
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

Searching with Advice: Robot Fence-Jumping

Kostantinos Georgiou1,a) Evangelos Kranakis2,b) Alexandra Steau2,c)

Received: October 31, 2016, Accepted: March 3, 2017

Abstract: We study a new problem concerning search in the plane involving a robot and an immobile treasure, ini-
tially placed at distance 1 from each other. The length β of an arc (a fence) which is placed within the perimeter of the
disk centered at the initial position of the robot, as well as the promise that the treasure is outside the fence, is given as
part of the input. The goal is to devise movement trajectories so that the robot locates the treasure in minimum time.
Notably, although the presence of the fence limits searching uncertainty, the location of the fence is unknown, and the
worst case analysis is determined adversarially. Nevertheless, the robot has the ability to make cross-cuts by moving in
the interior of the disk. In particular, the robot can attempt a number of chord-jump moves if it happens to be within the
fence or if an endpoint of the fence is discovered. The optimal solution to our question can be obtained as a solution
to a complicated optimization problem, which involves trigonometric functions, and trigonometric equations that do
not admit closed form solutions. For the 1-Jump Algorithm, we fully describe the optimal trajectory, and provide an
analysis of the associated cost as a function of β. Our analysis indicates that the optimal k-Jump Algorithm requires
that the robot has enough memory and computation power to compute the optimal chord-jumps. Motivated by this, we
give an abstract performance analysis for every k-Jump Algorithm. Subsequently, we present a highly efficient Halving
Heuristic k-Jump Algorithm that can effectively approximate the optimal k-Jump Algorithm, with very limited mem-
ory and computation requirements. Further, we explore randomized algorithms and analyze their expected worst-case
performance.

Keywords: disk, fence, optimization, robot, search, speed, treasure

1. Introduction

Geometric search is concerned with finding a target placed in
a geometric region. It has been investigated in many areas of
mathematics, theoretical computer science, and robotics. In each
instance, one aims to provide search algorithms that optimize a
certain cost, which may take into account a variety of important
characteristics and features of the domain, computational abilities
of the searcher, assumptions about the target, etc. In this paper,
we introduce and study fence-jumping search, a new search prob-
lem involving a robot, an unknown stationary fence (barrier), and
an unknown stationary target (or treasure) in the plane.

The location of the treasure is unknown to the robot. However,
the robot has knowledge that at the start it is located at a distance
of 1 (unit) away from the treasure. Equivalently, the treasure is
stationed on the perimeter of a disk (within the known environ-
ment), which is centered at the start point of the robot. A fence,
a given circular arc of length β, is placed on the perimeter of
the disk, whose location is also unknown to the robot. Further,
the robot has the knowledge that the treasure is located on the
perimeter but not on the fence. Depending on its trajectory, the
robot may move along the perimeter of the disk and occasionally,
e.g., when it is within the fence, it may move along a chord, or
as we say to fence-jump, so as to reduce the time necessary to

1 Department of Mathematics, Ryerson University, Toronto, Canada
2 School of Computer Science, Carleton University, Ottawa, Canada
a) konstantinos@ryerson.ca
b) kranakis@scs.carleton.ca
c) AlexandraSteau@cmail.carleton.ca

perform the search. We will analyze several fence-jumping algo-
rithms that will allow us to reach the treasure in minimal time.

We study the fence-jumping search problem for one robot start-
ing at the center of the disk and moving at a constant speed 1.
We assume the treasure is stationary and placed by an adversary
at the beginning of each round depending on the fence location.
The adversary always positions the treasure on the perimeter, but
outside the fence. The robot may move anywhere on the disk in
an attempt to find this treasure; it is also able to use geometric
knowledge so as to decrease the amount of time spent during the
search. That is to say, since the robot knows that the treasure is
not located on the fence, it could try to bypass it by “jumping over
the fence.” The goal of this paper is to determine a trajectory so
that the robot finds the treasure in optimal time.

1.1 Related Work
Search problems were first proposed sixty years ago when

Beck [4] and Bellman [5] asked an important question tied to min-
imizing the optimal search path. Motivated from this, several
search optimization problems have been studied that take into ac-
count several parameters including the use of a fixed [8], [16] or a
mobile target [18], the tools searchers have access to, the number
of searchers, the communication restrictions. Often, the essential
part of the robot activity is the recognition and/or mapping of the
terrain. In the case of a known structure, the main objective of the
search is to minimize the time it takes to find the treasure. Search-

A preliminary extended abstract of this work has appeared in the pro-
ceedings of the 28th Canadian Conference on Computational Geometry
(CCCG ’16) [13].

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

ing for a motionless target has also been studied in the cow-path
problem [4], lost in a forest problem [12], [15] and plane search-
ing problem [2], [3].

In their well known paper [3], Baeza-Yates et al. study the
worst-case time for search involving one robot and a treasure
placed at an unknown location in the line. Useful surveys on
search theory can also be found in Refs. [6] and [10].

Search by multiple robots with communication capabilities has
been considered in Refs. [11], [14], while Refs. [8], [9] study the
evacuation of k robots searching for an exit located on the perime-
ter of a disk. The problem of finding trajectories for obstacle
avoidance in both known and unknown terrains has also been con-
sidered in several papers, including in Refs. [1], [7], [17].

1.2 Outline and Results of the Paper
As a main objective, our approach will have to design algo-

rithms for finding the treasure in optimal time, while adapting to
the fence structure located on the perimeter. This is leading us to
propose algorithms that attempt to deliver the optimal shortcuts
necessary to exit and/or avoid the fence structure.

An outline of our results is as follows. In Section 2, we in-
troduce the basic concepts and analyze a simple search algorithm
for finding the treasure without involving any jumps. In Section 3,
we introduce and analyze the optimal 1-Jump search algorithm.
In Section 4, we propose a generic description of k-Jump algo-
rithms. In Section 5, we study a k-Jump algorithm based on a
halving heuristic, which approximates the optimal jump without
relying on solutions of trigonometric optimization problems. In
Section 6, we contrast the choices and performance of the Halv-
ing k-Jump Algorithm with the choices and performance of the
Optimal k-Jump Algorithm that was obtained using optimization
software packages, for k ≤ 3. In Section 7 we explore random-
ized algorithms. We conclude with Section 8.

2. Preliminary Observations

First we introduce the basic concepts and assumptions of our
model. Initially, we assume that the robot is located in the cen-
ter of the disk with a radius of 1, and a treasure is located on the
perimeter of the disk at distance 1 from the robot. We define this
treasure to be a point on the disk and, thus, does not take any
space on the perimeter. The treasure location is always unknown
to the robot until it moves directly over its point location. That
is to say, the robot has no vision capabilities, in that it becomes
aware of what each point on the disk is, i.e., a fence point, trea-
sure or nothing special, only if the point is visited. The robot
moves at the same speed throughout its search on the disk and
the movement of the robot from the center always takes 1 unit of
time. The robot has the computational power to numerically solve
trigonometric equations through the use of deterministic proces-
sors which possess the required memory for these processes.

Recall that the goal of the robot is to optimize the length of its
trajectory using various types of movements, i.e., the robot may
walk on the fence or even jump over the fence moving along a
chord (within the interior of the disk).

