
IPSJ SIG Technical Report

Design of a data supply mechanism
for distributed deep learning

Amir Haderbache1,a) Sašo Stanovnik1,b) MasahiroMiwa1,c) Kohta Nakashima1,d)

Abstract: Distributed deep learning frameworks increase the demand for data supply as such computation enables
more data to be processed. A traditional HPC parallel file system can be used for this purpose. However, disk latency
and network transfer involved when accessing remote disks on parallel file systems remain the bottleneck as training
processes wait for the next batch of data. We propose a pre-fetching mechanism that leverages the FEFS client cache
for caching data before the deep learning processes request it.

1. INTRODUCTION
Traditional high-performance computing (HPC) systems sep-

arate its compute and storage resources into two distinct parts—

compute nodes and data nodes—which are interconnected by a

high-speed network fabric such as InfiniBand. This architecture,

illustrated in Figure 1, is a legacy of large-scale scientific applica-

tions that are compute intensive, where storage I/O operations are

only slightly required for initial data input, some periodic check-

pointing and final output. However, in the era of big data, ar-

tificial intelligence (AI) applications, such as deep learning, be-

came increasingly more data-intensive and require much more

support by the underlying data storage system that a traditional

HPC architecture does not provide out-of-the-box. A significant

performance limitation of large scale deep learning applications

on HPC infrastructures is the high latency occurring when com-

pute nodes request data stored on remote disks.

In the last decade, many software frameworks have been devel-

oped to support data–intensive computing, including distributed

file systems (HDFS), parallel programming models (MapReduce,

Apache Spark), cluster resource management systems (YARN,

Mesos), and machine learning frameworks. Nevertheless, those

frameworks are not adapted for the HPC infrastructure. Hadoop

co-locates storage and computation resources to achieve high I/O

throughput, but this involves a cost for fault tolerance by using

multiple replicas of the data, whereas Apache Spark provides a

high-level interface for parallel computing and data management

features, such as data partitioning with RDD and lineage recov-

ery, but its instances rely on the Java Virtual Machine, which

makes computation slower than native C-based MPI applications.

A possible method of reducing data transfer latency between

1 Fujitsu Laboratories Limited, 4-1-1 Kamikodanaka, Nakahara-ku,

Kawasaki-shi, Kanagawa-ken 211-8588, Japan
a) haderbache.amir@jp.fujitsu.com
b) saso@extra.labs.fujitsu.com
c) masahiro.miwa@jp.fujitsu.com
d) nakashima.kouta@jp.fujitsu.com

clients and data servers is to leverage client-side caching. This

technique places temporary partial data replicas into compute

nodes’ memory to accelerate client data access. For example,

an optimised distributed file system for HPC, such as FEFS R©,

provides this feature for improving I/O performance of parallel

applications. FEFS, the Fujitsu Exabyte File System*1 is a clus-

tered distributed file system [5] based on the Lustre file system. It

is worth noting that using client-side caching to accelerate deep

learning data access does not involve cache coherency problems

as training processes only require a read-only access to the data.

However, due to the large input data size of common deep learn-

ing application, the main limitation of client-side caching is the

memory storage capacity which restricts the amount of data we

can cache. This limitation can be solved with an intelligent cache

policy which places the right data in memory just before the ap-

plication needs to access it.

In this paper, we propose a client-side caching system de-

signed for deep learning applications, which uses memory-

mapped file based storage provider. This mechanism is based on

memory-mapped access detection, which infers the current train-

ing progress and thus the appropriate piece of data to pre-fetch

in memory. The memory access detection implementation uses a

combination of user space techniques involving memory protec-

tion, signal handling and code injection. This specific choice is

the result of a deep analysis we made [11] on the cache capabil-

ities of the FEFS file system, the characteristics of deep learning

data storage backends and the training data access patterns. Our

experimental results show that training processes can access data

directly from the FEFS client cache, which reduces the training

time by 32 %. The rest of this paper is organized as follows:

Section 2 overviews our data storage system and gives some rel-

evant information based on a previous work [11]. Then Section

3 describes the implementation details of our data supply mech-

anism. Next, Section 4 presents our HPC cluster and the evalua-

*1 FEFS is a registered trademark of Fujitsu Limited.

c© 2017 Information Processing Society of Japan 1

Vol.2017-HPC-160 No.40
2017/7/28



IPSJ SIG Technical Report

tion results we obtained. Finally, Section 5 concludes this study,

suggesting possible future directions.

