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Abstract: Map labeling is the problem of placing labels at corresponding graphical features on a map. There are
two main optimization problems: the label number maximization problem and the label size maximization problem.
In general, both problems are NP-hard for static maps. Recently, the widespread use of several applications, such as
personal mapping systems, has increased the importance of dynamic maps and the label number maximization prob-
lem for dynamic cases has been studied. In this paper, we consider the label size maximization problem for points on
rotating maps. Our model is as follows. For each label, an anchor point is chosen inside the label or on its boundary.
Each label is placed such that the anchor point coincides with the corresponding point on the map. Furthermore, while
the map fully rotates from 0 to 2π, the labels are placed horizontally according to the angle of the map. Our problem
consists of finding the maximum scale factor for the labels such that the labels do not intersect, and determining the
placing of the anchor points. We describe an O(n log n)-time and O(n)-space algorithm for the case where each anchor
point is inside the label. Moreover, if the anchor points are on the boundaries, we also present an O(n log n)-time and
O(n)-space exact and approximation algorithms for several label shapes.

Keywords: map labeling, label size maximization, dynamic maps, rotating maps

1. Introduction

Map labeling is the problem of placing text or symbol labels
corresponding to graphical features on input maps such that the
labels are pairwise disjoint. This problem is important for sev-
eral applications, such as geographic information systems (GIS),
cartography, and graph drawing. On maps, labels indicating re-
gions, rivers, stations, etc., are placed in appropriate positions so
that the corresponding features on the map can be understood. In
map labeling, points, polylines, and polygons are considered as
graphical features. In this paper, we consider map labeling for
points.

Many studies on map labeling have been presented (see
Ref. [23]). There are two main optimization problems in map
labeling. One is the label number maximization problem of find-
ing the placement of a maximum cardinality subset of labels with
fixed size. The other is the label size maximization problem of
placing all labels such that their sizes are maximized under a
global scale factor. Most studies were considered static maps.

Recently, the importance of dynamic maps has increased due
to several applications such as personal mapping systems. There
are many dynamic cases, involving for example, panning, ro-
tating, and zooming maps, translating points, moving points
with different velocities. In this context, studies on map label-
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ing for dynamic cases have been presented in which mainly the
dynamic label number maximization problem has been consid-
ered [2], [3], [5], [10], [11], [12], [13], [15], [25]. However, for
dynamic maps, there are not many studies for label size maxi-
mization problem [16].

In this paper, we consider rotating maps. Since commercial
GIS applications (e.g., navigation systems) often rotate maps dy-
namically according to the direction in which the user is facing,
we assume that the labels are placed horizontally according to the
angle of the map. We consider the problem of maximizing the la-
bel size such that the labels are pairwise disjoint over all rotations
θ ∈ [0, 2π) (Fig. 1).

1.1 Problem Definition and Our Results
Let M be a map that includes a set of points P = {p1, . . . , pn}

in the plane with a set of labels L = {�1, . . . , �n}. In this paper, the
labels are considered to be open axis-aligned rectangles of differ-
ent sizes. The initial size of each �i ∈ L is expressed by its width
wi > 0 and height hi > 0. When the scale factor is σ, the size of
�i is wiσ × hiσ.

Each label is placed such that a point called an anchor point co-
incides with the corresponding point pi (Fig. 2 (a)). The anchor

Fig. 1 Example of the label size maximization problem for rotating maps.

A preliminary version was presented at the 25th Canadian Conference
on Computational Geometry (CCCG 2013) [24].
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Fig. 2 Definitions.

Table 1 Our results (running time). All solvable problems can be solved in
O(n) space.

Rectangle shape MSR MSBR
Unit squares O(n log n) O(n log n) (Corollary 5)
Squares (Theorem 4) O(n log n) (Theorem 11)
Unit-height rectangles O(n log n) O(n log n) (Corollary 9)

Rectangles
(Theorem 6) O(n log n)

(1/2-approx., Theorem 13)

point is inside the label �i or on its boundary. When the label �i
is fixed in place, we say that it is anchored at pi. While M fully
rotates from 0 to 2π with the anchor points touching the corre-
sponding points, the labels are placed horizontally, and should not
intersect each other. Our problem is to find the maximum scale

factor σ∗ such that the labels do not intersect, and to determine
the placing of the anchor points. In ordinary map labeling, each
label is placed such that the anchor point is on the boundary of
its label. However, we also consider the case in which the point
is inside the label. We call the former problem the maximiza-

tion problem of the size of labels with boundary anchor points on

rotating maps (MSBR), and the latter problem the maximization

problem of the size of labels on rotating maps (MSR). This for-
mulation for dynamic maps is a natural extension of the label size
maximization problem for static maps.