To begin, we provide a naive solution to our treasure finding
problem, which we will then improve with a number of algo-

rithms. In what follows, we denote the length of the fence by β,
given as part of the input. In any deterministic algorithm being
considered, the robot will first move to an arbitrary point on the
perimeter of the disk, thereafter referred to as the basic landing

point, and then it will start moving/searching the disk counter-
clockwise. Algorithm 1 is described below.

Algorithm 1 0-Jump Algorithm
1: Walk to the perimeter of the disk

2: Continue walking on the perimeter counterclockwise

3: if while you are moving outside the fence you reach a fence endpoint

then

4: Jump along the corresponding chord of length

5: 2 sin (β/2)

6: else

7: Walk on perimeter until you find treasure

Our work focuses on algorithms that perform well under worst
case analysis. As such, the performance of any algorithm will be
determined after an adversary decides on the location of both the
basic landing point, the fence itself, and the treasure. For the sake
of exposition, we now present the worst case termination time
depending on the location of the basic landing point.

Lemma 1 The worst case termination time of Algorithm 1
is *1

⎧⎪⎪⎨⎪⎪⎩
c0

0 := 1 + 2π − β + 2 sin (β/2) (Fig. 1 (a))

c0
1 := 1 + 2π (Fig. 1 (b))

where the reference in the right column indicates the Figure
which applies to the case.
Proof. Suppose that the basic landing point is outside the fence,
as seen in Fig. 1 (a), and say that the clockwise distance between
the landing point and the fence is x ∈ (0, 2π − β). It is straight-
forward that the adversary would place the treasure clockwise in
between the landing point and the fence, at a clockwise distance
y ∈ (0, x) from the landing point. Then, for all x ∈ (0, 2π − β) the
cost of the algorithm would be

sup
y∈(0,x)

{1 + 2π − β + 2 sin (β/2) − y} = 1 + 2π − β + 2 sin (β/2) .

In the other case, the landing point is within the fence, as illus-
trated in Fig. 1 (b). Suppose that the clockwise distance between
the landing point and the endpoint of the fence is x ∈ (0, β). Also
suppose that the clockwise distance between the same fence end-
point and the treasure is y ∈ (0, 2π−β). Then, the robot will locate
the treasure in time

sup
x,y
{1 + 2π − x − y} = 1 + 2π.

This proves Lemma 1.
It is intuitive that having the basic landing point outside the

fence is a “favorable event” in that for all β, c0
0 ≤ c0

1. This
follows formally from the fact that the non-negative expression
β − 2 sin (β/2) is increasing in β > 0. Hence, the worst-case per-
formance of Algorithm 1 is 1 + 2π.

*1 The usefulness of notation ci
j for the cost of the algorithm will be trans-

parent in the next sections

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 Basic landing point.

Next, we focus on algorithms that can address the choice of
the adversary placing (basic) landing points within the fence. In
particular, we analyze optimally a special family of intuitive al-
gorithms, called k-jump that perform as follows. First the robot
reaches the perimeter of the disk at an arbitrary point. If that
landing point is within the fence, the robot tries to shortcut along
a carefully chosen chord, and continues for at most k jumps and
as long as the landing points fall within the fence. If any landing
point falls outside the fence, the robot needs to naturally apply a
remedy phase, in which any unexplored critical part is first ex-
plored before the robot continues with its exploration from the
latest landing point. Notice that these algorithms are completely
determined by the length choice of the (at most) k chords, and
this is what we determine optimally.

3. The Optimal 1-Jump Algorithm

In this section we analyze the optimal 1-Jump Algorithm,
which also serves as a warm-up for the analysis of the generic
k-Jump Algorithm. 1-Jump Algorithms are fully determined by
the (unique) chord jump of corresponding arc-length α they make
in case the basic landing point (of the robot) is within the fence.

It is worthwhile discussing the required specifications for the
algorithm to be correct. First, we require the jump to be in “coun-
terclockwise” direction, i.e., that α ≤ π (this also breaks the sym-
metry for the adversarial placements of the fence and the trea-
sure). Second, we further require that the chord jump does not
pass over the area that could hold the treasure, landing back to
the fence. For that, it is of importance that α ≤ 2π − β. To sum-
marize, the 1-Jump Algorithm is fully determined by choosing α
satisfying

0 < α ≤ min{π, 2π − β}.
To resume, Algorithm 2 with parameter α runs similarly to Al-
gorithm 1, except from the case that the last landing of Algo-
rithm 1 (which happens to be the basic one) is within the fence.
If that happens, Algorithm 2 makes a counterclockwise jump cor-
responding to arc length α. If the 1st-jump landing point is in the
fence, then it runs Algorithm 1. Otherwise, the 1st-jump land-
ing point is outside the fence and the robot applies the following
remedy phase: move clockwise along the periphery of the disk
until the endpoint of the fence is found, say at arc distance x, and

then return to the 1st-jump landing point along the corresponding
chord of length 2 sin (x/2), and continue executing Algorithm 1.

Algorithm 2 1-Jump
1: Walk to the perimeter of the disk

2: if your landing point is inside the fence then

3: make a ccw chord jump of arc length α

4: Perform steps 3–7 of Algorithm 1

5: else

6: move cw along perimeter until endpoint of the fence

7: return to jump landing point along corresponding chord

8: continue searching on the perimeter

Lemma 2 Depending on the landing points, the cost of Al-
gorithm 2 with parameter α is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1
0 := 1 + 2π − β + 2 sin (β/2) (Fig. 1 (a))

c1
1 := c1

0 + 4 sin (α/2) − 2 sin (β/2) (Fig. 2 (a))

c1
2 := 1 + 2π − (α − 2 sin (α/2)) (Fig. 2 (b))

(1)

with the understanding that c1
0, c1

1, c1
2 are functions on β and α,

and the reference in the right column indicates the figure which
applies to the case.
Proof. Clearly, if the basic landing point is in the fence, then the
cost of Algorithm 2 c1

0 is equal to cost c0
0 of Algorithm 1 (for the

same case).
Suppose now that the basic landing point is in the fence. Al-

gorithm 2 performs a counterclockwise chord jump of length
2 sin (α/2). We examine two more subcases. In the first sub-
case, the 1st-jump landing point is outside the fence as seen in
Fig. 2 (a), say at clockwise distance x ∈ (0, α) from the fence.
Then the robot follows the remedy phase spending x+ 2 sin (x/2)

more time to come back to the same landing point. Clearly, the
worst positioning of the treasure is to be arbitrarily clockwise
close to the fence. That would make the robot search for an addi-
tional time of 2π − β − x, for a total of

1 + x + 2 sin (x/2) + 2π − β − x = 1 + 2 sin (x/2) + 2π − β.
Since x ≤ α ≤ min{π, 2π−β} and by the monotonicity of sin (x/2)

we see, as promised, that the cost in that case is no more than

sup
0<x<α

{1 + 2 sin (α/2) + 2 sin (x/2) + 2π − β}

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 2 1-Jump Algorithm basic landing point.