2. DEEP LEARNING ON AN
HPC CLUSTER

Fig. 1 A traditional HPC parallel file system configuration.

2.1 Storing the data
When we use deep learning frameworks such as MPI-Caffe

[17] to train neural network models, we must consider how to

store the image data. Multiple methods exist to store the dataset,

such as storing each image into a separate file within the file sys-

tem, or storing images into a dedicated database. A study eval-

uated the efficiency and performance of different image storage

backends for training convolutional neural networks (CNN) [8].

This study observed that using image files on a local file sys-

tem can result in up to 17 times slower training time compared

to using an optimized key-value database. Furthermore, this per-

formance difference gets greater as we use a large input dataset

such as ImageNet [3]. Figure 2 gives a performance comparison

between these two storage systems (separate files for each im-

ages and a global key-value store) when training the GoogLeNet

model with the ImageNet dataset for 1000 iterations with Caffe.

The results describe disk throughput with caches initially cleared,

and remote caches disabled (see Section 4.1 for more environ-

ment details).

The performance gap between files and database storage sys-

tems is mostly explained by the inefficient support from the local

file system [8]. The local cache mechanism cannot understand the

existing correlation between different files located in the same di-

rectory. When a file data block is accessed, the file system tries to

cache the other blocks composing this file but does not take into

account other files. Using separate files slows down the training

as multiple image files (corresponding to the batch size) need to

be read simultaneously. Moreover, when the number of files is

large, the overhead caused by file system meta-data operations in

order to locate blocks results in longer training times.

2.2 Key-value store
Key-value databases are designed to store and retrieve simple

Fig. 2 Performance evaluation for CNN training over ImageNet on two stor-

age systems.

information by providing mappings between keys and values. In

the case of image data storage, the key usually corresponds to the

image identifier (e.g. the original filename) and the value corre-

sponds to the actual image pixel matrix. Caffe lets the user store

and process input image data with LMDB (Lightning Memory-
Mapped Database), an efficient B+ tree–based key-value store.

When a process opens and accesses an LMDB database, the data

file is entirely exposed in a memory map, meaning that a page

table stores the mapping between the process’s virtual address

space and the actual physical memory addresses or disk blocks

it refers to. Thus, all data access return values directly from the

mapped (virtual) memory avoiding any malloc or memcpy over-

head, which makes it optimized for read operations [12].

2.3 Accessing data
In a previous work [11], we analysed the data access pattern of

MPI-Caffe while training a CNN model. The input data was an

LMDB file stored and striped over FEFS data servers. The deep

learning process is a repeating sequence of training and testing

phases. In both, sequential reads occur. During our experiments,

we noticed that the way we stored the LMDB file (stripe size, lock

file management) had an impact on performance. Moreover, we

also noticed that FEFS built-in functionalities might somewhat

improve the data access performance for specific application I/O

patterns. The following lists the significant findings of this anal-

ysis:

• The LMDB file should have a stripe size aligned with the

training batch size as stripesize = batchsize ∗ N where N
is the number of GPUs per compute node used during the

training. This batch size parameter is the one specified in the

Caffe .prototxt configuration file.

• When multiple MPI processes access the same shared

LMDB file for learning, multiple replicas of the LMDB lock

file should be used—one file per process. This is a useful

technique to effectively disable LMDB file locking, enabling

reader processes to access the shared file without any restric-

tions. This should, however, only be used with read-only

programs. In technical terms, each process should point to a

specific directory containing a materialized LMDB lock file

and a symbolic link to the shared LMDB data file.

c© 2017 Information Processing Society of Japan 2

Vol.2017-HPC-160 No.40
2017/7/28



IPSJ SIG Technical Report

• FEFS provides heuristic read-ahead functionality that pre-

fetches additional data into the client cache before an explicit

request. The read-ahead data are the next few data blocks lo-

cated just after the data recently accessed by client requests.