Our results are summarized in Table 1. We address several
rectangular label shapes (e.g., unit squares and unit-height rect-
angles). Static label size maximization is NP-hard [9] even if all
labels have a unit square shape. However, surprisingly, MSR and
MSBR can be solved in polynomial time for several label shapes.

In the following, we treat the clockwise rotation of M as the
counterclockwise rotation of the labels around their anchor points
(Fig. 2 (b)). Both rotations are equivalent and yield exactly the
same results. Gemsa et al. [12] used the same manner.

1.2 Related Work
In map labeling, two models have been considered with re-

spect to the number of label candidates for each point: the fixed-

position model [9] and the slider model [22]. In both models, each
label is placed such that the corresponding point is on the bound-
ary of the label. The fixed-position model has a finite number of
label candidates (e.g., the 2- and 4-position models). The label
candidates of the slider model are the specified sides of the labels
(e.g., in the 2-slider model, two sides of the label serve as a set of
label candidates).

It is known that static label size maximization problems, ex-
cept for the 1- and 2-position models, are APX-hard, even for
unit square labels [9]. Constant-factor approximation algorithms
have been obtained for axis-parallel square and rectangular la-
bels [9], [14]. Further, Doddi et al. [7] have examined unit

square labels with different orientations, and Zhu and Qin [26]
have considered the case in which all the square labels have the
same orientation. Furthermore, static label number maximiza-
tion problems in several models are known to be NP-hard (e.g.,
Refs. [9], [22]). Therefore, many approximation algorithms have
already been presented (e.g., Refs. [1], [22]).

In dynamic map labeling, Been et al. [2] have provided consis-
tency desiderata, which are that labels should not pop and jump
during panning and zooming. Been et al. [3] treated the problems
of maximizing sum of active ranges, where the active range of
a label � is a contiguous range of the map scales at which � is
displayed. Moreover, these problems require that the labels are
pairwise disjoint at any scale and satisfy the consistency desider-
ata. Been et al. have proven that their problems for points in the
plane are NP-hard, and presented several exact and approxima-
tion algorithms for points in 1D and 2D. Liao et al. [15] have
presented several approximation algorithms for several settings
of this problem. Gemsa et al. [11] have extended the above prob-
lems to the slider model, and have also dealt with selecting the
slider positions. Zhang et al. [25] have presented an approxima-
tion algorithm for the problem of maximizing the minimum ac-
tive range. Moreover, Gemsa et al. [12] have considered similar
dynamic map labeling for rotating maps. They have also proven
that this problem is NP-hard, and presented approximation al-
gorithms. For the same problem, Gemsa et al. [13] compared
the approximation algorithm, heuristics, and a deterministic al-
gorithm experimentally. Furthermore, Gemsa et al. [10] extended
this problem to the trajectory of a point. Although the above prob-
lems have mainly been basically considered for the 1-position
model, Buchin and Gerrits [5] showed that dynamic map labeling
for 4-position, 2-slider, or 4-slider models is strongly PSPACE-
complete.

In the circular labeling problem [19], the corresponding point
in the plane is on the boundary of the circular label. However,
in MSR and MSBR, during rotating the map, the anchor point is
inside the label or on its boundary, and it may not be on the circle
obtained by rotating the label.

2. Properties

In this section, first, we investigate locations of anchor points
such that the scale factor is maximized. Next, for these locations,
we calculate the maximum scale factor.

Let �p be a label anchored at a point p with initial width wp

and initial height hp. Further, the top-left, top-right, bottom-left,
and bottom-right points of � rotated by angle 0 are denoted by vtl,
vtr, vbl, and vbr, respectively. The segments passing through p are
drawn in parallel with the edges of �p. We assume that p divides
the horizontal segment and vertical segment internally with the
ratios lp : rp (where rp = 1 − lp) and tp : bp (where bp = 1 − tp),
respectively (Fig. 2 (c)). We define each parameter for a point p′

in the same way. Thus, �p′ is the label of p′. wp′ and hp′ are the
initial width and initial height of �p′ , respectively. Moreover, the
parameters of �p′ are defined as v′tl, v

′
tr, v

′
bl, v

′
br, lp′ , rp′ , tp′ and bp′ ,

respectively. Finally, let dpp′ be the distance between p and p′,
and σpp′ be the maximum scale factor for p and p′.
Lemma 1. Let �p and �p′ be two labels, which are anchored at
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Fig. 3 Four possible cases in which the corner points of the two labels �p
and �p′ intersect.

Fig. 4 The case in which vtl = v′br .

points p and p′, respectively. �p and �p′ can be placed with the

maximum scale factor σpp′ if and only if the anchor points of �p

and �p′ satisfy (1 − 2lp)wp = (1 − 2lp′ )wp′ and (1 − 2tp)hp =

(1 − 2tp′ )hp′ .