= 1 + 4 sin (α/2) + 2π − β
= c1

0 + 4 sin (α/2) − 2 sin (β/2)

In the second subcase, the 1st-jump landing point is in the
fence and is illustrated in Fig. 2 (b). It is not difficult to see that the
worst configuration in this case is when the robot’s basic landing
point is arbitrarily close to the clockwise endpoint of the fence,
while the treasure is arbitrarily close to the same endpoint and
outside the fence. Clearly, in that case the robot traverses the
whole disk, saving only an arc of length α which is jumped over
using the corresponding chord of length 2 sin (α/2). Overall, the
cost in this case becomes 1 + 2π − α + sin (α/2). This completes
the proof of Lemma 2.

Critical to our analysis toward specifying the optimal choice
of α is the solution to a specific equation that does not admit a
closed form. Consider expression α + 2 sin (α/2) which is mono-
tonically increasing. As such, for every β ∈ R, the equation
α + 2 sin (α/2) = β admits a unique solution in α. Motivated
by this observation we write that “αβ is the unique real number
satisfying equation αβ + 2 sin

(
αβ/2

)
= β.”

Moreover, since α + 2 sin (α/2) is increasing in the variable α,
so is αβ in the variable β. We are now ready to define and analyze
the optimal 1-Jump Algorithm.

Theorem 1 Let γ be the unique solution to equation π =
γ − sin (γ/2) (γ ≈ 4.04196). The optimal 1-Jump Algorithm
chooses jump step corresponding to arc length α = αβ if β ≤ γ,
α = 2π − β if β > γ and terminates in time

1 +

⎧⎪⎪⎨⎪⎪⎩
2π − αβ + 2 sin

(
αβ/2

)
if β ≤ γ

β + 2 sin (β/2) if β > γ.
(2)

Proof. By Lemma 2, the optimal 1-Jump Algorithm is determined
by choosing α that minimizes

sup
0<α<min{π,π−β}

{c1
0, c

1
1(α), c1

2(α)},

where in the expression above, we make the dependence on α
explicit. Again, it should be clear that having the basic landing
point outside the fence is a “favorable event.” Intuitively, this is
the only case that the robot makes full use of the fact that the trea-
sure does not lie within the fence, jumping over it and using the
corresponding chord. Effectively, this implies that for all β, α we

have c1
0 ≤ min{c1

1(α), c1
2(α)}.

Next, for any β ∈ (0, 2π) we need to choose α so as to minimize
max{c1

1(α), c1
2(α)}. To that end, note that c1

1, c1
2 exhibit different

monotonicities with respect to α so that, if possible, the minimum
will be attained when the two costs are equal. Equating the two
costs gives that α + 2 sin (α/2) = β. Recall that we have denoted
the unique solution to the equation by αβ which is increasing in
β. Since the jump step needs to stay no more than min{π, 2π− β},
the choice α = αβ (which is the best possible) is valid only when
αβ ≤ min{π, 2π − β}. Numerically we can compute απ ≈ 1.66,
which, due to the monotonicity of αβ, implies that the dominant
constraint is that αβ ≤ 2π − β, and hence any restrictions will be
imposed for β > π. Indeed, setting αβ = 2π − β, and substituting
in αβ + 2 sin

(
αβ/2

)
= β, we obtain 2π − β + 2 sin (π − β/2) = β.

The value of β that satisfies this equation is β ≈ 4.04196.
To resume, as long as β ≤ γ, the best choice for the jump is the

solution to the equation α+2 sin (α/2) = β. When β > γ, the best
jump step is equal to 2π − β.

From the discussion above, the induced cost when β ≤ γ would
be equal to c1

1(αβ), as it reads in Lemma 2. Finally, when β > γ
the induced cost would be

max{c1
1(2π − β), c1

2(2π − β)}
= 1 + 2π +max{4 sin (π − β/2) − β, 2 sin (π − β/2) − 2π + β}
= 1 + 2π + 2 sin (β/2) +max{2 sin (β/2) − β,−2π + β}
= 1 + β + 2 sin (β/2)

where the last equality is due to that β ≥ γ, the definition of γ and
the fact that −2π+ β is increasing in β. This proves Theorem 1.

Notably, the proof of Theorem 1 suggests that for the best strat-
egy α as a function of β, we have that c1

0 ≤ c1
2(α) ≤ c1

1(α). This
was expected, since having the basic landing outside the fence
is intuitively more favourable than having it inside the fence and
without needing the remedy phase, which is more favourable than
needing the remedy phase. It is also interesting to note that for
β ≤ γ, the best jump choice αβ attains values close to β/2. This
suggests an alternative approach to the problem that does not re-
quire the ability to solve technical trigonometric equations, and
that will be explored later. As a result, there arises a nice recur-
sive relation between costs c1

0, c1
1 that is soon to be generalized

for k-Jump Algorithms.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

4. Generic Description of k-Jump Algorithms

Analogously to the previous sections, the k-Jump Algorithm
has parameters α1, . . . , αk and runs similarly to the (k-1)-Jump
Algorithm, except from the case that the last landing point of
the (k-1)-Jump Algorithm (which happens to be the (k-1)st-jump
landing point, if this is realized) is within the fence. If that hap-
pens, the k-Jump Algorithm makes an additional counterclock-
wise jump corresponding to arc length αk. If the kth-jump land-
ing point is in the fence, then it runs Algorithm 1. Otherwise, the
kth-jump landing point is outside the fence, and the robot applies
the remedy phase from Algorithm 2 in Section 3.

Algorithm 3 k-Jump Algorithm
1: Walk to the perimeter of the disk

2: i← 0

3: while landing point is inside the fence & i < k do

4: i← i + 1

5: make a ccw chord jump of arc length αi

6: Perform steps 3–7 of Algorithm 1.

It is clear from the discussion above that any k-Jump Algo-
rithm is specified by the jump steps α1, α2, . . . , αk, where the ith
jump is realized only if the basic landing point, along with the
landing points of the previous i − 1 jumps, fall within the fence.
In order to preclude the possibility that a jump passes over the
area that holds the treasure and bring the robot back to the fence,
we require that αi ≤ β. Moreover, for the jumps to be in counter-
clockwise direction (and to break the symmetry), we also require
that αi ≤ π.

Similarly, for the 1-Jump Algorithm we required that α1 ≤
min{π, 2π − β}. However, according to Theorem 1, the optimal
jump step is less than β (for all β), meaning that the correctness
condition for choosing the jump step could have been replaced
by α1 ≤ min{β, 2π − β}. Indeed, our intuition tells us that an
algorithm, which after the basic landing point within the fence
makes a jump more than the length of the fence, will land out-
side the fence and subsequently will unavoidably need to apply
the (suboptimal) remedy phase. Motivated by this observation,
we require the following condition regarding the step sizes of k-
Jump Algorithm’s: αi ≤ min {π, 2π − β} , i = 1, . . . , k.

The next lemma generalizes Lemma 2 and provides a handy
recurrence description of the cost of the k-Jump Algorithm with
jump steps α1, . . . , αk depending on the first landing point outside
the fence. In this direction, we denote by ck

t to be the worst case
cost of the k-Jump Algorithm when the basic landing point along
with the landing points of the first t − 1 jumps fall all inside the
fence and the robot lands outside the fence in the the tth jump,
which is shown in Fig. 3. Let us observe that, ck

0 is the cost of the
case when the basic landing point is outside the fence, while ck

k+1

corresponds to the case that the landing points of all k jumps, as
well as the basic landing point, fall inside the fence.