The read-ahead algorithm detects sequential read accesses

performed by the client and takes the initiative to pre-read

slightly more data. The size of this additional reading is

called the read-ahead window. The more the frequency of

sequential reads increases, the more the read-ahead window

grows (up to 40 MiB, according to the documentation [13]).

In the original MPI-Caffe implementation, each MPI process

continuously reads one image then skips n− 1 images, where n is

the number of processes, then reads an image again, and does so

until the training ends. We call this implementation the skipping
pattern. Our analysis showed that the skipping pattern is not well

adapted to FEFS performance characteristics as it involves “ran-

dom” accesses. For the sake of performance, we implemented

a contiguous pattern [11] in which each process only accesses a

specific area of contiguous images. Therefore when a process re-

quests a new batch, it accesses contiguous images in a sequential

read fashion. This pattern is better adapted to the FEFS imple-

mentation and provides significantly better performance (dividing

the training time by 5 up to 6).

2.4 Improving performance
Although we improved the way MPI-Caffe accesses training

data on FEFS, the performance is still not optimal. The best I/O

performance can be reached when local memory devices serve as

the storage [16]. To achieve this kind of memory performance,

the training data needs to always be present in the compute node

memory before an explicit request occurs. The challenge then

consists of finding which memory pages have to be kept in mem-

ory for further access. A common method to handle this task

consists of analysing virtual memory accesses, gathering page in-

formation and then assigning a level of priority to a data page

according to some metrics. The higher the priority of a page, the

bigger the probability that the page will soon be accessed. This

method, which is based on prediction and statistics is well suited

to the optimization of application whose data access pattern is un-

known. However, in our case, we know exactly how MPI-Caffe

accesses its input data. Therefore, if we could infer the current

progress of the training data access at a specific point, we would

be able to pre-fetch the relevant data in memory. In other words,

if we realize that image number n is being processed, we know

that the next image to be processed is n + 1, as we know that

MPI-Caffe reads images sequentially.

In this paper, we propose a way to dynamically infer the cur-

rent training data access progress to pre-cache relevant data from

FEFS data servers to the client—side FEFS cache, which is stored

in memory. This inference is based on detecting accesses to

memory-mapped data with a combination of user-space level

techniques. We describe it in detail in the following section.

Before implementing what is described in the following sec-

tions, we made a prototype by modifying the MPI-Caffe code

directly and obtaining information about data accesses internally,

while using the same optimisation patterns as described below.

This proof-of-concept worked well, so we proceeded to create a

solution that does not rely on modifying application code directly.

3. PRE-CACHING MECHANISM
3.1 Memory-mapped file access detection

This section describes how we designed a memory access de-

tection mechanism for deep learning process using a memory-

mapped file, specifically an LMDB database, as the data storage

backend. As explained before, the LMDB file address space is

mapped into the user process which opens it for I/O operations.

As Figure 3 shows, when the process requests a specific data

block, it can either fetch it directly from physical memory or from

the disk in the case of a page fault. Our goal is to maximize the

access from memory, in advance, performing prefetching from

the disk.

Fig. 3 memory-mapped file mechanism

The idea to infer the current training data access progress—

so that we can pre-cache relevant data—is based on the protec-
tion of specific memory locations (e.g. Figure 4). Summarily, in

advance, we protect specific LMDB memory-mapped addresses.

We attempt to do so before the deep learning process tries to read

data from the LMDB file, but as we are constrained by the fact

that we need to wait for the process to open the LMDB file, that is

sometimes infeasible. Whether we are able to protect the memory

checkpoints before any reading occurs does not affect functional-

ity, only performance, as will be explained later.

When the MPI-Caffe process then tries to access a protected

memory page, the kernel triggers a segmentation violation sig-

nal SIGSEGV for the process. We leverage this situation to catch

the signal via a signal handler. A signal handler is a function

that is first registered to handle a specific set of signals, and then

automatically called by the operating system when one of those

signals occurs. When the SIGSEGV signal is caught, the execution

of the process is stopped until the signal handler returns, at which

point the execution resumes at the specific instruction at which it

was interrupted. The idea is to use the signal handler to trigger

a specific process, the job of which is to pre-cache the relevant

batch of data into the FEFS client cache from remote OSTs, then

to disable the memory address protection for the scheduled read

access and finally to resume the execution of the program.

