical manufacturing. In the infinite models, we extend our strong NP-hardness results, as well
as polynomial-time algorithms for rectangular paper with assigned or unassigned orthogonal creases (map folding).
These results motivate why rectangular maps have orthogonal but not diagonal creases.
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1. Introduction

Origami as a craft is centuries old, but in recent years it has ex-
ploded into an exquisite art form, a rich mathematical and compu-
tational field, and a branch of mechanical engineering exploring
applications *1. Perhaps the most researched subset of origami
studies flat foldings—folded states that lie in the plane, with mul-
tiple overlapping layers. If we unfold such a folding, we obtain a
straight line planar graph formed by the creases called crease pat-

tern. Given a crease pattern, optionally assigned by each crease
labeled either mountain (the paper folds backwards) or valley (the
paper folds forwards), the flat foldability problem asks whether
the crease pattern comes from some flat folding. This decision
problem is known to be NP-complete for both assigned and unas-
signed crease patterns [4].

In this paper we study simple foldability, deciding whether a
2D crease pattern can be folded by a sequence of simple folds.
Informally, a simple fold can only rotate paper around a single
axis before returning the paper back to the plane. This restric-
tion is motivated by practical sheet-metal bending, where a sin-
gle robotic tool can fold the sheet material at once. We build
on the work of Arkin et al. [2]. They introduce many models of
simple folds, proving that deciding simple foldability is weakly
NP-complete for some of them, and that simple foldability can
be solved in polynomial time for rectangular paper with paper-
aligned orthogonal creases. We abbreviate this restriction on the
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input (rectangular paper and paper-aligned orthogonal creases) as
crease patterns, and will abbreviate other restrictions similarly.

We also introduce a new model of simple folding, namely the in-
finite simple folds model where simple folds must fold at least
one layer everywhere the paper intersects the fold axis. Akitaya
et al. [1] describe an exponential method to obtain all possible
folding sequences using simple folds under a stronger model that
allows paper intersection during the folding motion.

We prove strong NP-completeness for every model proved
weakly NP-complete in Ref. [2], namely that simple foldability
is hard for:
( 1 ) orthogonal paper with paper-aligned orthogonal creases (ab-

breviated ) with crease assignment in the one-layer, some-
layers, and all-layers models, even to approximate the num-
ber of possible simple-folds; and

( 2 ) square paper with paper-aligned creases at multiples of 45◦

(abbreviated �
��
�) with crease assignment in the some-layers

and all-layers models.
Additionally we prove strong NP-completeness deciding simple
foldability of:
( 3 ) �

��
� crease patterns without crease assignment in the some-

layers and all-layers models; and
( 4 ) crease patterns with or without crease assignment in the

infinite one-layer and some-layers models.
We also point out some errors in the NP-complete reduction

in Arkin et al. to simple foldability of orthogonal polygons with
unassigned crease patterns, but we do not comment further as
the result is subsumed by result (3) above. In the last section,
we extend the polynomial-time result from Ref. [2] to the infinite
simple folds models, proving the infinite and non-infinite models
are equivalent for crease patterns. Table 1 shows the com-
putational complexity of simple-foldable decidability in various
models.
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Table 1 Computational complexity of simple folding problems, either open, solvable in polynomial time
(poly), or strongly/weakly NP-complete (strong/weak). Bold results are new in this paper.
Rows list simple folding models while the columns list restrictions on the input: orthogonal pa-
per/orthogonal creases , square paper/45◦ creases �

��
� , or rectangular paper/orthogonal creases

).

Model Assigned Unassigned
�

��
� �

��
�

One-layer weak→ strong open poly open open poly
Some-layers weak→ strong weak→ strong poly open strong poly
All-layers weak→ strong weak→ strong poly open strong poly
Inf. One-layer strong open poly strong open poly
Inf. Some-layers strong open poly strong open poly
Inf. All-layers open open poly open open poly

2. Definitions

In general, we are guided by the terminology laid out in
Ref. [2], though for this paper we restrict our discussion to fold-
ing two-dimensional paper. We will operate in R3 containing a
folding plane P congruent to R2 with a surface normal vector n̂.
We call the direction n̂ above and −n̂ below. A two-dimensional
paper P is a connected polygon in P, possibly with holes. We
denote the boundary of P by ∂P. We call the side of a paper
pointing in the n̂ direction the top and the opposite side the bot-

tom. A crease is a line segment on a paper. A crease pattern

(P,Σ) is a paper P and a set of creases Σ contained in the paper,
no two of which intersect except at a common endpoint. A facet

of a crease pattern is a connected open set in P \ Σ whose bound-
ary is a subset of ∂P ∪ Σ. Two crease pattern facets are adjacent

if their boundaries share a common crease.
A flat fold isometry (P,Σ, f ) is a crease pattern (P,Σ) together

with an isometric embedding f of the paper into P such that (1)
each facet of the crease pattern is mapped to a congruent copy, (2)
connectivity is preserved between facets and creases, and (3) for
every pair of adjacent facets, exactly one of the facets is reflected
in the embedding. If a crease pattern with n creases has a flat fold
isometry, we call the crease pattern locally flat-foldable, which is
checkable in polynomial time in n [4]. We denote the preimage
of U ⊂ f (P) as f −1(U) ⊂ P. Two facets F1 and F2 overlap if
f (F1) ∩ f (F2) � ∅.