Lemma 3 For any β, let α0 = β. Depending on the land-
ing points, the cost of the k-Jump Algorithm with jump steps
α1, . . . , αk is

Fig. 3 k-Jump Algorithm.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ck
0 := 1 + 2π − α0 + 2 sin (α0/2)

ck
t := ck

t−1 + 4 sin (αt/2) − 2 sin (αt−1/2)

ck
k+1 := 1 + 2π −∑k

i=1 (αi − 2 sin (αi/2))

(3)

with the understanding that ck
t are functions on β and α1, . . . , αt−1,

for t = 1, . . . k + 1.
Proof. As previously mentioned, when the basic landing point is
outside the fence, the cost is indeed ck

0 = c0
0. Furthermore, when

all landing points, including the basic one, fall within the fence,
then similarly to the cost c1

2 of Lemma 2, the worst positioning
of the fence makes the basic landing point inside and arbitrar-
ily close to the counterclockwise endpoint of the fence. Mean-
while, the treasure is arbitrarily close to the same endpoint but
outside the fence. Effectively, the robot in this case will traverse
the entire disk counterclockwise, saving from each jump exactly
αi − 2 sin (αi/2), i = 1, . . . , k.

For the most interesting case, we need to compare the costs ck
t ,

ck
t−1, for some t ∈ {1, . . . , k}. In both cases, the worst positioning

of the treasure is arbitrarily close to the clockwise endpoint of the
fence. The worst positioning of the basic landing point should
bring the robot inside, as well as arbitrarily close to the counter-
clockwise endpoint of the fence, so as to induce the maximum
possible remedy phase cost. Note that for the case of cost ck

t ,
the robot traverses twice the chord of length 2 sin (αt/2), but only
once the chord of length 2 sin (αt−1/2). Other than that, in both
cases, the robot performs exactly the same jumps, and search ex-
actly the same sub-perimeter of the disk. This proves Lemma 3.

5. The Halving Heuristic k-Jump Algorithm

In this section, we present a simple heuristic that is meant to
approximate the optimal jump steps without relying on solutions
of trigonometric optimization problems. Most importantly, our
algorithm requires very limited memory and does not need to
perform numerical operations other than simple algebraic manip-
ulations. In fact, only constant many operations are needed to
determine every possible jump size. Moreover, parameter k, i.e.,
the number of jumps, may not necessarily be determined in ad-
vance, and is allowed to be even infinite. First, we present the
algorithm and analyze it. Then, in Section 6, we contrast it to the
Optimal k-Jump Algorithm (for certain values of k).

Closely examining the optimal solution for the 1-Jump Algo-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

rithm in Section 3, we are tempted to choose an alternative first
jump step equal to β/2, which is a good approximation to αβ.
This choice is valid, as long as the jump does not exceed 2π − β,
and indeed for large enough values of β, i.e., for β ≥ 4.041, as per
Theorem 1, the best choice for just one jump is 2π − β. Note that
changing the first jump from αβ to β/2 results to a new threshold
value 4

3π ≈ 4.188 after which the first jump should become 2π−β.
Interestingly, the pattern also repeats in the optimal k-Jump Al-
gorithms (see Section 6).

The previous observation suggests a natural heuristic for k-
Jump Algorithms. First, go to an arbitrary point on the disk.
While on (some unknown position on) the fence, make a valid
jump (i.e., no more than π, 2π−β) equal to half of the unexplored
fence, unless this value exceeds 2π − β in which case the jump
should be 2π − β. Formally, the description of the heuristic fol-
lows if we can determine the length of the chord-jump αi in every
i-th jump, and then invoke Algorithm 3.

Algorithm 4 Halving Heuristic jumps
1: explored ← 0

2: temp← β−explored
2

3: if temp ≤ 2π − β then

4: jump← temp

5: else

6: jump← 2π − β
7: explored ← explored + jump

Note that the calculations of jumps αi can be incorporated
within Algorithm 3 and do not need to be computed in advance.
As the maximum number of jumps can be part of the input, Al-
gorithm 4 can be performed only for k many landings within the
fence (see Algorithm 3), or as long as the the jump step does not
drop below a given threshold. Interestingly, the definition of step
sizes on the fly by Algorithm 4 even allows for k = ∞. That
would correspond to the theoretical case that the robot makes an
infinite number of jumps for which all landings happen within
the fence. Still, the time for the robot to reach the endpoint of the
fence would be finite (Zeno’s paradox).

The process above fully determines the jump step of the t-th
jump as a function of β, for every t = 1, . . . , k, and for every k.
In what follows we provide an analytic description of these val-
ues so that we can analyze the performance of the algorithm. The
lemma below will allow us to derive later a nicer closed formula
for the jump steps of the halving Algorithm.

Lemma 4 Let ht =
2π(t+1)

t+2 for t ≥ 1 and h0 = 0. For any
β ∈ (0, 2π), the value of the i-th jump in the Halving Algorithm
equals

αi =

⎧⎪⎪⎨⎪⎪⎩
jβ−(j−1)2π

2i− j+1 if β ≤ hi and β ∈ (h j−1, h j]
2π − β if β > hi

Proof. We will derive the promised formulas from scratch, with-
out relying on the statement of the lemma. First, note that the pro-
cess above defines natural threshold values hi for β, after which
the i-th jump step αi becomes 2π−β. In particular, the value of αi

will depend on which interval (h j−1, h j] value β belongs to, where
j = 1, . . . k, and with the understanding that αi = 2π − β if β > hi.

Therefore, it is natural to introduce notation

Ai, j := αi, when β ∈ (h j−1, h j]

It is easy to see that if Ai, j = 2π − β then Ar, j = 2π − β for
all r = 1, . . . , i − 1, and in general that Ai, j = 2π − β whenever
j ≥ i+ 1. In other words, A(i, i) is the last expression (in β) for αi

before it becomes 2π− β, while all previous jump steps should be
equal to 2π−β. Since at every step, the algorithm attempts a jump
of half the unexplored fence, right before the i-th jump there has
been explored a total of (i − 1)(2π − β) part of the fence. Hence,

Ai,i =
β − (i − 1)(2π − β)

2
=

iβ − (i − 1)2π
2

The threshold hi is determined by requiring that Ai,i ≤ 2π − β,
from which we obtain that

hi =
2π(i + 1)

i + 2

which is indeed increasing in i.
Our next claim is that

Ai, j =
jβ − (j − 1)2π

2i− j+1
, for all i ≥ j.

The proof is by induction on i − j. Indeed, the claim is true when
i = j. So assume that i = j + t for some t ≥ 1. The explored part
of the fence up to the first (i − 1) jumps is equal to

i−1∑
r=1

Ar, j =

j−1∑
r=1

Ar, j +

j+t−1∑
r= j

Ar, j

= (j − 1)(2π − β) +
j+t−1∑
r= j

jβ − (j − 1)2π
2r− j+1

= (j − 1)(2π − β) +
(
1 − 1

2t

)
(2π(j − 1) − jβ)

=
β
(
2t − j

)
+ 2π(j − 1)
2t

.