Proof. Without loss of generality, we assume that p and p′ lie on
a horizontal line. Let σ be the scale factor for p and p′. Note that
�p and �p′ touch at their corner points for some rotation θ. Other-
wise, if �p and �p′ touch on their boundary segments, they over-
lap by slight rotation. Moreover, �p and �p′ are parallel. There-
fore, there are only the following four possible cases: vbr = v

′
tl,

vbl = v
′
tr, vtl = v

′
br, and vtr = v′bl (Fig. 3).

We consider the case in which vtl = v′br (Fig. 4). Since �p and
�p′ are parallel, we have (lpwpσ + (1 − lp′ )wp′σ)2 + (tphpσ + (1 −
tp′ )hp′σ)2 ≤ d2

pp′ . Therefore,

σ ≤ dpp′/
√

(lpwp+(1−lp′ )wp′ )2+(tphp+(1−tp′ )hp′ )2. (1)

In the same manner, if vtr = v′bl,

σ ≤ dpp′/
√

((1−lp)wp+lp′wp′ )2+(tphp+(1−tp′ )hp′ )2, (2)

if vbr = v
′
tl,

σ ≤ dpp′/
√

((1−lp)wp+lp′wp′ )2+((1−tp)hp+tp′hp′ )2, (3)

and if vbl = v
′
tr,

σ ≤ dpp′/
√

(lpwp+(1−lp′ )wp′ )2+((1−tp)hp+tp′hp′ )2. (4)

First, we focus on the inequalities (1) and (2). As the denomi-
nators of the right-hand sides of inequalities (1) and (2) decrease,
the maximum possible σ increases. (tphp + (1 − tp′ )hp′ )2 ap-
pears on the right-hand sides of both inequalities (1) and (2). The
smaller (lpwp + (1 − lp′ )wp′ )2 is, the greater ((1 − lp)wp + lp′wp′ )2

is. Therefore, if (lpwp+ (1− lp′ )wp′ )2 = ((1− lp)wp+ lp′wp′ )2, σ is
maximized among values satisfying inequalities (1) and (2). This
condition is equivalent to the equation (1−2lp)wp = (1−2lp′ )wp′ .
We can obtain the same result for the inequalities (3) and (4).

Similarly, we focus on the inequalities (1) and (4). If (1 −

2tp)hp = (1 − 2tp′ )hp′ , σ is maximized among values satisfy-
ing inequalities (1) and (4). The above two equations are satis-
fied simultaneously. This argument is also satisfied for inequal-
ities (2) and (3). Therefore, if (1 − 2lp)wp = (1 − 2lp′ )wp′ and
(1 − 2tp)hp = (1 − 2tp′ )hp′ , σ is the maximum scale factor σpp′ .

The converse is also true. �
From Lemma 1, we can obtain the following lemma.

Lemma 2. For given points p and p′ with labels �p and �p′ , re-

spectively, if the anchor point of each label is the intersection

of two diagonals of the label, �p and �p′ can be placed with the

maximum scale factor σpp′ .

Proof. Let p and p′ be two points. In the case in which the an-
chor points lie in the label centers, lp = tp = lp′ = tp′ = 1/2.
Therefore, (1 − 2 × 1/2)wp = (1 − 2 × 1/2)wp′ = 0 and
(1 − 2 × 1/2)hp = (1 − 2 × 1/2)hp′ = 0. The conditions pre-
sented in Lemma 1 are satisfied and, hence, the scale factor σpp′

is maximized. �
From Lemma 2, the maximum scale factor σpp′ of MSR for

p and p′ is 2dpp′/
√

(wp + wp′ )2 + (hp + hp′ )2. Therefore, we can
solve MSR for more than two points by computing the maximum
scale factor σi j for all point pairs pi and p j, and by choosing the
minimum among those. This naı̈ve algorithm runs in Θ(n2) time.
Moreover, if all label heights (or label widths) are equal, we ob-
tain the following proposition.
Proposition 3. MSBR with unit-height (or unit-width) rectangu-

lar labels can be solved in Θ(n2) time.

Proof. The naı̈ve algorithm of MSR gives the maximum scale
factor σ∗ for the unit-height rectangular labels. We consider the
points obtained by translating the anchor points placed at the cen-
ter of rectangles in MSR to either one of the top and bottom (for
unit-width rectangular labels, left and right) boundaries. Those
points satisfy inequalities (1)–(4) in Lemma 1. Therefore, those
points are the anchor points in MSBR and σ∗ is also the maxi-
mum scale factor in MSBR . �

In the following sections, we improve the time complexity of
these algorithms for MSR and MSBR to O(n log n).

3. MSR with Square Labels

When all the labels are squares, the problem has a strong con-
nection to the weighted closest pair problem [8]: The input is a
set of disks. Each disk has a point in P as its center, a weight W,
and a radius Wσ, where σ is a scale factor. The goal is to find the
maximum scale factor σ∗ such that the disks are pairwise disjoint.
Theorem 4. MSR with square labels can be solved in O(n log n)
time and O(n) space.