A flat folding (P,Σ, f , λ) is a flat fold isometry (P,Σ, f ) to-
gether with a layer ordering [5], that, in the case of convex
facets, can be described by a directed graph on the facets. We
represent such a graph by a function λ mapping from a pair
of overlapping facets to {−1, 1} so that: (1) if F1 and F2 are
overlapping facets, λ(F1, F2) = −λ(F2, F1); (2) if F1, F2, F3

are such that F1 and F2 are adjacent and F3 overlap the crease
c = ∂F1 ∩∂F2, i.e., f (F3)∩ f (c) � ∅, then λ(F1, F3) = λ(F2, F3);
(3) if F1, F2, F3, F4 are pairwise overlapping and such that
F1 and F2 (resp., F3 and F4) are adjacent and the crease be-
tween F1 and F2 overlap with the crease between F2 and F3, i.e.,
f (c1)∩ f (c2) � ∅, where c1 = ∂F1 ∩ ∂F2 (resp., c2 = ∂F3 ∩ ∂F4),
then λ(F1, F3) + λ(F1, F4) + λ(F2, F3) + λ(F2, F4) ∈ {−4, 0, 4}.
The conditions above derive from Justin’s conditions, as called in
Ref. [5]. We say that F1 is above (resp., below) F2 if λ(F1, F2)
is −1 (resp., 1). If a crease pattern has a flat folding, we call the
crease pattern globally flat-foldable.

The flat-foldability decision problem takes as input a locally

flat-foldable crease pattern and asks if it is globally flat foldable.
If no other information is given, the problem is called unassigned.
A common variant of the decision problem also provides in the
input an assignment α :Σ→ {M,V} of the creases to either moun-
tain or valley, and the question asks if a flat folding exists satis-
fying the assignment according to the following definitions. A
crease c = ∂F1 ∩ ∂F2 such that f (F1) is reflected is called moun-

tain (M) if λ(F1, F2) = 1 or a valley (V) otherwise. This defini-
tion adheres to the intuition that a valley brings the top surfaces of
F1 and F2 together while a mountain brings the bottom surfaces
together. Arbitrarily assigning mountain or valley to the creases
of a flat fold isometry may be consistent with zero, one, or mul-
tiple flat foldings. If α is given, the decision problem is called
assigned.

A simple folding (P,Σ2, f2, λ2) of an input flat folding,
(P,Σ1, f1, λ1), is itself a flat folding parameterized by a fold axis

(a directed line � ∈ P) and a folded region (a subset U � P)
satisfying the following conditions.
( 1 ) Points on the boundary of the folded region are either in the

boundary of the paper or the preimage of the fold axis, i.e.,
∂U ⊂ ∂P ∪ f −1

1 (� ∩ f1(P));
( 2 ) Everything in the folded region moves to a reflected point

across the fold axis �;
( 3 ) The creases of the new flat folding contain the creases of the

old one, i.e., Σ1 � Σ2.
( 4 ) Points not in the folded region are unchanged, i.e., f2(p) =

f1(p) for p ∈ P \ U and λ2(F1, F2) = λ1(F1, F2) for facets
F1 and F2 in P \ (U ∪ Σ2);

( 5 ) The output layer ordering of the folded region is exactly
the opposite of the input layer ordering, i.e., if Fu and Fp

are facets of (P,Σ2, f2) respectively containing u and p such
that u, p ∈ U, f2(u) = f2(p), then λ2(Fu, Fp) = −λ1(F′u, F′p)
where Fu and Fp are the facets of (P,Σ1, f1) respectively con-
taining u and p.

( 6 ) The folded region is either completely above or completely
below points not in the folded region in the input flat folding,
according to the direction of �, i.e., if Fu and Fp are facets of
(P,Σ1, f1) respectively containing u and p such that u ∈ U,
p ∈ f −1

1 ( f1(u)) \ U and f1(u) is on the right (resp., left) side
of �, then λ1(Fu, Fp) = 1 (resp., λ1(Fu, Fp) = −1).

( 7 ) The folded region is either completely above or completely
below points not in the folded region in the resulting flat
folding, according to the direction of �, i.e., if Fu and Fp

are facets of (P,Σ2, f2) respectively containing u and p such
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Fig. 1 Example folding steps demonstrating the differences between simple
folding models. L is a directed dotted line in the direction of a, U is
textured, and the fold line f −1(L)∩∂U is a thick line with the number
of layers # specified.

Table 2 Definitions for different models of simple folding according to re-
strictions on the number of layers that must be folded along the
fold axis. Example steps are shown in Fig. 1.