According to the Halving Algorithm, the i-th jump step will be
exactly half of the unexplored fence, if that value does not exceed
h j. Indeed, the candidate step size is

β − β(2t− j)+2π(j−1)
2t

2
=

jβ − (j − 1)2π
2t+1

=
jβ − (j − 1)2π

2i− j+1

= Ai, j.

Finally, for this jump to be valid, we need to show that 0 <
Ai, j ≤ 2π − β. To that end, recall that Ai, j corresponds to the i-th
jump when h j−1 < β ≤ h j, i.e., when 2π j

j+1 < β ≤ 2π(j+1)
j+2 . Note that

we are in the case where i ≥ j, and so we have β > 2π j
j+1 >

2π(j−1)
j

and hence Ai, j > 0. Also,

2π − β − Ai, j ≥ 2π − 2π(j + 1)
j + 2

− jβ − (j − 1)2π
2i− j+1

≥ 2π − 2π(j + 1)
j + 2

− jβ − (j − 1)2π
2

=
j(2π(j + 1) − β(j + 2))

2(j + 2)
,

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 4 The plot jumps α1 ≥ α2 ≥ . . . ≥ α6 of the Halving Algorithm as a
function of β.

which is again non negative, since β ≤ 2π(j+1)
j+2 , as wanted. This

proves Lemma 4.
We are now ready to present a closed formula for the jump

steps of the Halving Algorithm along with its performance, as a
function on the number of jumps.

Theorem 2 For any β ∈ (0, 2π), let ρβ := max
{

2β−2π
2π−β , 1

}
. The

value of the i-th jump (i ≥ 1) in the Halving Algorithm equals

αi =

⎧⎪⎪⎨⎪⎪⎩
2π − β if i < ρβ
2π−	ρβ
(2π−β)

2i−	ρβ
+1 otherwise

Proof. According to Lemma 4, β > hi is satisfied as long as
i < 2β−2π

2π−β . Hence, if i < ρβ we have αi = 2π − β. For the same
reason β ≤ hi if and only if i ≥ ρβ, so ρβ is the smallest integer
for which β ≤ hρβ , meaning that β ∈ (hρβ−1, hρβ]. Therefore, again
by Lemma 4, we set j = 	ρβ
 (and rearrange the terms) to derive
the promised formula. This proves Theorem 2.

In Fig. 4, we depict the behaviour of the decreasing sequence
αi (in i) as a function of β for a i = 1, 2, 3, 4, 5 and 6. Notably, for
every k there is some threshold value of β, after which αi = 2π−β
for all i ≤ k.

Finally, we use the closed formula for the jump steps to derive
a closed formula for the cost of the Halving k-Jump Algorithm.
The main idea for the proof is to show that the worst case for
the algorithm is when all k jumps fall within the fence, and that
the performance is strictly decreasing in k. This is what the next
lemma establishes.

Lemma 5 The Halving k-Jump Algorithm incurs the maxi-
mum possible cost when all jump landings (including the basic
one) fall within the fence.
Proof. For the values of αi as defined in Theorem 2, we will
show that the worst configuration is when all k jump landings (to-
gether with the basic one) fall within the fence. In the language
of Lemma 3 we will show that ck

t < ck
t+1 for all t = 0, k. Also note

that ck
k+1 is decreasing in k, in fact no matter what the jump steps

are, since x − sin (x/2) > 0, for all x > 0, which concludes the
lemma.

As already claimed, it is immediate that ck
0 < ci, for all i, since

the cost ck
0 is incurred exactly when the basic landing falls out-

side the fence. Due to the fact that the robot has knowledge of the
length β, the robot can fully avoid the fence by jumping over it.
Next, according to Lemma 3 we have that

ck
t − ck

t−1 = 4 sin (αt/2) − 2 sin (αt−1/2) ,

for all t = 1, . . . , k. In particular, for t < ρβ the jump steps remain
equal to 2π − β > 0, and hence ck

t − ck
t−1 > 0 for all t < ρβ.

When t = 	ρβ
 we have

ck
	ρβ
 − ck

	ρβ
−1 = 4 sin
(
α	ρβ
/2

)
− 2 sin ((2π − β)/2)

= 4 sin

(
π

2
− 	ρβ

4
(2π − β)

)
− 2 sin (β/2)

≥ 4 sin
(
π

2
− ρβ

4
(2π − β)

)
− 2 sin (β/2)

≥ 4 sin

⎛⎜⎜⎜⎜⎜⎜⎝π2 −
2β−2π
2π−β

4
(2π − β)

⎞⎟⎟⎟⎟⎟⎟⎠ − 2 sin (β/2)

= 4 sin (β/2) − 2 sin (β/2) ≥ 0.

When t ≥ 	ρβ
+ 1, the jump steps drop by a factor of two in each
iteration. Since for all x > 0 we have that 2 sin (x/4)− sin (x/2) >
0, we obtain easily that ck

t − ck
t−1 > 0, for t = ρβ + 1, . . . , k.

Hence it remains to show that ck
k+1 > ck. To that end assume

that k ≥ 	ρβ
. Then we have

ck
k+1 − ck

k = β −
k∑

i=1

αi − 2 sin (αk/2)

= β −
⎛⎜⎜⎜⎜⎜⎜⎜⎝(ρβ
 − 1)(2π − β) +

k−	ρβ
∑
i=0

α	ρβ

2i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 2 sin (αk/2)

= β −
(
(ρβ
 − 1)(2π − β) + 2α	ρβ

(
1 − 1

2k−	ρβ
+1

))

− 2 sin (αk/2)

= β −
(
(ρβ
 − 1)(2π − β) + 2

(
π − 	ρβ

2
(2π − β)

)

·
(
1 − 1

2k−	ρβ
+1

))
− 2 sin (αk/2)

=
2π − 	ρβ
(2π − β)

2k−	ρβ
+1
− 2 sin (αk/2) .

Recall that αk =
2π−	ρβ
(2π−β)

2k−	ρβ
+1 , so the last expression is non neg-
ative since x − sin (x/2) > 0 for all x > 0. Finally, for the case
that k < 	ρβ
, and since k is an integer, we have k ≤ ρβ, and so

ck
k+1 − ck

k = β − k(2π − β) − 2 sin (β/2)

≥ β − ρβ(2π − β) − 2 sin (β/2)

= 2π − β − 2 sin (β/2) .

The last expression is non-negative since sin (β/2) =

sin ((2π − β)/2) and x − 2 sin (x/2) > 0, for all x > 0.
We are ready to conclude with the cost of the Halving k-Jump

Algorithm.
Theorem 3 The cost of the Halving k-Jump Algorithm is

strictly decreasing with k and it equals

1 + 2π +
	ρβ
(2π − β) − 2π

2k−	ρβ
+1
+ 2(ρβ
 − 1) sin (β/2)

+ 2
k−	ρβ
∑

i=0

sin
(α	ρβ

2i+1

)
,

where ρβ = max
{

2β−2π
2π−β , 1

}
and α	ρβ
 = π − 	ρβ
2 (2π − β).

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 5 The performance of the Halving Algorithm for 1, 2, 3 and 4 jumps
(decreasing in the number of jumps, respectively) as a function of β.