The I/O process, triggered by the signal handler, pre-caches a

specific amount of contiguous data blocks from the data block re-

quested by the process—the block whose memory-mapped page

c© 2017 Information Processing Society of Japan 3

Vol.2017-HPC-160 No.40
2017/7/28



IPSJ SIG Technical Report

was protected. The reason for this pre-cache policy is simple: we

know that MPI-Caffe reads image data contiguously and in se-

quential order, so, if we detect an access to a memory address,

we can easily identify the next batch of data the training must

access. When the signal handler returns, the process execution

resumes and the same instruction, the one called before the inter-

ruption, is executed. This time, the instruction does not trigger

the checkpoint, as it has been unprotected from within the signal

handler. The process can therefore continue its reading opera-

tion, which occurs at memory speed because the next batch of

data has already been pre-cached by the optimizer process. It is

worth noting that each time the handler removes the protection

for a specific checkpoint, it also has to re-install the protection of

the previous checkpoint, because the training process iterates over

the same file multiple times—corresponding to the epochs—and

we need to be able to detect memory accesses to that checkpoint

again.

Fig. 4 Memory-mapped access detection

3.2 Implementation details
We implemented this mechanism using a combination of user

space techniques. First of all, our main program has to get

the whole memory-mapped file memory address mapping. The

Linux kernel provides a way to get this information in a sta-

ble format through the /proc/pid/maps file. The process can

then leverage this information to perform operations on specific

memory-mapped file locations such as protecting the memory.

The memory address protection is performed with the Linux

mprotect system call. This function changes the access protec-

tion parameters for the calling process’s memory pages contain-

ing any part of the address range passed in parameter. Conse-

quently, if the calling process tries to access a protected memory

page, the kernel triggers a SIGSEGV signal for the process.

The way we protect memory addresses can have a big influence

on the training time. In our implementation, specific memory ad-

dresses, separated at regular intervals from the beginning to the

end of the memory-mapped file, should be protected. We define

the following terminology for the rest of this paper, also portrayed

in Figure 5:

• A checkpoint is a protected memory address.

• A triggering checkpoint is a checkpoint that triggers a pre-

cache on access.

• A non-triggering checkpoint is a checkpoint that does not

trigger a pre-cache when accessed (steps 6 and 7b from Fig-

ure 4 do not occur).

• The distance is a fixed spacing that separates two consecu-

tive checkpoints.

• The size is a fixed amount of contiguous data, pre-cached

sequentially by the I/O process.

• The process data range is the total amount of contiguous

data a process has to read during the entire training. From

the application’s point of view, it corresponds to the set of

images the process has to read. A process data range has a

logical memory area delimited by a start address and an end
address.

• The start address is the memory address corresponding to

the first image the process has to read.

• The end address is the memory address corresponding to the

image after the last image the process has to read.

• The non-cached distance is the amount of data that separates

the start address and the first checkpoint located in the pro-

cess data range.

• The pre-cache threshold is the memory address from which

the next checkpoint will be a triggering checkpoint. In our

implementation, the pre-cache threshold is set to 75 % of the

size.

Fig. 5 Terminology: the pre-cache process’ point of view

The distance determines the frequency at which we can de-

tect memory accesses. Shorter distances improve the reliability

and accuracy of memory access detection (so the probability of

pre-caching data when needed increases), but they introduce the

potential of increasing overhead. The triggering/non-triggering

states of checkpoints are not fixed at compile time but implicitly

determined at runtime according to the process data range and

behaviour. The checkpoint the process hits first always becomes

a triggering checkpoint. As the checkpoint positions are defined

by the distance, it is a common situation that the process start
address does not match a checkpoint position.