Model Restriction on # Foldable Example Steps
Some-layers no restriction (1), (2), (3), (4), (5), (6)
One-layer #(q) ∈ {0, 1} (1), (5)
All-layers #(q) ∈ {0, #+(q)} (1), (2), (3)
Infinite Some-layer #(q) ≥ 1 (1), (3), (4)
Infinite One-layer #(q) = 1 (1)
Infinite All-layers #(q) = #+(q) (1), (3)

that u ∈ U, p ∈ f −1
2 ( f2(u))\U and f2(u) is on the right (resp.,

left) side of �, then λ2(Fu, Fp) = −1 (resp., λ2(Fu, Fp) = 1).
A simple fold is then a rotation of a folded region in a flat fold-

ing about a fold axis back into the plane to form a new flat folding.
Conditions (1) and (2) ensure the rotation is isometric; condition
(3) ensures that existing creases do not unfold; conditions (4) and
(5) ensure that folding occurs exactly in the folded region and the
layer orderings before and after the simple fold are consistent;
conditions (6) and (7) ensure that the paper does not intersect it-
self.

We define different models of simple folding that limit the
choice of U. Let L = �∩ f (P) be the intersection of fold axis � and
input flat folding (P,Σ1, f1, λ1), and let #+(q) = | f −1(q)\(∂P∪Σ1)|
be the number of foldable layers at q ∈ L. Then the function
# : L → {0, . . . , #+} denotes the number of layers that are folded
in a simple fold at every point along the fold axis, specifically
#(q) = |( f −1(q) ∩ ∂U) \ (∂P ∪ Σ1)| for q ∈ L. Table 2 defines
our models of simple folding based on restrictions on # that limit
the choice of folded region. Of particular interest is the infinite
all-layers model which corresponds to folding everything on one
side of the fold axis to the other side, a model which has prac-
tical applications in manufacturing. For instance, Balkcom and
Mason [3] describe a robotic system restricted to such model of
simple folds.

Given locally flat-foldable crease pattern (P,Σ), we say that it
is simply-foldable or equivalently flat-foldable via a sequence of

simple folds in some model, if the crease pattern can be folded
by a sequence of m simple folds into a series of flat foldings
Si = (P,Σi, fi, λi) for i ∈ {1, . . . ,m} such that S1 is the original
unfolded paper with Σ1 = ∅, each flat folding Si+1 is a simple
folding of Si, and Sm = (P,Σm = Σ, fm, λm) is a flat folding of the

input.
If it is hard to decide simple-foldability, a natural question

arises: how close can we estimate the number of possible simple
folds that can be performed? Define MaxFold, the natural opti-
mization version of the decision problem asking for the maximum
number of simple folds that can be folded given a locally flat-
foldable crease pattern (P,Σ), or formally, the maximum length
sequence of simple folds to fold any simply-foldable crease pat-
tern (P,Σ′) with Σ′ ⊂ Σ.

3. Results

(1) Orthogonal Paper/Orthogonal Creases
In this section we prove that the simple-foldability deci-

sion problem of an orthogonal piece of paper with a M/V as-
signed paper-aligned orthogonal crease pattern is strongly
NP-complete in the one-layer, some-layer, and all-layer models
of simple folding. This result is the same as Theorem 6.3 from
Ref. [2], but proves strong NP-completeness because we reduce
from a strongly NP-complete problem. Additionally, we prove
that it is hard even to approximate the associated natural opti-
mization problem.
Theorem 1. The assigned simple-foldability decision problem

for orthogonal paper with paper-aligned orthogonal creases

is strongly NP-complete in the one-layer, some-layers, and all-

layers models.

Proof. The proof is by reduction from 3-Partition. Given an
instance of 3-Partition with integers A = {a1, . . . , an} to be par-
titioned into n/3 triples each with sum

(∑
a∈A a
)
/(n/3) = t, con-

struct an orthogonal polygon with M/V assigned paper-aligned
orthogonal creases as shown in Fig. 2 (the width of the polygon
is one everywhere). We assume each ai is close to t/3 and divisi-
ble by 2n: if not, add a large number to each and multiply by 2n

so that they are.
There are five main functional sections of the polygon, as

shown in Fig. 3. On the left is the Bar, a section whose convex
hull is a 5 : 2∞ rectangle of paper without creases that is very
long (∞ = 10nt). Attached to the middle of the Bar is a 5n

3 +
1
2

long strip extending to the right which we call the Arm. The Stair-
case encodes the ais in order as a series of steps with height equal
to their value plus one. Step i contains two creases c2i−1, c2i that
when both folded raise the Bar by exactly 2ai. The Wrapper sec-
tion is a horizontal rectangle of length 2n/3 with vertical valley
creases di (d1 being the right most crease) dividing the Wrapper
into unit squares. The Cage on the right bounds a polygonal area
whose the left vertical edge we call the Column.