Proof. Using the terminology of Lemma 3, and by Lemma 5, the
cost of the Halving k-Jump Algorithm equals

ck
k+1 = 1 + 2π − β −

k∑
i=1

(αi − 2 sin (αi/2))

where the jump steps are as determined in Theorem 2. From the
expression above, it is immediate that the cost is strictly increas-
ing in k, as long as all jump steps are positive. Next, we compute
the summation in parts. We have,

β +

k∑
i=1

αi = β +

	ρβ
−1∑
i=1

αi +

k∑
i=	ρβ

αi

= β + (ρβ
 − 1)(2π − β) +
k−	ρβ
∑

i=0

α	ρβ

2i

= β + (ρβ
 − 1)(2π − β) + α	ρβ

(
2 − 1

2k−	ρβ

)

= β + (ρβ
 − 1)(2π − β) +
(
π − 	ρβ

2
(2π − β)

)

·
(
2 − 1

2k−	ρβ

)

=
	ρβ
(2π − β) − 2π

2k−	ρβ
+1
.

Finally,

k∑
i=1

sin (αi/2) =
	ρβ
−1∑

i=1

sin (αi/2) +
k∑

i=	ρβ

sin (αi/2)

= (ρβ
 − 1) sin (β/2) +
k−	ρβ
∑

i=0

sin
(α	ρβ

2i+1

)

Putting the two expression together gives the promised cost. This
proves Theorem 3.

Figure 5 summarizes the cost of the Halving k-Jump Algo-
rithm for k = 1, 2, 3 and 4.

6. Some Optimal k-Jump Algorithms & Com-
parison

It is apparent from Lemma 3 that choosing the optimal jump
steps α1, . . . , αk amounts to solving the involved optimization
problem minα1 ,...,αk maxt=1,...,k+1{ck

t }, where αi ≤ min {π, 2π − β}.
In this section we contrast the choices and performance of the
Halving k-Jump Algorithm with the choices and performance of

Fig. 6 Performance comparison between the Optimal 2-Jump Algorithm
and the Halving 2-Jump Algorithm, as a function of β.

Fig. 7 Comparison of jump choices between the Optimal 1-Jump Algorithm
and the Halving 1-Jump Algorithm, as a function of β.

Fig. 8 Performance comparison between the Optimal 1-Jump Algorithm
and the Halving 1-Jump Algorithm, as a function of β.

the Optimal k-Jump Algorithm that was obtained using optimiza-
tion software packages, for k ≤ 3 (except from k = 1 whose
formal analysis appears in Section 3). Our findings are summa-
rized in the figures below (1-Jump in Figs. 6–8, 2-Jump in Fig. 9,
and 3-Jump in Figs. 10–11).

For k = 1, 2, 3 we numerically compute the optimal k-Jump
Algorithm (note that for k = 1 the rigorous analysis appears in
Section 3). Then, we contrast the performance of the optimal and
of the Halving algorithm (for the same number of jumps), as well
as contrasting their corresponding jump steps. The numerical cal-
culations indicate that the choices of the Halving algorithm are
nearly optimal for a wide spectrum of β (with the largest discrep-
ancy for β ≈ γ). Interestingly, for larger values of β, the choices
of the Halving algorithm are nearly optimal that also reflects on
the cost of the two algorithms which becomes nearly identical.
More importantly, experiments indicate that for large values of β,

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 9 Comparison of the two jump choices between the Optimal 2-Jump
Algorithm and the Halving 2-Jump Algorithm, as a function of β.
The first jump of each algorithm is always no smaller than the sec-
ond one, and eventually they all attain the value 2π − β.

Fig. 10 Comparison of the three jump choices between the Optimal 3-Jump
Algorithm and the Halving 3-Jump Algorithm, as a function of β.
For both algorithms, the first jump of each algorithm is always no
smaller than the second one, which is no smaller than the third one.
Eventually they all attain the value 2π − β.

Fig. 11 Performance comparison between the Optimal 3-Jump Algorithm
and the Halving 3-Jump Algorithm, as a function of β. Notably,
performance is nearly the same for all values of β > 5. The bigger
discrepancy is observed for values of β close to 4, for which also
the jump steps between the two algorithms exhibit the larger gaps.
See Fig. 10.

the optimal choices for k jump steps is to make all equal to 2π−β,
which is also the choice of the Halving algorithm. Finally, in the
next table we indicate numerically the largest observed gap for
k = 1, 2, 3, and in each case we also provide the value of β that is
responsible for this discrepancy.

k = 1 k = 2 k = 3

Largest gap ≈ 0.113696 ≈ 0.0931841 ≈ 0.0902863
Worst β ≈ 4.04196 ≈ 4.055585 ≈ 4.05714

7. Randomized Algorithms

In this section we explore how randomness can be used to im-
prove the performance of our algorithmic. Intuitively, random al-
gorithmic choices reduce the power of the adversary, and as such,
the (expected) worst-case performance will be reduced.

In order to exhibit the power of randomness, we will restrict
ourselves to variations of Algorithm 1, i.e., algorithms that per-
form no jumps. Still, we will be able to improve performance
significantly.

7.1 Single Random-Bit Algorithm
Since randomness is considered a computational resource, we

are motivated to explore a randomized algorithm, Algorithm 5,
that uses a single random bit. One way of exploring a random bit
is to run Algorithm 1 with the modification that the exploration of
the perimeter of the disk is either clockwise or counterclockwise,
each with probability 1/2. This is what we formally describe next.

Algorithm 5 R-Robot Direction
1: Walk to the perimeter of the disk

2: Start walking on the perimeter, either in cw or in ccw direction, each with

probability 1/2.

3: Perform steps 3–7 of Algorithm 1.

Theorem 4 The worst case expected termination time of Al-
gorithm 5 is 1 + π, i.e., it is independent of the length β of the
fence.
Proof. Observe that the random choice of Algorithm 5 involves
only the direction of the robot’s movement. In particular, an
adversary can still choose where the robot will land, as well as
choosing how far away the treasure is from the fence. The worst
case (expected) termination time over these choices will be the
algorithm’s performance. For notational convenience, we omit in
the calculations the deployment cost 1, i.e., the time it takes the
robot to reach the perimeter.

Clearly, the adversary can choose to have the robot land either
outside the fence, or inside the fence. In each case we will de-
termine the worst positioning of the treasure, and then we will
find the maximum of the two. In that direction, and given any
choice of the adversary, let X be the random variable that equals
the termination time for the associated experiment, over the ran-
dom choice of the algorithm.