This situation creates the non-cached distance which is the

main weak point of our idea as it can slow down the performance

of the training at the very beginning. It is also common that a size
end address does not match a checkpoint position. To avoid the

c© 2017 Information Processing Society of Japan 4

Vol.2017-HPC-160 No.40
2017/7/28



IPSJ SIG Technical Report

same non-cached distance weakness, we do not take the check-

point following the size end address as the next triggering check-

point, but, instead, we trigger the prefetch at a checkpoint that is

still in the pre-fetched area. To do that, we define the pre-cache
threshold that corresponds to a memory address within the pre-

cached area, from which the next detected checkpoint will trigger

a pre-cache. We chose 75 % as a good value for this, but, as long

as a checkpoint lands in the area between the threshold and the

end of the current prefetch area, the optimisation occurs. When

we hit such a checkpoint, the next pre-fetch occurs not from the

checkpoint, but from the end of the current prefetch area, thus

removing any pre-fetch overlap.

3.3 Code injection
We developed a memory-mapped access detection method

based on mprotect and a signal handler. Changing the access

protection for the deep learning process’s memory page and mak-

ing the signal be sent to this process requires to implementing

those features within the deep learning application. However,

because of compatibility reasons, we would like to make this

mechanism independent of any deep learning application, conse-

quently we took it upon ourselves to create a pre-caching mech-

anism that does not modify the deep learning framework source

code. This removes the need for adapting to different frameworks,

which saves time and effort, as it would require an unmanageable

amount of work to develop such a system for each different deep

learning framework.

To integrate memory protection and signal handling capabil-

ities within the deep learning framework without any changes

to it, we used a code injection approach by using the Linux

LD PRELOAD environment variable. This variable can be used at

runtime to force a user shared library to be loaded and used with a

higher priority than other libraries a program loads. With this, we

can independently implement the memory protection and signal

handler functionality in a separate library, compile it into a shared
object, then inject it with LD PRELOAD into the MPI-Caffe run-

time.

We achieve this goal with a GCC–specific feature that al-

lows executing code before the main function by applying the

constructor attribute to a function. Another aspect we need to

handle is the application overriding our signal handler—for that

purpose, we proxy the signal and sigaction POSIX functions

and prevent overriding our SIGSEGV handler.

In our implementation, illustrated in Figure 6, the deep learn-

ing application and the shared library are launched together by

the main program called optimizer, the job of which is to get the

checkpoint locations from the /proc/pid/maps file, send them

to the deep learning application injected code and wait for a sig-

nal handler notification to trigger a pre-cache task.

4. EXPERIMENTAL EVALUATION
In this section we evaluate our data supply system with mem-

ory access detection and the pre-cache mechanism. We first char-

acterize the original MPI-Caffe performance without any opti-

mizations, then we evaluate the average training time when using

our system so that we can see the performance improvement we

Fig. 6 Implementation details flowchart

achieved. We also compare the performance when accessing data

from different data storage types such as local SSD and remote

FEFS data servers and compare our system performance result

to the theoretical best performance which corresponds to a full

access from local memory. Finally, we measure the overhead of

our system and discuss some improvements we may make to this

system. Plot 8 describes the results with different size and dis-
tance parameter values so that we can evaluate their effect on the

performance.

4.1 Experimental setup
All experiments were performed on our kagami cluster hosted

at the Fujitsu Laboratories HPC division. It is composed of six-

teen compute nodes and four data nodes connected to an Infini-

Band EDR network (one Mellanox ConnectX-4 EDR 2-port IB

HCA per node, one InfiniBand EDR cable per node). Each node

is dual-socket with two 2.1 GHz 18-core (36-thread) Intel Xeon

E5-2695 v4 processors and 8 16 GiB DDR4 memory modules

(128 GiB total). Storage–wise each node has an Intel NVMe

SSD 750 Series with a storage capacity of 1.2 TiB and two Nvidia

Tesla P100 GPUs. The data nodes are equipped with four SSDs

(each) with the same specifications as above and eighteen 1.8 TiB

SAS HDDs (2x9 RAID 5) and six 256 GiB SATA HDDs (3x2

RAID 10) each. Thus, the complete compute capacity is 1152

vCPUs and 32 GPUs, and the total usable storage capacity of the

whole cluster is around 160 TiB.

We deployed the FEFS file system, based on Lustre version

2.6.0, over the kagami cluster as described in Figure 1: the com-

pute nodes as FEFS clients, one data node as the MGS/MDS

(management/metadata server) and the three other data nodes as

OSSs (object storage servers). The MDS has one SSD for the

MGT (management target) and two SSD for MDTs (metadata

targets). Each OSS has four SSD OSTs (object storage targets)

and two HDD OSTs.