The construction forces the Bar to wrap inside the Cage n/3
times, each time shifted up by distance 2t (note that ∞ is cho-
sen large to ensure that the Staircase never intersects the Cage
polygon while wrapping). To prove the claim, we first prove the
Wrapper must fold its vertical creases in order from right to left.
If this were not the case, then there exists some first crease di

to be folded whose right neighbor di−1 has not yet been folded.
But di has at least two squares of unfolded paper to its left that
will cover di−1 when folded, making di−1 impossible to fold using
simple folds without violating the M/V assignment, contradicting
our model. Because the Wrapper executes its folds from right to
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Fig. 2 An orthogonal simple polygon with orthogonally aligned mountain-
valley creases (drawn in red and blue respectively) constructed from
an instance of 3-Partition that can be folded using simple folds if
and only if the instance of 3-Partition has a solution.

left, the Bar must pass through the Cage n/3 times sequentially
from the rightmost slot to the leftmost, with each subsequent slot
shifted up by 2t.

If the 3-Partition instance has a positive solution, then the poly-
gon has a simple folding: just pleat the creases associated with the
ais in one of the satisfying triples, then fold the Bar through the
Cage along the next Wrapper creases, and repeat. Because all
folds in the Wrapper are all valley, the Arm will go around the
Column and never cross it. Further, if the polygon has a simple
folding, the 3-Partition instance has a positive solution because
the Staircase must be folded on both creases from exactly three
ais between each wrap. To prove this, all ais are close to t/3 so in
order to shift by 2t, exactly three ai sections must be flipped from
their original orientation. Further, because each ai is divisible by
2n, no one unit section between ais can flip if the total height is
to be raised by t, since t is also divisible by 2n. So the ais flipped
at each step correspond to triplets of the 3-Partition instance that

sum to t.
Folded in this way, each simple fold can be performed in the

one-layer and some-layers models because the construction only
ever folds through one layer of paper at a time. And because
creases only ever exist in a single layer, the all-layers model also
applies. The reduction is polynomial because the entire con-
structed polygon is bounded by a 30nt × 4n rectangle. Lastly, the
problem is in NP because given a certificate of the crease fold-
ing order, each fold can be simulated and checked in polynomial
time. �

The optimization version of the decision problem is even hard
to approximate.
Theorem 2. Given an orthogonal paper with paper-aligned or-

thogonal creases admitting a maximum sequence of m simple

folds, approximating MaxFold to within a factor of m1−ε for any

constant ε > 0 is NP-complete in the some-layers and all-layers

models.

Proof. Construct a crease pattern similar to Fig. 2, but with the
Wrapper modified in the following way: add δ horizontal lines
of creases all the way through the Wrapper, with each horizontal
line composed of 2n/3 + 1 collinear creases alternating M/V as-
signment in each section between vertical creases, splitting each
of the 2n/3 vertical creases into δ + 1 collinear vertical valley
creases.

For a positive instance of 3-Partition, the proof of Theorem
1 implies that the 8n/3 original creases may be folded as sim-
ple folds, then allowing δ more simple folds to be performed
by folding along each line of horizontal of creases from top
to bottom in the some-layers and all layers models. None of
the added horizontal creases can be folded before all vertical
creases in the Wrapper are folded due to M/V alternation along
the line. This construction is thus simple-foldable via a sequence
of m = 8n/3 + δ simple folds.

For a negative instance of the 3-Partition problem, there exists
at least one line of vertical Wrapper creases that cannot be folded,
reducing the number of possible simple folds to strictly less than
8n/3.

Setting δ = (8n/3)1/ε − 8n/3, Theorem 1 implies it is NP-hard
to distinguish the case where m folds are possible from the case
where at most 8n/3 = mε are possible. The reduction is polyno-
mial since both δ and m are O(n1/ε) for constant ε. �

(2) Assigned Square Paper/45◦ Creases �
��
�

Arkin et al. adapt their Partition reduction to square paper with
M/V assigned paper-aligned creases at multiples of 45◦ �

��
� by

constructing an approximation of their orthogonal construction
from a square. Unfortunately their modification cannot be ap-
plied to our 3-Partition reduction in the all-layers model because
their construction requires folds along the long construction end
which will overlap other parts of the paper during construction.

Instead, we use a similar idea to construct an orthogonal poly-
gon approximation from a square but with a different turn gadget
that enforces the order of construction while only making folds
local to the gadget that works in both the some-layers and all-
layers models.
Theorem 3. The assigned simple-foldability decision problem
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Fig. 3 Process to check the Partition solution: 1) pleat variables to change height of bar by 2t, 2) fold
along the rightmost wrapper crease around the column, 3) fit the bar through the cage folding the
bar to the left along the next wrapper crease, 4) repeat until n/3 triples adding to 2t have been
checked.

Fig. 4 Turn gadgets for the assigned case. Red/blue lines represent the M/V assignment.

for square paper with paper-aligned creases at multiples of 45◦

�
��
� is strongly NP-complete in the some-layers and all-layers

models.

Proof. The proof is by reduction from the decision problem in
Theorem 1. Given such an orthogonal polygon with M/V as-
signed paper-aligned orthogonal creases, we construct a crease
pattern on a square that folds using simple folds if and only if the
original orthogonal crease pattern is simply-foldable.