In the first case, suppose that the adversary chooses to have
the robot land outside the fence (See Fig. 12 (a)). Let x denote
the clockwise distance between the robot and the fence. Also
let d denote the clockwise distance between the treasure and the
fence, with d ≥ 0. Depending on the values of x, d, together with
the random choice of the algorithm, the robot will first either en-
counter the treasure or the fence. Without loss of generality we
may assume that x + d + β ≤ 2π, and then we may focus only on
the random choice of the algorithm. So, let A denote the event
that the fence is encountered first (in Fig. 12 (a) that corresponds
to moving ccw). It is easy to see that the robot will jump over the
fence, avoiding the cost of walking along the fence perimeter. We
define A to be the event in which the robot encounters the fence

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 12 The Robot randomly chooses a direction to move in.

before the treasure. The termination time is:

E[X|A] = x + 2 sin
(
β

2

)
+ d (4)

For the complementary event, Ac, the robot encounters the trea-
sure first (in Fig. 12 (a) that corresponds to moving cw). The in-
curred cost in this case is

E
[
X|Ac] = 2π − β − d − x (5)

Overall, if the adversary makes the robot land outside the fence,
then the worst case expected running time is

E [X] = max
x,d:x+d+β≤2π, & x,d≥0

{
P [A] · E [x|A] + P

[
Ac] · E [

x|Ac]}

=
1
2

(
2π − β + 2 sin

β

2

)
(6)

In the second case, suppose that the adversary chooses to have
the robot land inside the fence (See Fig. 12 (b)). As before, let x

denote the ccw distance of the robot to the end of the fence. Let
also d be the ccw distance between the fence and the treasure.
Clearly, we have that 0 ≤ x ≥ β, and 0 ≤ d ≥ 2π − β. Let now D

denote the event that the robot moves ccw. It is immediate that

E [X|D] = β − x + d (7)

and that

E
[
X|Dc] = x + 2π − β − d (8)

So, the worst case expected termination time becomes

E [X] = max
x,d:0≤x≥β, & 0≤d≥2π−β

{
P [D] · E [X|D] + P

[
Dc] · E [

X|Dc]}
= π (9)

Therefore it is clear that the worst case expected termination
time is computed as the maximum between Eqs. (6) and (9), cor-
responding to the adversarial choice as to whether the robot lands
inside or outside the fence. Since x ≥ 2 sin(x/2) for all x, we
see that the dominant expression is Eq. (9) (for every β) and the
theorem follows.

It is noteworthy that the performance of the algorithm is not de-
pendent on β. Also, the adversary’s only concern is to make sure
the robot lands within the fence, in which case the actual relative
placement of the fence and the treasure become irrelevant.

7.2 Unbounded Random-Bits Algorithms
Our next attempt is toward further improving the worst case

expected termination time. Provably, a favourable event/case in
the analysis of all our algorithms this far is when the robot lands
outside the fence for the first time. Indeed, even for Algorithm 5
the adversary chooses to have the robot land inside the fence.
Motivated by this, we introduce a new randomized option, Al-
gorithm 6, i.e., we choose a random initial landing point on the
perimeter of the disk (and then run Algorithm 1).

Algorithm 6 R-Fence Walk
1: Walk to a point of perimeter of the disk, chosen uniformly at random.

2: Perform steps 3–7 of Algorithm 1.

Against such an algorithm, an adversary can only choose the
relative distance between the treasure and the fence. On the
other hand, the required randomness in order to choose a ran-
dom point on the disk would be enormous. Nevertheless, we are
motivated to examine whether such an approach would improve
performance.

Theorem 5 Let β0 be the unique solution of equation β −
sin(β/2) = π in [0, 2π], i.e., β0 ≈ 4.04. When the length of the
fence is β, then the worst case expected termination time of Al-
gorithm 6 is

1 + π +

⎧⎪⎪⎨⎪⎪⎩
1

2π

(
β − sin

(
β
2

)
− π

)2
, if β ≤ β0

0, otherwise.

Proof. As before, we omit in the calculations the deployment cost
1, i.e., the time it takes the robot to reach the perimeter. Let X be
the random variable that is equal to the worst case (over the ad-
versarial choices) expected (over the algorithmic choices) termi-
nation time of Algorithm 6. We partition the possible outcomes
in three events. In all cases, we assume that the treasure is placed
at cw distance d from the fence, where 0 ≤ d ≤ 2π − β.

Let A1 be the event that the robot lands inside the fence (see
also Fig. 13). Clearly, we have that P [A1] = β/2π. In that case,
the cw distance of the robot to the end of the fence is x, where
0 ≤ x ≤ β, and so

E [X|A1] =
1
β

∫ β

0
(β − x + d) dx =

β

2
+ d. (10)

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 13 RFW Case 1 (Random basic landing point).

Fig. 14 RFW Case 2 (Random basic landing point).

Fig. 15 RFW Case 3 (Random basic landing point).

Let A2 be the event that the robot lands outside the fence and
that it encounters the treasure before it encounters the fence (see
Fig. 14). We have that P [A2] = d/2π. Let also y denote ccw
distance between the robot and the fence, where 0 ≤ y ≤ d. Then

E [X|A2] =
1
d

∫ d

0
(d − y) dy =

d
2
. (11)

Finally, let A3 denote the event that the robot lands outside the
fence and that it encounters the fence before it encounters the
treasure (see Fig. 15). We have P [A3] = (2π − β − d)/2π. Let
also z denote ccw distance between the robot and the treasure,
where 0 ≤ z ≤ 2π − β − d (inducing restriction d ≥ 2π − β for the
adversary). Then

E [X|A3] =
1

2π − β − d

∫ 2π−β−d

0

(
2π − z − β + 2 sin

(
β

2

)
+ d

)
dz

Fig. 16 Performance of Algorithm 6 (yellow line) compared to the perfor-
mance of Algorithm 5 (blue line) as a function of the fence length
β ≤ β0.

=
3d
2
+ π − β

2
+ 2 sin

(
β

2

)
. (12)

Expressions Eqs. (10), (11) and (12), along with elementary
calculations, allow us to conclude that

E [X] = P [A1] · E [X|A1] + P [A2] · E [X|A2] + P [A3] · E [X|A3]

=
(d − 2π + β) (−d + β − 2 sin(β/2)) + 2π2

2π
. (13)

Now, we determine the adversarial choice for d which would
induce the worst case expected termination time, i.e., that would
maximize Eq. (13). Observe that Eq. (13) is a degree 2 polyno-
mial in d with negative leading coefficient. Hence, the expression
is maximized when the derivative of the expression is 0. Elemen-
tary calculations show that the maximizer is d0 = π− sin

(
β
2

)
, and

in particular, when d < d0 expression Eq. (13) is strictly increas-
ing and when d > d0 expression Eq. (13) is strictly decreasing.

Notably, we have explicitly assumed above that d ≤ 2π − β,
so d0 is a valid adversarial choice only if d0 ≤ 2π − β. Given
the value of d0, we conclude that the adversary would choose
d = d0 as long as β − sin(β/2) ≤ π, i.e., as long as β ≤ β0 (where
β0 is as in the statement of the theorem). For these values of
β, the worst case expected performance is obtained by replacing
d = π−sin

(
β
2

)
in Eq. (13). If on the other hand β > β0, then due to

the monotonicity of Eq. (13), the adversarial choice inducing the
worst case expected performance is when d = 2π−β. Again, sub-
stituting in Eq. (13) together with elementary calculations derive
the promised formula.

A comparison between the performances of Algorithm 5 and 6,
is depicted in Fig. 16. Surprisingly, Algorithm 6 is strictly worse
than Algorithm 5, for all fence lengths β < β0 ≈ 4.04. From the
analysis of Algorithm 6 we learned that although the adversary
cannot choose the robot’s landing point, the fact that the robot
may land inside the fence, and since the robot’s movement direc-
tion is known, the position of the treasure can be chosen so that
expected termination cost is high. At the same time, we should
recall that the power of Algorithm 5 lies in that the movement
direction of the robot is random, and in particular that the relative
positioning of the fence and the treasure are irrelevant. There-
fore we are motivated in combining the randomized choices of
Algorithms 5 and 6. This is what we explore with Algorithm 7.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 17 Algorithm 7 performance (yellow line) compared to Algorithm 5
performance (blue line) for all fence lengths 0 ≤ β ≤ 2π.