Proof. Let p and p′ be two points having square labels, and ly-
ing on a horizontal line. Let σpp′ be the maximum scale factor
for p and p′. Since the labels are square, we have wp = hp and
wp′ = hp′ . When the labels are anchored at p and p′ so that
their anchor points are their centers (by Lemma 2), the distance
between p and p′ is

√
2

2 (w + w′)σpp′ . Then, σpp′ is determined
by the angles π/4, 3π/4, 5π/4, and 7π/4. We consider the disks
drawn by fully rotating the square labels around p and p′. Then,
the maximum scale factor σpp′ is obtained by maximizing the
disk sizes such that they are pairwise disjoint.

Therefore, MSR with square labels is regarded as the weighted
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closest pair problem with weight W =
√

2
2 wp for each point p.

For the weighted closest pair problem, Formann [8] has presented
an O(n log n)-time and O(n)-space algorithm based on a plane
sweep. Therefore, this completes the proof. �
Corollary 5. MSBR with unit square labels can be solved in

O(n log n) time and O(n) space.

4. MSR with Rectangular Labels

The algorithm of square labels does not work directly for the
rectangular labels because the disks obtained by sweeping the
rectangular labels around their anchor points can intersect when
the scale factor is maximized. However, Formann’s idea [8] used
in the weighted closest pair problem can be modified for MSR

and MSBR with arbitrary and unit-height rectangular labels, re-
spectively. First, our modified algorithm overestimates the max-
imum scale factor, and then fixes the maximum value using the
intersection graph of the disks drawn by full rotation of the labels.
In the algorithm, we use the Delaunay triangulation [6], [17] of
P, DT(P), which is a triangulation with the empty circle property:
For any triangle T in DT(P), the circumcircle of T contains no
points of P in its interior. We call a triangle of DT(P) a Delaunay

triangle. When points p and q are vertices of a Delaunay triangle
in DT(P), q is called a neighbor of p.

Our algorithm can be described as Algorithm 1.
The following theorem shows the correctness of Algorithm 1

and its complexity. In the following, let Dp be the disk centered at

p in Step 3 of Algorithm 1, and let Rp be its radius σpre

2

√
w2

p + h2
p.

Theorem 6. MSR can be solved in O(n log n) time and O(n)
space.

In order to prove Theorem 6, we present first some lemmas.
Lemma 7. Each disk obtained after Step 3 of Algorithm 1 con-

tains no points in P other than its center point.

Proof. For each p ∈ P, let Dp be the disk with center p and

radius Rp =
σpre

2

√
w2

p + h2
p. From the definition of σpre, the la-

bels of p and q do not intersect during rotation for a neighbor q.
Therefore, Dp cannot contain neighbors of p. In the Delaunay tri-
angulation, the nearest point q of p is a neighbor of p in DT(P).
Therefore, the radius of Dp is less than |pq|. Hence, Dp cannot
contain points that are not neighbors of p in DT(P). �
Lemma 8. The number of intersecting pairs in the set of disks

obtained at Step 3 of Algorithm 1 is at most 3n − 6.

Proof. First, we draw straight-line segments between the points
for which the closed disks intersect at Step 3 of Algorithm 1. We
will show that the straight-line graph G having the line segments
as edges is planar. We consider the case in which two closed

Algorithm 1 Algorithm for MSR.
1: Compute DT(P) for P.

2: For each point p, calculate the maximum scale factor σp with all the

neighbors in DT(P). Take the minimum scale factor σpre = minp∈P σp of

all the scale factors.

3: For each point p ∈ P, draw a closed disk with center p and radius
σpre

2

√
w2

p + h2
p. Enumerate all intersections of disks using the standard

intersection detection algorithm of Bentley and Ottmann [4].

4: Calculate the maximum scale factor for all intersections of disks, and

take the minimum value among them as σ∗.

disks Dp and Dp′ intersect. In G, p and p′ are connected by a
straight-line edge. If there is no other disk Dq centered at a point
q � p, p′, which intersects the line segment pp′, no two line seg-
ments in G intersect without endpoints. This shows that the graph
G is planar.

Without loss of generality, we assume that p and p′ lie on a hor-
izontal line and that the x-coordinate of p′ is greater than that of
p (Fig. 5). We denote the x- and y-coordinates of p and p′ by xp,
yp, xp′ , and yp′ , respectively. We denote the x- and y-coordinates
of the other points in the same manner. Let s be the intersec-
tion of the boundary of Dp and pp′. In the following, we assume
0 = xp ≤ xq ≤ xs and 0 = yp = yp′ ≤ yq. q is in the shaded area
in Fig. 5. When xq < 0 or xp′ < xq, Dp cannot intersect pp′, by
Lemma 7. Moreover, when yq < 0 = yp = yp′ or xs < xq ≤ xp′ ,
these cases can be proven in the same manner.