We start by constructing a long rectangle from the starting
square of appropriate aspect ratio in the same way as Ref. [2],
double the width of the orthogonal polygon we want to create.
Then we use turn gadgets to shape the long rectangle into the
target orthogonal polygon. Figure 4 depicts crease patterns for
our turn gadgets, Same and Flip, along with drawings depicting
their valid flat foldings. We call creases located on the horizontal
center line halfway between the edges of the paper axial creases.
These crease patterns have the property that the axial crease ex-
tending the right edge (the output) cannot be folded unless all
creases in the gadget have already been folded.

When folded, both gadgets align the edges of the original long
rectangle to one side. Having both the Same and Flip gadgets
allows us to combine them in one long strip to turn right or left
no matter which side the original edges are on. The Same gadget

turns the paper to the same side as the original edges, while the
Flip gadget turns the paper to the other side. If chained in a se-
quence, turning in the same direction as the previous turn neces-
sitates a Same gadget, while the Flip gadget turns the paper in the
opposite direction.

The construction is as follows. We trace the path of the target
orthogonal polygon starting at the cage end. Wherever a turn is
needed, apply the appropriate turn gadget. The creases of the tar-
get crease pattern are overlaid to be foldable only after the appro-
priate section has been folded in half. If the orthogonal polygon
is simply-foldable, we can then fold the remaining creases.

Now we prove the orthogonal polygon can be folded if the
square crease pattern is simply-foldable. Before any section can
be folded along axial creases, all creases behind the axial crease
must have already been folded. The gadgets can be folded using
only valley folds, so the paper will never self intersect. Further,
creases local to a turn gadget do not overlap any other paper be-
cause gadgets are far from each other. In particular, no crease of
the target crease pattern may fold before the cage is constructed.
Once the cage has been constructed, no Wrapper crease may fold
until the Bar has been constructed completely because any un-
creased paper will be too large to fit through the cage.

The reduction is polynomial because the side of the input
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Fig. 5 Figure 18 from Ref. [2]. Corrections marked in red creating reflec-
tions of c1 and c2 on the covering flap, and trimming the covering
flaps so that c1 and c2 do not intersect v0 or v1 within the covering
flap.

square is bounded by O(nt) and the number of creases is bounded
by O(n2). Lastly, the problem is in NP because given a certifi-
cate of the crease folding order, each fold can be simulated and
checked in polynomial time. �

(3) M/V Unassigned Square Paper/45◦ Creases �
��
�

M/V unassigned crease patterns are naturally less restrictive
than M/V assigned crease patterns. This freedom can make col-
lision avoidance easier, providing a choice of folding direction
at each crease. However when proving hardness for M/V unas-
signed crease patterns, one cannot use crease direction to enforce
fold ordering or layering and must restrict them using other tech-
niques. Arkin et al. provide a weakly NP-hard reduction for or-
thogonal polygons with unconstrained creases without crease as-
signment in Theorem 7.1, but their proof has two errors discussed
next.

The first error in the proof of Theorem 7.1 in Ref. [2] is that
Arkin et al. claim that their reduction for the M/V assigned case
can be used directly to prove hardness of the M/V unassigned all-
layers model, saying, “in the all-layers case, as soon as two layers
of paper overlap they are ‘stuck’ together.” However, this claim
is not true under their definition of the all-layers model.

The second error is a fixable problem in the creases shown in
Fig. 5. Their construction modifies their Partition reduction by
adding pleats to force the folding direction of creases v1 and v2,
claiming the added cross pleats must fold first to enforce v0 and v1
to fold in the same direction. However, pleating c0 before c1 and
c2 locks the latter two creases to paper containing no creases, pre-
venting them from ever folding. Adding mirrored creases on the
cover fixes this problem. Further, the positions of creases c1 and
c2 lock the layers containing v0 and v1 to overlapping uncreased
paper meant to enforce folding direction. Trimming problematic
extra paper can fix the proof.

We do not elaborate further as we prove stronger results that
subsume Theorem 7.1, namely Theorems 4 and 5.
Theorem 4. The unassigned simple-foldability decision problem

for orthogonal paper with paper-aligned creases at multiples of

45◦ is strongly NP-complete in the some-layers and all-layers

models.

Proof. The proof of Theorem 1 still holds using the same

Fig. 6 (Top-left) Crease pattern for the Wrapper in the unassigned model.
Red lines show unassigned creases. (Top-right) Creases are colored
according to their folding order. (Bottom) Folding sequence showing
the creases that are being folded.

construction with unassigned crease patterns except for two
points: (1) the argument ensuring that the creases of the Wrap-
per fold in order from right to left does not apply without crease
assignment; and (2) the argument ensuring that the bar folds
through the cage each time requires every vertical fold in the
Wrapper to either be all mountain or all valley.