For training, we used the ImageNet data set which is a collec-

tion of images typically rescaled to 256 x 256 pixels. The train-

ing dataset is stored in a 240 GiB LMDB file and the testing set

into another 9.4 GiB LMDB file. We set the FEFS stripe size to

12 MiB (6 MiB batch size x 2 GPUs) and the FEFS stripe count to

12 (3 OSS x 4 SSD OSTs). For the purpose of these experiments,

we turned off the FEFS OSS and cleared the FEFS client and the

c© 2017 Information Processing Society of Japan 5

Vol.2017-HPC-160 No.40
2017/7/28



IPSJ SIG Technical Report

Linux page cache before every experiment, and used both SSD

and HDD OSTs for data access.

On the FEFS clients, we deployed MPI-Caffe based on Caffe

0.1.0-rc3 with OpenMPI 2.0.2 and ran distributed deep learning

training using 16 MPI processes, one per node, using two GPUs

per node, each of them effectively accessing different regions of

the same LMDB data file. The maximum number of iterations

performed during the training has been set to 1000. This value

corresponds approximately to 1.5 epochs which means that, as

training is an iterative process over the data set, we iterate over

the entire data set approximately 1.5 times.

Figure 7 shows the performance results of our experiments.

The y axis represents the training time and the x axis the different

configurations we tested:

• baseline: original MPI-Caffe implementation

• prefetch-off : MPI-Caffe +memory-mapped access detection

only. This configuration detects memory access with mpro-
tect and signal handling but never triggers any pre-fetching.

• prefetch-on: MPI-Caffe + memory-mapped access detection

+ pre-fetching.

• warm cache: original MPI-Caffe accessing data from local

cache only (a previous run already warmed up the cache).

Each configuration shows results for when data is accessed

from local SSDs and remote FEFS SSDs. prefetch-on and warm
cache also show remote FEFS HDD results, whereas the other

two do not because the training time was over 10 times longer

than for other devices. For each configuration, the results have

been measured ten times and there is no significant variance

between them. baseline and prefetch-off give identical perfor-

mances, which demonstrates the fact that our memory access de-

tection incurs no significant overhead. In these configurations,

FEFS SSD shows slower training time than local SSD—this phe-

nomenon can be explained by the FEFS read-ahead functionaility

which, unlike the standard Linux cache, pre-reads some amount

of data upon detecting sequential access.

The prefetch-on configuration brings significant improvements

compared to baseline, no matter the storage used. FEFS SSD

training time decreases from 280 seconds down to 180 seconds

reducing the training time by 32 %. The local SSD improve-

ment is even better, where the time goes down from 320 sec-

onds to 160 seconds, reducing the training time by 50 %. It is

worth noting that the described speed-up only considers the im-

provement made on the first pass (which is the first access to the

data—during the first epoch), so that the results correspond effec-

tively to the pre-cache mechanism improvement. The local SSD

result equals the warm cache performance which is the theoreti-

cal best performance. However, a slight difference exists between

the prefetch-on and warm cache performance for FEFS SSDs.

This phenomenon is explained by the small amount of data cor-

responding to the non-cache distance (see Section 3.2) which are

accessed from the disk instead of the cache, thus slowing down

the training.

Figure 8 focuses on the prefetch-on configuration. It shows

performance results for the three devices with different distance
(spacing) and size values (see Section 3.2). The parameter values

are given in mebibytes for six different configurations. Short dis-

0

100

200

300

Baseline Prefetch OFF Prefetch ON Warm cache
Configuration

Ti
m

e 
ta

ke
n 

[s
]

Lustre HDD

Lustre SSD

Local SSD

Fig. 7 Performance results.

tances (8 MiB and 10 MiB) give the best results, especially with

shorter sizes 50 MiB. These results make sense: we can more

frequently detect the checkpoints and trigger smaller (therefore

faster) pre-cache events which focuses on the most needed data.

This mechanism can be seen as an extension of the FEFS read-

ahead cache with a bigger window and some assumptions about

the data access pattern. Higher values of the distance parame-

ter detect memory accesses less frequently, thus triggering less

pre-caching. Higher sizes pre-cache more data, which takes more

time and may also some times pre-fetch unnecessary data, when

detecting a seeking (as opposed to reading) memory access.