We consider the cases that q is or is not a neighbor of p in
DT(P) separately.
Case 1: q is a neighbor of p in DT(P).

We denote σpre

2

√
(wp + wq)2 + (hp + hq)2 by R̃pq. In this case,

by the definition of σpre, we have |pq| ≥ R̃pq. Moreover, since
wq, hq > 0, R̃pq is greater than Rp. Let C̃pq be a circle centered
at p with radius R̃pq. C̃pq is shown as a dotted circle in Fig. 6.
Note that the vertical distance between q and pp′ is greater than
or equal to the length of a vertical straight segment from s to C̃pq.
Then, we consider the case in which xq = xs. Because |pq| ≥ R̃pq

and |ps| = Rp =
σpre

2

√
w2

p + h2
p, we have that

|sq|2 = |pq|2 − |ps|2

≥
(σpre

2

)2
((wp + wq)2 + (hp + hq)2)

−
(σpre

2

)2
(w2

p + h2
p)

=

(σpre

2

)2
(w2

q + h2
q + 2wpwq + 2hphq).

Since Rq =
σpre

2

√
w2

q + h2
q and wp, hp, wq, hq > 0, we have that

|sq|2 − R2
q ≥

(
σpre

2

)2
(2wpwq + 2hphq) > 0. Therefore, Dq cannot

intersect pp′.
Case 2: q is not a neighbor of p in DT(P).

In this case, we can show that there is a Delaunay triangle with
p whose circumcircle contains pp′ ∩Dp in the following manner.
If p′ is a neighbor of p in DT(P), the circumcircle of a Delaunay

Fig. 5 Assumption of Lemma 8.

Fig. 6 Case 1 of Lemma 8.
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Fig. 7 Case 2-1 of Lemma 8.

Fig. 8 Case 2-2a of Lemma 8.

triangle that has the edge pp′ completely contains pp′ ∩ Dp. If
p′ is not a neighbor of p in DT(P), there is a Delaunay trian-
gle 
pvv′ that has an edge that intersects the inside of pp′. Since
v, v′ � Dp by Lemma 7, the circumcircle of 
pvv′ completely con-
tains pp′ ∩ Dp. Therefore, we consider such a Delaunay triangle

pvv′. In this case, v′ might be p′. Without loss of generality, we
assume that yv > 0 and yv′ ≤ 0. Further, let t be the intersection
point of the circumcircle of 
pvv′ and pp′. Since the circumcircle
contains pp′ ∩ Dp regardless of whether p′ is a neighbor of p in
DT(P), we have xq ≤ xs < xt. In the case xv = xq, since yv < yq

and by Lemma 7, Dq cannot intersect pp′. Therefore, we con-
sider two cases: xv < xq ≤ xs and xq < xv < xs. In the following,
we denote the closed disk whose boundary is the circumcircle of

pvv′ by D
.
Case 2-1: xv < xq ≤ xs.

Let r be the intersection of pp′ and a perpendicular from q to
pp′ (Fig. 7). Since D
 completely contains pp′ ∩ Dp, xr ≤ xs <

xt. Because ∠prq = π/2 and xt − xs > 0, ∠ptq < π/2. Moreover,
since q � D
 by the empty circle property, ∠pvq + ∠ptq ≥ π.
Therefore, we have ∠pvq ≥ π − ∠ptq > π/2. Because r ∈ Dp

and v � Dp, |pr| < |pv| and ∠pvr ≤ ∠prv. Then, we have
∠qvr = ∠pvq − ∠pvr > π/2 − ∠prv = ∠qrv. Therefore, we have
|qv| < |qr|. Since Rq < |qv| by Lemma 7, Dq cannot contain r.
Therefore, Dq cannot intersect pp′.
Case 2-2: xq < xv < xs.

First, we show that there is a Delaunay triangle 
puu′ such that
xu ≤ xq ≤ xu′ . Since q is not a neighbor of p in DT(P), there is
a Delaunay triangle 
pzz′ that has an edge zz′ that intersects pq

at an interior point of pq. Moreover, v is a vertex of a Delaunay
triangle that has p as its vertex. Since p is in the polygon con-
sisting of Delaunay triangles that have p as their vertex, when we
visit the Delaunay triangles clockwise from 
pzz′ to 
pvv′, there
is a Delaunay triangle 
puu′ that satisfies the condition. In the
following, we denote the closed disk whose boundary is the cir-
cumcircle of 
puu′ by D
′ , and the boundary of D
′ by C
′ . We
consider two cases r ∈ D
′ \C
′ and r � D
′ \C
′ .
Case 2-2a: r ∈ D
′ \C
′ .