To fix problem (1), we modify the Wrapper paper to be two
units tall and replace the Wrapper creases with the creases shown
in Fig. 6. These creases have the property that the new creases
Σi+1 \Σi added in any sequence of simple folds resulting in a sim-
ple folding of the Wrapper are uniquely defined in the all-layers
model, namely each simple fold Si can only be folded if all sim-
ples folds S j for j < i have already been folded. In the some-
layers model, the order on simple folds is not quite unique since
some strict subset of creases in some of the Σi+1 \ Σi above may
fold out of order, but it remains that for any crease in Σi to fold,
some nonempty subset of Σ j must have already been folded for
j < i, enforcing the new Wrapping creases to fold in order from
right to left. The ordering is given in the figure and follows from
the observation that a simple fold can only occur when the subset
of creases to be folded divides the paper, with creases collinear in
the flat folding.

To fix (2), we must ensure that the vertical Wrapper creases
are either all mountain or all valley in any flat folding reachable
as a sequence of simple folds. The Arm in the original construc-
tion (not useful for the original theorem) is included to enforce
this requirement. After the rightmost vertical Wrapper crease has
been folded first, the Arm will overlap the Column. Since the or-
der is enforced by (1), the second vertical Wrapper crease must
fold next, while on the right of the Column. If it folds with as-
signment opposite the first, the Arm would intersect the Column
contradicting the simplicity of the fold. This argument holds in-
ductively for the remainder of the vertical Wrapper creases, so
they must all fold with the same assignment in any sequence of
simple folds.

Having addressed these two problems, the arguments of The-
orem 4 directly apply under both the some-layers and all-layers
models, since the order and assignment of the Wrapper creases
are forced in both models. �
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Fig. 7 Unassigned turn gadgets. Creases must be folded according to color order on left. Input and output
creases are labeled with arrow heads, forward signals in black and return signals in red.

Fig. 8 Example collection of turn gadgets connected in series demonstrating forward and return signal
propagation.

Theorem 4 goes beyond Theorem 7.1 from Ref. [2] by both
proving a stronger notion of hardness and restricting creases to
only multiples of 45◦. The following is an even stronger result,
showing that the problem is still hard even when the orthogonal
polygon is a square.
Theorem 5. The unassigned simple-foldability decision prob-

lem for square paper with paper-aligned creases at multiples of

45◦ �
��
� is strongly NP-complete in the some-layers and all-layers

models.

Proof. We will use the same techniques from the proof of The-
orem 3 to build an approximation (small corners missing) of an
orthogonal polygon from a square, propagating a signal along the
paper to force construction parts of the orthogonal polygon, and
then invoke the proof of Theorem 4. However, since both the
Arm and the Cage are necessary for the arguments of the latter
proof, we will need to enforce construction of the entire orthog-
onal polygon before Wrapper creases can execute, not just the
Cage. We force the entire orthogonal polygon to be constructed,
first by propagating a signal throughout the length of the polygon,
and then back to the Wrapper using the eight turn gadgets shown
in Fig. 7.

Just as for the assigned gadgets in Fig. 4, the relevant creases
in each gadget have a fixed order that ensure the output crease(s)
of a signal may only fold if the input crease(s) have already been
folded. When chained together, these signals enforce the order in

which turns are constructed and completed.
We split the gadgets into three groups: Simple turns (Same,

Flip), Double turns (2-Same, 2-Flip) and 2-Way turns (Same-
Same, Same-Flip, Flip-Same, Flip-Flip). Simple and Double
turns encode only a forward signal and are completed once the
output has been folded, the only difference being that the Double
turns are folded in half twice. Alternatively 2-Way turns encode
both forward and return signals, respective outputs only foldable
if respective inputs have been folded, the return signal folding af-
ter the forward signal. The forward signal is propagated along the
center axial crease as in the Same gadgets, while the return signal
is propagated on the sides. The naming of the 2-Way gadgets are
analogous to the Simple gadgets: Same-Flip meaning the original
edge of the long rectangle is on the same side as the turn when
propagating the signal forward, with the original edge opposite
the turn upon the return. An example assembling many of these
gadgets coupled in a series is shown in Fig. 8.

Note that we can trivially connect Double and 2-Way turns to-
gether, while Single turns may also interface with them by adding
additional folds as shown in Fig. 8. Figure 8 also depicts a Re-
flection gadget that turns the forward input signal around, prop-
agating from the center to the return outputs on the outside. In
this example, the only creases foldable using simple folds from
the start are the set of diagonal creases C shown as bold lines in
the crease pattern, the folded result shown in the left diagram.
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Fig. 9 An orthogonal simple polygon with mountain-valley assigned paper-aligned orthogonal creases
(drawn in red and blue respectively) constructed from an instance of 3-Partition that can be folded
in the infinite one-layer model if and only if the instance of 3-Partition has a solution.

Note that these creases don’t all have to be folded at the same
time, but each must be folded before a forward signal may past
through them. Because the inputs and outputs of each gadget are
chained, the first simple fold not in C that may fold contains the
crease labeled “In”, which when folded will unlock a series of
simple folds to propagate the forward signal to the reflect gadget
as shown in the middle diagram. The return signal folds may then
be executed, ending with the simple fold labeled “Out”. The final
flat folding is shown in the right diagram.