Algorithm 7 RD-Fence Walk
1: Walk to point of perimeter of the disk, chosen uniformly at random.

2: Start walking on the perimeter, either in cw or in ccw direction, each with

probability 1/2.

3: Perform steps 3–7 of Algorithm 1.

Theorem 6 The worst case expected termination time of Al-
gorithm 7 is

1 +
β

2
+

(
1 − β

2π

) (
π − β

2
+ sin

(
β

2

))
.

Proof. The analysis is very similar to the one we did for Algo-
rithm 5, i.e., the proof of Theorem 4. We examine two cases
as to whether the robot lands inside or outside the fence. If we
condition on the assumption that the robot lands inside the fence
(which happens with probability β/2π), then the expected perfor-
mance of the algorithm is π, independently of where the treasure
is placed. If we condition on the assumption that the robot lands
outside the fence (which happens with probability 1−β/2π), then
the expected performance of the algorithm is π − β/2 + sin(β/2),
again independently of the positioning of the treasure. Multi-
plying the conditional expectations with the probabilities of the
corresponding events results in the promised formula.

As expected, Algorithm 7 strictly improves Algorithm 5, and
this is depicted in Fig. 17.

8. Conclusion

In this paper we investigated a new search problem for a mobile
robot to find a stationary target placed at an unknown location at
distance 1, in the presence of a fence placed on the perimeter of
a unit disk. First we determined the optimal 1-Jump algorithm
for the robot to find the target. Then we provided a generic de-
scription of k-Jump algorithms and analyzed their cost depending
on the jump landings. Subsequently, we analyzed the Halving k-
Jump algorithms, where k is the max number of jumps the robot
makes so as to overcome the fence and find the target. Finally, we
successfully explored the role of randomness toward improving
the performance of our algorithms. Several interesting questions
remain open, when e.g., there are multiple fences on the perime-
ter of the disc, and the robot’s speed changes when traversing a
fence.

References

[1] Badal, S., Ravela, S., Draper, B. and Hanson, A.: A practical obstacle
detection and avoidance system, Proc. 2nd IEEE Workshop on Appl.
Computer Vision, pp.97–104, IEEE (1994).

[2] Baeza-Yates, R. and Schott, R.: Parallel searching in the plane, Com-
putational Geometry, Vol.5, No.3, pp.143–154 (1995).

[3] Baeza-Yates, R.A., Culberson, J.C. and Rawlins, G.J.: Searching in
the plane, Information and Computation, Vol.106, No.2, pp.234–252
(1993).

[4] Beck, A.: On the linear search problem, Israel Journal of Mathemat-
ics, Vol.2, No.4, pp.221–228 (1964).

[5] Bellman, R.: An optimal search, SIAM Review, Vol.5, No.3, pp.274–
274 (1963).

[6] Benkoski, S., Monticino, M. and Weisinger, J.: A survey of the
search theory literature, Naval Research Logistics (NRL), Vol.38,
No.4, pp.469–494 (1991).

[7] Blum, A., Raghavan, P. and Schieber, B.: Navigating in unfamiliar
geometric terrain, STOC 1991, pp.494–504, ACM (1991).

[8] Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R. and
Pajak, D.: Evacuating Robots via Unknown Exit in a Disk, Proc. DISC
2014, pp.122–136 (2014).

[9] Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J.
and Vogtenhuber, B.: Evacuating Robots from a Disk Using Face-to-
Face Communication (Extended Abstract), Proc. CIAC 2015, pp.140–
152 (2015).

[10] Dobbie, J.: A survey of search theory, Operations Research, Vol.16,
No.3, pp.525–537 (1968).

[11] Dobrev, S., Flocchini, P., Prencipe, G. and Santoro, N.: Mobile Search
for a Black Hole in an Anonymous Ring, Proc. DISC 2001, pp.166–
179 (2001).

[12] Finch, S.R. and Wetzel, J.E.: Lost in a forest, The American Math.
Monthly, Vol.111, No.8, pp.645–654 (2004).

[13] Georgiou, K., Kranakis, E. and Steau, A.: Searching with Advice:
Robot Fence-Jumping, Proc. 28th Canadian Conference on Computa-
tional Geometry (2016).

[14] Hoffmann, F., Icking, C., Klein, R. and Kriegel, K.: The polygon
exploration problem, SIAM Journal on Computing, Vol.31, No.2,
pp.577–600 (2001).

[15] Isbell, J.: An optimal search pattern, Naval Research Logistics Quar-
terly, Vol.4, No.4, pp.357–359 (1957).

[16] Koopman, B.O.: The theory of search: III. The optimum distribu-
tion of searching effort, Operations Research, Vol.5, No.5, pp.613–
626 (1957).

[17] Pozna, C., Troester, F., Precup, R.-E., Tar, J.K. and Preitl, S.: On
the design of an obstacle avoiding trajectory: Method and simulation,
Mathematics and Computers in Simulation, Vol.79, No.7, pp.2211–
2226 (2009).

[18] Stone, L.D. and Richardson, H.R.: Search for targets with condi-
tionally deterministic motion, SIAM Journal on Applied Mathematics,
Vol.27, No.2, pp.239–255 (1974).

Konstantinos Georgiou holds a B.Sc. in
Mathematics, 2002, and a M.Sc. from the
Graduate Program in Logic, Algorithms
and Computation (M.P.L.A), 2004, both
from the University of Athens, Greece.
He received his Ph.D. in Computer Sci-
ence from the University of Toronto in
2010. He held a faculty appointment in

the Department of Combinatorics & Optimization, Faculty of
Mathematics, of the University of Waterloo from 2010 to 2015.
He joined the Department of Mathematics at Ryerson University
in 2015. His research interests include Convex and Combinato-
rial Optimization, Approximation Algorithms, Distributed Algo-
rithms, and Game Theory.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Evangelos Kranakis received a B.Sc. in
Mathematics from the University of
Athens, Greece, in 1973 and a Ph.D. also
in Mathematics from the University of
Minnesota, USA, in 1980. From 1980
to 1991 he held various faculty positions
in Purdue University, USA, University
of Heidelberg, Germany, Yale University,

USA, Universiteit van Amsterdam, and Centrum voor Wiskunde
en Informatica (CWI) in The Netherlands. He joined the fac-
ulty of the School of Computer Science of Carleton University,
Ottawa, Canada, in the Fall of 1991. His current research inter-
ests include Algorithmics, Distributed and Computational Biol-
ogy, Distributed and Mobile Agent Computing, Networks (Ad
Hoc, Communication, Sensor, Social), and Cryptographic and
Network Security.

Alexandra Steau received her Bachelor
and Master diplomas in 2015 and 2017,
respectively, both in Computer Sci-
ence from Carleton University, Ottawa,
Canada. Her research interests include
Distributed Algorithms, Mobile Develop-
ment, and Computational Geometry for
Medical Applications.

c© 2017 Information Processing Society of Japan