Let t′ be the intersection of C
′ and the inside of pp′ (Fig. 8).
Since r ∈ D
′ \ C
′ , we have xr < xt′ . Therefore, we can use
the same proof as for Case 2-1 by replacing u and t′ with v and t,
respectively. It is shown that Dq cannot intersect pp′.

Fig. 9 Case 2-2b of Lemma 8.

Case 2-2b: r � D
′ \C
′ .
In this case, we consider the quadrilateral uqu′r (Fig. 9). By

Lemma 7, u is not contained inside Dq. Therefore, if Dq in-
tersects pp′, |qr| ≤ Rq < |qu| or |qr| ≤ Rq < |qu′|. First, we
consider the case |qr| ≤ Rq < |qu|. Since ∠qur < ∠qru in

qur, we have ∠qur < π/2. Since q and r are outside D
′ , we
have ∠qu′r + ∠qur ≥ π. Therefore, we have ∠qu′r > π/2 and
∠qru′ < π/2. This means that |qu′| < |qr| ≤ Rq and u′ is inside
Dq. This contradicts Lemma 7. The case |qr| ≤ Rq < |qu′| can
be proven in the same manner. Therefore, Dq cannot intersect
pp′. �
Proof of Theorem 6. First, we show the correctness. From the
definition of σpre in Step 2 of Algorithm 1, two labels whose cor-
responding points are neighbors in DT(P) do not intersect. In
Step 4, the disks can be drawn by fully rotating the labels from 0
to 2π. Each label has the anchor point at its center, and is scaled
by σpre. Moreover, since σpre ≥ σ∗, we can obtain σ∗ by check-
ing the intersecting disks.

Next, we show the complexity. Step 1 can be computed in
O(n log n) time and O(n) space [6], [17]. Step 2 calculates the
maximum scale factor between neighbors in DT(P). Since the
number of edges in Delaunay triangulation is O(n), Step 2 can be
computed in O(n) time and O(1) space. In Step 3, the algorithm
of Bentley and Ottmann [4] can be computed in O((n + K) log n)
time and O(n + K) space, where K is the number of intersect-
ing pairs. Moreover, Step 4 can be computed in O(K) time and
O(1) space. Since K ≤ 3n − 6 by Lemma 8, this completes the
proof. �
Corollary 9. MSBR with unit-height (or unit-width) rectangular

labels can be solved in O(n log n) time and O(n) space.

From Theorem 4, MSR and MSBR are generalizations of the
closest pair problem. The time complexity of this problem is
bounded by Ω(n log n) [17], which may also apply to our prob-
lems.

5. MSBR with Square Labels

In this section, we describe the O(n log n)-time algorithm for
MSBR with arbitrary square labels (MSBRwS). First, we show
locations of the anchor points when the scale factor is maximized
for this problem.
Lemma 10. For given points p and p′ with respective labels �p

and �p′ , if the anchor point of each label is at the center of the

left side of the label, �p and �p′ can be placed using the maximum

scale factor σpp′ for MSBRwS .

Proof. In this problem, since the width wp of the label �p is iden-
tical to the height hp, we denote the height as wp. Similarly, the
height of the label �p′ is denoted as wp′ . Without loss of gener-
ality, we assume that p and p′ lie on a horizontal line, that the
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x-coordinate of p′ is greater than that of p, and that wp is less
than or equal to wp′ .

In MSBR, the anchor points must lie on the boundaries of their
labels. Therefore, at least one of the conditions lp = 0, lp = 1,
tp = 0, and tp = 1 is satisfied. Moreover, for square labels, the
four cases are equivalent, because each case can be transformed
to the other cases by rotating the map. Therefore, we consider
lp = 0 only. Similarly, for the label �p′ , at least one of the condi-
tions lp′ = 0, lp′ = 1, tp′ = 0, and tp′ = 1 is satisfied. Therefore,
we consider the following four possible cases.
Case 1: lp = 0 and lp′ = 0.

In this case, inequalities (1)–(4) can be expressed as follows:

σ ≤ dpp′/
√
w2

p′+(tpwp+(1−tp′ )wp′ )2, (5)

σ ≤ dpp′/
√
w2

p+(tpwp+(1−tp′ )wp′ )2, (6)

σ ≤ dpp′/
√
w2

p+((1−tp)wp+tp′wp′ )2, (7)

σ ≤ dpp′/
√
w2

p′+((1−tp)wp+tp′wp′ )2. (8)

Since wp < wp′ , we consider inequalities (5) and (8) only. If
(1 − 2tp)wp = (1 − 2tp′ )wp′ , σ is maximized among the val-
ues that satisfy inequalities (5)–(8) in the same manner as for
Lemma 1. Therefore, in this case, the maximum scale factor is

dpp′/
√
w2

p′ + ( 1
2 (wp + wp′ ))2.