Now we follow the same construction from the proof of Theo-
rem 3, constructing an appropriately long rectangle of width four
units to be shaped into an approximation of the orthogonal poly-
gon in Fig. 3, with Wrapper modified to be two units high as in
Fig. 6. We begin construction from the tip of the Arm using Dou-
ble turns all the way to the top of the Staircase, allowing appro-
priate space between gadgets so that the constructed polygon has
the correct dimensions. The paper will not overlap where creases
are folded because the constructed polygon is always three units
away from the rest of the polygon already constructed. The Wrap-
per can be constructed double the width by switching to Single
turns on the ends. The construction proceeds to fold the rest of the
cage using 2-Way gadgets with a reflect gadget at the end, with
the return signal ending by folding the right edge of the wrapper.

The crease pattern resulting from this construction can only
fold in the order enforced by the chain of connected gadgets, by
the analysis of the gadgets above. Recall that the first crease to
fold in the modified Wrapper from Fig. 6 is a diagonal crease
terminating on the right edge of the wrapper which will reflect
across the last crease of the return signal, and won’t be fold-
able unless the entire orthogonal polygon approximation has been
constructed. Then the same argument as the proof of Theorem 4
proves the claim directly. �

(4) Infinite, Orthogonal Paper/Orthogonal Creases
In the infinite one-layer or some-layers models, a simple fold

must fold one (or more) layer(s) everywhere in the intersection
of the fold axis and the valid flat folding. This is more restrictive
than the one-layer model as foldability in the infinite one-layer
model implies foldability in the one-layer model but not the re-
verse.
Theorem 6. The assigned simple-foldability decision problem

for orthogonal paper with paper-aligned orthogonal creases

is strongly NP-complete in the infinite one-layer and infinite

some-layers models.

Proof. The proof is again a reduction from 3-Partition. Given
an instance of 3-Partition with integers A = {a1, . . . , an} to be
partitioned into n/3 triples each with sum

∑
ai/(n/3) = t, i ∈

{1, . . . , n}, construct an orthogonal polygonal paper P with paper-
aligned orthogonal creases Σ and assignment α : Σ → {M,V} as
shown in Fig. 9, with width one everywhere. For our construction
we assume each ai is sufficiently close to t/3: if not, add a large
number to each so that they are.

There are three functional sections of the polygon. The paper
above crease h1, called the Pleater, encodes the integers on the
right, and the sets to be satisfied on the left using a pair of creases
for each. The paper between creases h1 and h2, called the Base,
is uncreased paper used to exploit the one-layer infinite model.
Without loss of generality, we assume the Base remains fixed dur-
ing folding. The paper below crease h2, called the Checker, can
only be completely folded if the input 3-Partition instance has a
solution. The 2n creases on the right of the Pleater encode each ai

with two vertical creases, one mountain and one valley separated
by distance ai, each pair separated from the others by distance
t + 1. Call this set of creases V containing creases vi labeled
i ∈ {1, . . . , 2n} increasing from left to right. The 2n/3 creases
on the left of the Pleater come in pairs bounding small distance
δ = 3

2n , each pair separated from each other by 2t+2δ. Call this set
of creases S containing creases s j labeled j ∈ {1, . . . , 2n/3} from
right to left. Lastly, let C be the set of 2n/3 creases in the Checker
alternating M/V, containing creases c j labeled j ∈ {1, . . . , 2n/3}
from right to left.

First, if the 3-Partition instance has a solution, then (P,Σ, α) is
foldable under the infinite one-layer model. Fold explicitly using
the following procedure. First fold the two horizontal creases h1

and h2. Then choose a triple of ais in the 3-Partition solution and
pleating their corresponding creases v2i−1 and v2i. These three
pairs are foldable under the infinite one-layer model by folding
first v2i then v2i−1 for each ai in the triple. Pleating all creases cor-
responding to a valid triple moves the creases in S to the right
by exactly 2t, aligning s1 and s2 with c1 and c2 respectively.
Now aligned, these creases can then be pleated together, mov-
ing creases c3, c4, s3, and s4 to the locations where c1, c2, s1, and
s2 used to be respectively, serving as an invariant. Repeating this
process n/3 − 1 more times successfully folds all creases.

Second, if (P,Σ, f ) is foldable under the infinite one-layer
model, then there exists a solution to the 3-Partition instance.
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We first prove two intermediate results: (1) each crease in C can
only fold if aligned and folded with some crease in S; and (2)
creases s1 and s2 must be the first and second creases in S to fold,
and must fold aligned with creases c1 and c2 respectively.

Proof of (1). By construction, the infinite line induced by each
crease ci will always overlap some part of the Base (which con-
tains no creases) for any folded or partially folded configuration.
Thus in order to fold ci, some other crease must align with ci on
top of the Base. Clearly ci cannot align with any crease in V or
any other crease in C, so it must align with some crease in S. So
for any valid folding, there exists a bijection between creases in
C and S.

