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Technical Note

Balancing Colored Points on a Line
by Exchanging Intervals
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Abstract: Assume that 2a red points, 2b blue points and 2c green points lie on a line, and they are bisected into a
left part I and a right part J by a point so that each of them contains a + b + c points. Then we show that there exist
a point set X ⊂ I and a point set Y ⊂ J such that both X and Y consist of consecutive points, |X| = |Y |, and each of
I − X + Y and J − Y + X contains exactly a red points, b blue points and c green points. Moreover we extend this result
to multi-colored point sets.
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1. Introduction

Various topics on red and blue points in the plane have been
studied [1], and results on colored points on a line play important
role in the proofs of some theorems [1], [2]. In this paper, we con-
sider some problems of 3-colored points and multi-colored points
on a line.

Assume that colored 2n points lie on a line and they are bi-
sected into a left part I and a right part J by a point so that both I

and J contain precisely n points each. If the number of points of
each color is even and both I and J contain the same number of
points of each color, then we say that I and J are balanced.

In this paper, we shall prove the following three theorems,
which say that the above I and J can be balanced by exchang-
ing two subsets X ⊂ I and Y ⊂ J consisting of a small number of
intervals of I ∪ J. Moreover, their proofs give polynomial-time
algorithms for finding such subsets X and Y .

Note that if X and Y are disjoint sets, we often write X + Y for
X ∪ Y . Moreover, if Z is a subset of X, we often write X − Z for
X \ Z.

Theorem 1 Assume that 2a red points, 2b blue points and 2c

green points lie on a line, where a, b, c are positive integers, and
they are bisected into a left part I and a right part J by a point so
that each of them contains precisely a + b + c points. Then there
exist a point set X ⊂ I and a point set Y ⊂ J such that both X and
Y consist of consecutive points, |X| = |Y |, and both I − X + Y and
J − Y + X are balanced (see Fig. 1).

If two colored points lie on a line, we can obtain a slightly
stronger result as follows:

Theorem 2 Assume that 2a red points and 2b blue points lie
on a line, where a and b are positive integers, and they are bi-
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Fig. 1 Red, blue and green points lying on a line, two point sets X ⊂ I and
Y ⊂ J, and two balanced sets I − X + Y and J − Y + X.

Fig. 2 Red and blue points lying on a line, two point sets X ⊂ I and Y ⊂ J,
and two balanced sets I − X + Y and J − Y + X.

sected into the left part I and the right part J by a point so that
each of them contains precisely a + b points. Then there exist a
point set X ⊂ I and a point set Y ⊂ J such that both X and Y

consist of consecutive points starting at the right end-point of I

and J respectively, |X| = |Y |, and both I − X +Y and J −Y + X are
balanced (see Fig. 2).

If the number of colors is more than three, we can obtain bal-
anced sets by exchanging two or more intervals of I ∪ J.

Theorem 3 Let r ≥ 2 be an integer, and let c1, c2, . . . , cr be r

colors. Assume that 2ni points of color ci lie on a line for every
1 ≤ i ≤ r. Furthermore they are bisected into a left part I and
a right part J by a point so that each of them contains precisely
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Fig. 3 Four colored points lying on a line, two point sets X ⊂ I and Y ⊂ J,
and two balanced sets I − X + Y and J − Y + X.

n1 + n2 + . . . + nr points. Then there exist point sets X ⊂ I and
Y ⊂ J such that X and Y consist of at most �(r + 2)/2� intervals
together, |X| = |Y |, and both I − X + Y and J − Y + X are balanced
(see Fig. 3). Moreover, the bound �(r + 2)/2� is sharp.

2. Proofs of Theorems

For a positive integer d, we denote by Rd the d-dimensional
Euclidean space. Note that R1 is often written R. For a positive
number α, the curve {(t, t2, . . . , td) : 0 ≤ t ≤ α} in Rd is called the

moment curve. The moment curve has the following property.
Lemma 4 (Lemma 1.6.4 of Ref. [3]) Every hyperplane of

Rd intersects the moment curve in Rd at most d points.
The next theorem is well known.
Theorem 5 (Ham-sandwich theorem [3], [4]) d point sets

in Rd each of which contains even number of points can be si-
multaneously bisected by a hyperplane. Moreover, there is a
polynomial-time algorithm for finding such a hyperplane.

We are ready to prove theorems. We first prove Theorem 1.
Proof of Theorem 1. We may assume that the points of I ∪ J are
contained in the interval [0, 1] of R. We replace the consecutive
points of I ∪ J along the moment curve γ = {(t, t2, t3) : 0 ≤ t ≤ 1}
in the space R3. By Ham-sandwich theorem, there exists a plane h

in the space that simultaneously bisects these three colored points
and intersects the moment curve γ in at most three points.

First assume that the hyperplane h intersects γ at three points.
Let P1, P2, P3, P4 denote the four sets of colored points on γ
divided by h. By symmetry of I and J, we may assume that
P1∪P2∪Q = I and R∪P4 = J, where Q = P3∩ I and R = P3∩ J

and it may occur that Q or R is an empty set. Moreover, each of
P1 ∪ P3 and P2 ∪ P4 contains exactly a red points, b blue points
and c green points since h is a bisector.

Let X = P2 and Y = R. Then I−X+Y = P1∪P3 and J−Y+X =

P2 ∪ P4 are balanced. This implies |I| − |X| + |Y | = |J| − |Y | + |X|,
and thus |X| = |Y |.