Case 2: lp = 0 and lp′ = 1.
Inequalities (1)–(4) are expressed as follows:

σ ≤ dpp′/
√

(tpwp+(1−tp′ )wp′ )2,

σ ≤ dpp′/
√

(wp+wp′ )2+(tpwp+(1−tp′ )wp′ )2,

σ ≤ dpp′/
√

(wp+wp′ )2+((1−tp)wp+tp′wp′ )2,

σ ≤ dpp′/
√

((1−tp)wp+tp′wp′ )2.

In the same manner as for Case 1, σ is maximized when (1 −
2tp)wp = (1− 2tp′ )wp′ . Furthermore, the maximum scale factor is

dpp′/
√

(wp + wp′ )2 + ( 1
2 (wp + wp′ ))2.

Case 3: lp = 0 and tp′ = 0.
Inequalities (1)–(4) are expressed as follows:

σ ≤ dpp′/
√

((1−lp′ )wp′ )2+(tpwp+wp′ )2, (9)

σ ≤ dpp′/
√

(wp+lp′wp′ )2+(tpwp+wp′ )2, (10)

σ ≤ dpp′/
√

(wp+lp′wp′ )2+((1−tp)wp)2, (11)

σ ≤ dpp′/
√

((1−lp′ )wp′ )2+((1−tp)wp)2. (12)

First, we focus on inequalities (9) and (10). If ((1 − lp′ )wp′ )2 =

(wp + lp′wp′ )2, σ is maximized among values that satisfy inequal-
ities (9) and (10). This condition is equivalent to the equation
lp′ = (1− wp/wp′ )/2. Similarly, for the case in which inequalities
(9) and (12) are satisfied, if tp = (1 − wp′/wp)/2, σ is maxi-
mized among values that satisfy inequalities (9) and (12). Since
wp ≤ wp′ from the hypothesis, we consider the cases wp = wp′

and wp < wp′ separately. If wp = wp′ , tp = 0. Otherwise,
tp becomes negative, which is impossible. Therefore, even for

Algorithm 2 Algorithm for MSBRwS.
1: Compute DT(P) for P.

2: For each point p, calculate the maximum scale factor σp with all the

neighbors in DT(P). Take the minimum scale factor σpre = minp∈P σp of

all the scale factors.

3: For each point p ∈ P, draw a closed disk with center p and radius√
5

2 wpσpre. Enumerate all intersections of disks using the standard in-

tersection detection algorithm of Bentley and Ottmann [4].

4: Calculate the maximum scale factor for all intersections of disks, and

take the minimum value among them as σ∗.

this case, σ is maximized if tp = 0. Since the above two con-
ditions are satisfied simultaneously, the maximum scale factor is

dpp′/
√

( 1
2 (wp + wp′ ))2 + w2

p′ .
Case 4: lp = 0 and tp′ = 1.

In the same manner as that used for case 3, if lp′ = (1 −
wp/wp′ )/2 and tp = 1, σ is maximized and the value is

dpp′/
√

( 1
2 (wp + wp′ ))2 + w2

p′ .
From above, the maximum scale factors of Cases 1, 3, and 4

are identical, and are greater than that of Case 2. Therefore, in
Cases 1, 3, and 4, there are anchor points that maximize the scale
factor among all possible cases. Furthermore, in Case 1, the equa-
tion of the anchor points, that maximizes the scale factor contains
tp = tp′ = 1/2. This completes the proof. �

From Lemma 10, the maximum scale factor of MSBRwS for

two points p and p′ is dpp′/
√
w2

p′ + ( 1
2 (wp + wp′ ))2, and we can

solve MSBRwS for more than two points using the naı̈ve Θ(n2)-
time algorithm, as described in Section 2. In the following, we
present the O(n log n)-time algorithm.

The O(n log n)-time algorithm can be described as shown in
Algorithm 2, and is mostly identical to Algorithm 1. The differ-
ence is that the maximum scale factor is calculated for two points
in Steps 2 and 4 using the anchor points obtained in Lemma 10,
and the radius of each disk in Step 3, where the radii are also
obtained from Lemma 10.
Theorem 11. Algorithm 2 can solve MSBRwS in O(n log n) time

and O(n) space.

Proof. Essentially, the proof of this theorem is identical to that
for Theorem 6. In Algorithm 2, however, Lemma 8 does not hold.
Therefore, the following shows that the number of intersecting
pairs obtained at Step 3 of Algorithm 2 is O(n).

In order to demonstrate this point, we use the sphere-of-

influence graph (SIG) [21] of P. The vertex set of SIG is P. The
edge set consists of edges connecting two vertices whose nearest-
neighbor circles intersect. The nearest-neighbor circle of point p

is a circle centered at p, and the radius is the distance from p to its
nearest-neighbor. Soss [18] has proven that the number of edges
in SIG is at most 15n.