0

200

400

600

800

Lustre HDD Lustre SSD Local SSD
Device

Ti
m

e 
ta

ke
n 

[s
]

spacing−size
8M−50M

10M−50M

8M−128M

128M−128M

128M−512M

512M−512M

Fig. 8 Performance results for different spacings and pre-fetch sizes.

5. RELATED WORK
There are many works related to building efficient data stor-

age systems for data-intensive computing in HPC systems. A

major research direction consists of integrating Hadoop with the

HPC infrastructure. Some work explored deploying Hadoop on

existing parallel file systems such as FEFS, Ceph [15] or GPFS

[9]. They developed a suitable data mapping between parallel

c© 2017 Information Processing Society of Japan 6

Vol.2017-HPC-160 No.40
2017/7/28



IPSJ SIG Technical Report

file systems and Hadoop and showed some performance enhance-

ments. However, I/O bandwidth of parallel file systems remains

the bottleneck of such systems. In a prior work, we deployed

HDFS [10] onto a cluster of HPC compute nodes as the main

data storage system for MPI-Caffe. To efficiently supply HDFS

data blocks to MPI processes, we implemented an inter-process

communication module between MPI and Spark instances using

shared-memory [4], [18]. This system combines the Hadoop and

MPI merits: high I/O throughput, horizontal scalability, fault tol-

erance and finely tuned control flow.

A second research direction focuses on using memory to in-

crease I/O performance of parallel file systems. One project [14]

introduced a dedicated buffer layer deployed into HPC data nodes

to buffer the burst I/O. A recent work [16] also developed a two-

level data storage system for integrating HPC and data-intensive

computing. They built a hybrid data storage system using an HPC

parallel file system, OrangeFS [1] and a big data in-memory file

system called Alluxio [6]. Using HPC compute node memory

as part of storage, with Alluxio integrated atop of OrangeFS, they

provided temporal locality of data and a read throughput enhance-

ment.

A third research direction dove deeply into the data storage de-

vice design. One project [2] is based on building efficient hybrid

storage systems using SSDs supporting HDDs for random and

write operations. They developed a system that can identify fre-

quently accessed blocks, the root of long latency, and move them

from the HDD to the SSD for future access improvements.

Our work is mainly focused on improving read data access

for deep learning applications using client side caching which is

based on data prefetching with memory access detection. Our

mechanism is deeply coupled with the knowledge of deep learn-

ing data access patterns which makes it unusable with applica-

tions with different data access patterns, and also makes use of

rudimentary prediction of sequential accesses, which means we

go beyond a reactive system. A project [7], which resembles our

work, also leverages client side file caching to minimize the data

server access contention. They developed a global cache pool

made by each compute node’s process local memory buffer and

the MPI I/O collective operation to solve cache coherency prob-

lems. However, this work focuses on using collective caching

to export cache coherency management into the compute nodes

which is in our case slightly useless because we focus on read-

only MPI-Caffe processes.

6. CONCLUSION
We designed and evaluated a practical way to efficiently supply

data to distributed deep learning processes. Our memory-mapped

access detection enables training processes to access image data

from local cache which corresponds to a training time reduction

of 32 % compared to the original MPI-Caffe implementation.

Our user-space implementation has no significant overhead and

the code injection we used permits re-usability with other deep

learning frameworks using LMDB or memory-mapped file back-

ends. Our performance results show a significant training time

improvement when using pre-fetching. FEFS performance can

be improved if we minimize the no-cache distance between the

process start address and the first checkpoint position. As the

training is an iterative process over the data set, we can further

our work by continuously improving the detection pattern by us-

ing a binary search to dynamically change the position of some

checkpoints to make them match the process start address. In fur-

ther work, we plan to evaluate the overhead of this system with

other configurations and frameworks. We would also like to to

explore other approaches such as developing a kernel module to

automatically monitor memory-mapped access or leverage idle

compute nodes’ free memory as a global cache for deep learning

processes.