We next consider the case where the plane h intersects γ at two
points. Let P1, P2, P3 denote the three sets of points on γ di-
vided by h. By symmetry, we may assume that P1 ∪ Q = I and
R∪ P3 = J, where Q = P2 ∩ I and R = P2 ∩ J. Moreover, each of
P1 ∪ P3 and P2 contains exactly a red points, b blue points and c

green points since h is a bisector. Then I −Q+ P3 = P1 ∪ P3 and
J − P3 + Q = P2 are balanced, and this also implies |Q| = |P3|.
If the plane h intersects γ at one point, then I and J are balanced,
and so the theorem holds for X = Y = ∅. Consequently Theo-
rem 1 is proved. �

Proof of Theorem 2. We may assume that the points of I ∪ J

are contained in the interval [0, 1] of R. We place the consecutive
points of I∪ J along the the moment curve γ = {(t, t2) : 0 ≤ t ≤ 1}
in the plane R2. By Ham-sandwich theorem, there exists a line
� that simultaneously bisects these red and blue points and inter-
sects γ at most two points. If � intersects γ at one point, then I

and J are balanced. Thus we may assume that � and γ intersect at
two points.

Let P1, P2, P3 denote the three sets of colored points on γ di-
vided by �. By symmetry, we may assume that P1 ∪ Q = I and
R ∪ P3 = J, where Q = P2 ∩ I � ∅ and R = P2 ∩ J � ∅.
Moreover, each of P1 ∪ P3 and P2 contains exactly a red points
and b blue points since � is a bisector. Hence it follows that
I − Q + P3 = P1 ∪ P3 and J − P3 + Q = P2 are balanced, and
|Q| = |P3|. Furthermore, Q and P3 contain the right end-points of
I and J, respectively. Consequently Theorem 2 is proved. �
Proof of Theorem 3. We may assume that the points of I ∪ J

are contained in the interval [0, 1] of R. We place the consecutive
points of I∪J along the moment curve γ = {(t, t2, . . . , tr) : 0 ≤ t ≤
1} in Rr. By Ham-sandwich theorem, there exists a hyperplane h

that simultaneously bisects these r colored points and intersects γ
at most r points.

Let P1, P2, . . ., Ps denote s sets of colored points on γ divided
by h, where h intersects γ at s − 1 points and 2 ≤ s ≤ r + 1. If
s = 2, then P1 = I and P2 = J are balanced, and so we may as-
sume 3 ≤ s ≤ r+1. Since h is a bisector, P1∪P3∪. . .∪Ps (or Ps−1)
and P2 ∪ P4 ∪ . . . ∪ Ps−1 (or Ps) are balanced. In particular, they
contain the same number of points of every color. Moreover, we
can write I = P1 ∪P2∪ . . .∪Pt−1∪Q and J = R∪Pt+1∪ . . .∪Ps,
where Q = I ∩ Pt, R = J ∩ Pt, 2 ≤ t < s and it may occur that Q

or R is an empty set.
We first assume that t is even. Let X = P2 ∪P4 ∪ · · · ∪Pt−2 ∪Q

and Y = Pt+1 ∪ Pt+3 ∪ · · · ∪ Ps (or Ps−1). Then I − X + Y =

P1∪P3∪· · ·∪Ps (or Ps−1) and J−Y+X = P2∪P4∪· · ·∪Ps−1 (or Ps)
are balanced. This implies |I| − |X| + |Y | = |J| − |Y | + |X| and thus
|X| = |Y |. Moreover, X and Y consists of

t
2
+

s − (t + 1)
2

+ 1 =
s + 1

2
or

t
2
+

s − 1 − (t + 1)
2

+ 1 =
s
2

intervals together. Then X and Y consists of at most �(r + 2)/2�
intervals by s ≤ r + 1.

Next assume that t is odd. Let X = P2 ∪ P4 ∪ · · · ∪ Pt−1 and
Y = R ∪ Pt+2 ∪ Pt+4 ∪ · · · ∪ Ps (or Ps−1). Then I − X + Y = P1 ∪
P3∪· · ·∪Ps (or Ps−1), and J−Y+X = P2∪P4∪· · ·∪Ps−1 (or Ps)
are balanced. This implies |I| − |X| + |Y | = |J| − |Y | + |X| and thus
|X| = |Y |. Moreover, X and Y consists of

t − 1
2
+

s − t
2
+ 1 =

s + 1
2

or

t − 1
2
+

s − 1 − t
2

+ 1 =
s
2

intervals together. Then X and Y consists of at most �(r + 2)/2�
intervals by s ≤ r + 1. Consequently the existence of X and Y in
Theorem 3 is proved.

We finally show that the bound �(r + 2)/2� is sharp. Consider
the following colored point configuration on a line, in which the
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Fig. 4 Five colored points lie on a line, and X and Y consists of 3 intervals
together. Six colored points lie on a line, and X and Y consists of 4
intervals together.

number of points of each color ci, 1 ≤ i ≤ r − 1, is two and the
number of points of color cr is 2(r − 1). The left part I contains
all the points of color ci, 1 ≤ i ≤ r− 1, and two points of the same
color appear consecutively, and 2(r − 1) points of color cr lie on
the right part J. Then in order to obtain balanced sets, we have
to exchange one point of each color ci, 1 ≤ i ≤ r − 1, of I and
r − 1 points of color cr of J. Therefore, if r is odd, then X and Y

consists of at least (r − 1)/2+ 1 = (r + 1)/2 intervals of I ∪ J (see
the first example of Fig. 4). If r is even, then X and Y consists of
at least ((r − 2)/2 + 1) + 1 = (r + 2)/2 intervals together (see the
second example of Fig. 4). Hence the bound �(r + 2)/2� is sharp.
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