As in Lemma 8, we consider the straight-line graph constructed
by connecting two points, if the disks intersect at Step 3 of Algo-
rithm 2. From Lemma 7, each disk is smaller than the nearest-
neighbor circle. Therefore, the number of edges in the graph is
also at most 15n, and this proof is completed. �

The above proof can be also applied to Algorithm 1. How-
ever, the proof in Theorem 6 indicates that MSR and MSBR with
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unit-height rectangular labels can be solved faster than MSBRwS

actually. Furthermore, as an alternative approach to solve MSBR,
we can consider the following algorithm: First, construct SIG
from P. Then, for each edge of SIG, calculate the maximum
scale factor for its end points and choose the minimum among
them. The algorithm to construct SIG, which is not described
precisely [20], may be similar with Algorithm 2. Therefore, we
think our algorithm can solve MSBRwS faster than the alternative
algorithm actually because the number of edges in the intersec-
tion graph constructed in the proof of Theorem 11 is actually less
than the number of edges in SIG.

6. MSBR with Rectangular Labels

In this section, we describe the 1/2-approximation algorithm
for MSBR with arbitrary rectangular labels. First, we show the
locations of anchor points using the algorithm, and then we de-
scribe the algorithm itself, which is also mostly identical to Al-
gorithm 1.
Lemma 12. For all points, the anchor point of each label is

placed at the center of the left side of the label. Then, the maxi-

mum scale factor for this placement is greater than half the max-

imum scale factor for MSBR .

Proof. First, we consider MSBR for two points p and p′. With-
out loss of generality, we assume wp ≤ w′p. If the anchor point for
each label is at the center of its left side, inequalities (1)–(4) are
expressed as follows:

σ ≤ dpp′/

√
w2

p′ +

(
1
2

(hp + hp′ )

)2

,

σ ≤ dpp′/

√
w2

p +

(
1
2

(hp + hp′ )

)2

.

Since wp ≤ w′p, dpp′/
√
w2

p′ + ( 1
2 (hp + hp′ ))2 is the max-

imum scale factor for two points. For more than
two points, therefore, the maximum scale factor is

min
{

dpp′/
√
w2

p′ + ( 1
2 (hp + hp′ ))2 p, p′ ∈ P

}
, if the anchor

point of each label is at the center of its left side. We denote this
value by σLC.

Furthermore, from Section 2, the maximum scale factor σMSR

for MSR with arbitrary rectangular labels is

min
{

2dpp′/
√

(wp + wp′ )2 + (hp + hp′ )2 p, p′ ∈ P
}
.

Since the maximum scale factor σMSBR is less than or equal to
σMSR,

σLC = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩ dpp′/

√
w2

p′ +

(
1
2

(hp + hp′ )

)2

p, p′ ∈ P

⎫⎪⎪⎪⎬⎪⎪⎪⎭
> min

{
dpp′/

√
(wp+wp′ )2+(hp+hp′ )2 p, p′ ∈ P

}
=

1
2
σMSR ≥ 1

2
σMSBR.

Therefore, this proof is completed. �
By using the above lemma and modifying Algorithm 1 slightly,

we can obtain a 1/2-approximation algorithm for MSBR as de-
scribed in Algorithm 3. As for Algorithm 2, the difference com-
pared to Algorithm 1 is the use of anchor points in Steps 2 and 4,

Algorithm 3 1/2-approximation algorithm for MSBR.
1: Compute DT(P) for P.

2: For each point p, calculate the maximum scale factor σp with all the

neighbors in DT(P). Take the minimum scale factor σpre = minp∈P σp of

all the scale factors.

3: For each point p ∈ P, draw a closed disk with center p and radius

σpre

√
w2

p + ( 1
2 hp)2. Enumerate all intersections of disks using the stan-

dard intersection detection algorithm of Bentley and Ottmann [4].

4: Calculate the maximum scale factor for all intersections of disks, and

take the minimum value among them as σ∗.

and the radius of each disk in Step 3.
From Lemma 12 and the arguments in Theorem 11, the follow-

ing theorem can be obtained.
Theorem 13. Algorithm 3 is a 1/2-approximation, O(n log n)-
time, and O(n)-space algorithm for MSBR .

7. Conclusion

We considered the label size maximization problem for rotat-
ing maps. In general, label size maximization problems for static
maps are APX-hard. However, we showed that the problem can
be solved in polynomial time for rotating maps, and we presented
efficient algorithms for finding the maximum scale factor.

The most interesting open question is whether MSBR with
arbitrary rectangular labels can be solved in polynomial time.
Another further research is label size maximization problems
for other dynamic maps (e.g., zooming map, the trajectory of a
point).
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