Proof of (2). Suppose for contradiction si � s1 is the first
crease in S to be folded. Then one of two cases apply. Either
si folds without aligning with some crease in C, a contradiction
by (1); or si is folded aligned with some crease in C by folding
some subset of creases V ′ ⊂ V , with s1 not yet folded and strictly
to the right of all creases in C. But since the creases in V ′ can-
not be unfolded, the distance between s1 and any crease in C can
only increase further, and s1 will never align with a crease in C, a
contradiction.

Further, since the horizontal position of s1 is purely a func-
tion of the folded state of creases V and only integral distances
exist between folds in V , the horizontal position of s1 can only
change by integral amounts. The only crease of C that is an inte-
gral horizontal distance from s1 is c1, so they must fold together.
Additionally after s1 and c1 are folded, s2 and c2 are also aligned
and must be the next creases to be folded. Suppose for contra-
diction they were not. We cannot fold any other crease in C or S

since no other pair are aligned with each other; and folding some
crease in V prevents s2 from ever aligning with a crease in C, a
contradiction.

Now we prove the claim. By (1), creases s1 and s2 fold be-
fore all other creases in S, aligned with creases c1 and c2 respec-
tively. In order to align these creases, some subset of V must have
been folded to shift s1 to the right by exactly 2t. With s1 and s2

so aligned, no section with length t + 1 between ai sections can
be flipped from their original orientation or else s1 would have
shifted to the right by more than 2t. Furthermore, since ais are
close in value to t/3, exactly three ais that sum to t must have
been flipped, i.e., v2i−1 and v2i must have been folded from some
triple of ais that sum to t.

Once s1 and s2 have been folded, the paper now represents a
smaller instance of 3-Partition with three fewer ais that sum to t

with identical structure. The remaining creases of S have shifted
to the right by 2t+2δ and the remaining creases of C have shifted
to the right by 2δ; in particular, s3, s4, c3, and c4 are in exactly the
same horizontal locations respectively that s1, s2, c1, and c2 used
to be. (2) continues to apply recursively, constraining the next
crease pair to fold only after new ai triples summing to t have
been identified and folded. Thus, if (P,Σ, f ) is foldable in the in-
finite one-layer model, there exists a solution to the 3-Partition
instance.

The theorem follows directly. The reduction is polynomial
since the construction is bounded by a 4tn/3 × 8 rectangle with
2n + 4n/3 creases. Further, solutions can be checked naively in

O(n2) time by performing each simple fold in order while check-
ing for self intersection after each fold. �

This reduction only applies in the infinite one-layer model; in
the one-layer model, the constructed crease pattern folds trivially.
Surprisingly, none of the above arguments relied on knowing the
M/V assignment of the creases. For creases C to ever fold, creases
h1 and h2 must be folded in the same direction; the creases in V

must pleat ai intervals with alternating crease assignment, and
the same is true of the creases in S and C. Thus, the theorem also
holds in the unassigned case.
Theorem 7. The unassigned simple-foldability decision prob-

lem for orthogonal paper with paper-aligned orthogonal creases

is strongly NP-complete in the infinite one-layer and infinite

some-layers models.

(5) Infinite, Rectangle Paper/Orthogonal Creases
For assigned crease patterns on rectangular paper with paper-

aligned orthogonal creases, Arkin et al. show that determining
simple-foldability can be decided in polynomial time in the one-
layer, some-layers, and all-layers models, noting that the answer
is automatically no in the one-layer model for crease patterns
containing both horizontal and vertical creases. Note that when
unassigned, all rectangular paper with paper-aligned orthogonal
creases can be produced by folding the horizontal folds in or-
der alternating mountain and valley, followed by similarly pleat-
ing the vertical folds. We prove the same results apply in the
infinite one-layer, infinite some-layer, and infinite all-layer mod-
els, because the corresponding non-infinite models are equivalent
for crease patterns.
Theorem 8. Concerning simple-foldability of rectangular paper

with paper-aligned orthogonal creases , the infinite (one, some,

all)-layer models are equivalent to the (one, some, all)-layer mod-

els respectively.

Proof. The only difference between the infinite and non-infinite
versions of simple folds models is that the infinite versions must
fold at least one layer everywhere paper exists along the fold axis,
while the non-infinite versions do not. Assume for the sake of
contradiction that the models are not equivalent so that in a given
valid flat folding (P, f , λ) a simple fold may occur that folds paper
U ⊂ P about the fold axis � for which f (U) ∩ � does not equal
f (P)∩�. Let q be a point on the boundary of the former but on the
interior of the latter which exists since f (P)∩ � is a line segment.
Some p exists in the preimage f −1(q) that is not the endpoint of
an already folded crease or else the paper would be discontinu-
ous. Then the crease containing p bounds two facets, of which
one facet F intersects U but is not contained in U or else q would
not be a boundary point. But rotating F∩U without rotating F\U
would violate isometry, a contradiction. �
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