References
[1] Carns, H., Ligon, B. I., Ross, B. and Thakur, R.: The OrangeFS

Project, Parallel Architecture Research Laboratory (online), available
from 〈https://www.orangefs.org/〉 (accessed 2017-04-20).

[2] Chen, F., Koufaty, D. A. and Zhang, X.: Hystor: making the best use
of solid state drives in high performance storage systems, Proceedings
of the international conference on Supercomputing, ACM, pp. 22–32
(2011).

[3] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L.: Im-
agenet: A large-scale hierarchical image database, Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
IEEE, pp. 248–255 (2009).

[4] Haderbache, A., Miwa, M., Yamazaki, M., Tabaru, T. and Nakashima,
K.: Spark as Data Supplier for MPI Deep Learning Processes, Tech-
nical Report 11, Fujitsu Laboratories Limited (2016).

[5] Kenichiro Sakai, Shinji Sumimoto, M. K.: High-Performance and
Highly Reliable File System for the K computer, Technical Report
11, Fujitsu Laboratories Limited (2012).

[6] Li, H., Ghodsi, A., Zaharia, M., Baldeschwieler, E., Shenker, S.
and Stoica, I.: Alluxio - Open Source Memory Speed Virtual Dis-
tributed Storage, University of California, Berkeley Hortonworks (on-
line), available from 〈http://www.alluxio.org/〉 (accessed 2017-04-20).

[7] Liao, W.-k., Coloma, K., Choudhary, A., Ward, L., Russell, E. and
Tideman, S.: Collective caching: Application-aware client-side file
caching, High Performance Distributed Computing, 2005. HPDC-14.
Proceedings. 14th IEEE International Symposium on, IEEE, pp. 81–
90 (2005).

[8] Lim, S.-H., Young, S. R. and Patton, R. M.: An analysis of image
storage systems for scalable training of deep neural networks, system,
Vol. 5, No. 7, p. 11 (2016).

[9] Schmuck, F. B. and Haskin, R. L.: GPFS: A Shared-Disk File System
for Large Computing Clusters., FAST, 2, No. 19 (2002).

[10] Shvachko, K., Kuang, H., Radia, S. and Chansler, R.: The
Hadoop Distributed File System, Yahoo! (online), available from
〈https://hadoop.apache.org/〉 (accessed 2017-05-04).

[11] Stanovnik, S., Haderbache, A., Miwa, M. and Nakashima, K.: Perfor-
mance analysis of a deep learning framework on a high-performance
distributed file system, Technical report, Fujitsu Laboratories Limited
(2017).

[12] Symas: LMDB microbenchmark (2012), Symas (online), available
from 〈http://symas.com/mdb/microbench/〉 (accessed 2017-05-12).

[13] Wang, F., Oral, S., Shipman, G., Drokin, O., Wang, T. and Huang, I.:
Understanding lustre filesystem internals (2009).

[14] Wang, T., Oral, S., Wang, Y., Settlemyer, B., Atchley, S. and Yu, W.:
Burstmem: A high-performance burst buffer system for scientific ap-
plications, Big Data (Big Data), 2014 IEEE International Conference
on, IEEE, pp. 71–79 (2014).

[15] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. and Maltzahn,
C.: Ceph: A scalable, high-performance distributed file system, Pro-
ceedings of the 7th symposium on Operating systems design and im-
plementation, USENIX Association, pp. 307–320 (2006).

[16] Xuan, P., Denton, J., Srimani, P. K., Ge, R. and Luo, F.: Big data
analytics on traditional HPC infrastructure using two-level storage,
Proceedings of the 2015 International Workshop on Data-Intensive
Scalable Computing Systems, ACM, p. 4 (2015).

[17] Yamazaki, M., Kasagi, A., Tabaru, T. and Nakahira, T.: Accelerating
a Deep Learning Framework with MPI, Technical Report 6, Fujitsu
Laboratories Limited (2016).

[18] Zaharia, M., Chowdhury, M., Franklin, J., Shenker, S. and Stoica, I.:
Spark: Cluster Computing with Working Sets, University of Califor-
nia, Berkeley (online), available from 〈https://spark.apache.org/〉 (ac-
cessed 2017-05-04).

c© 2017 Information Processing Society of Japan 7

Vol.2017-HPC-160 No.40
2017/7/28


