
IPSJ SIG Technical Report

Performance analysis of a deep learning framework on
a high-performance distributed file system

Sašo Stanovnik1,a) Amir Haderbache1,b) MasahiroMiwa1,c) Kohta Nakashima1,d)

Abstract: Current deep learning framework data access patterns are not adapted to traditional HPC distributed file
systems such as FEFS, as they do not take into account the data access latency and overhead. This causes performance
degradation in high-scale environments, especially with large dataset sizes. We analyse data access patterns in an
existing framework with both external and introspective analysis, then propose and implement a new pattern in order
to achieve 5 to 6 times better performance when training on and by adapting to the capabilities of a distributed file
system.

1. INTRODUCTION
Deep learning algorithms have recently become a popular re-

search topic as they improved the way we apply supervised learn-

ing to perceptual problems such as computer vision. This method

enables a user to process large datasets of perceptual inputs (im-

ages, sounds) and descriptive targets into models that can au-

tomatically map inputs to targets. Somewhat recently, the im-

plementation of practical deep learning applications has been fa-

cilitated due to the development of various software frameworks

such as Caffe [1] and Theano [4]. These platforms provide high-

level interfaces, mostly in C++ or Python, to efficiently train neu-

ral network models, supported by numerical computation opti-

mization libraries, multi-GPU support and I/O management. The

data storage and access method used influences the overall appli-

cation performance, as the training process continuously accesses

input data during computation by iterating over the dataset.

Recent works showed [9] that training on a large dataset, such

as ImageNet [5], with an optimized key-value data store provides

significantly better performance than using separate image files

on a local file system. Deep learning input consists of a large set

of images, which are accessed sequentially in a series of batches.

Therefore, strong indexing capabilities to locate a specific image

in the storage system and an advanced caching mechanism are es-

sential to achieving optimal performance. Many works propose

a good implementation of training neural networks with locally

stored data, but give no out-of-the-box solution for efficiently run-

ning large-scale deep learning on an HPC cluster. The scope of

our work is to analyse the performance of training neural net-

works at a large scale with a distributed deep learning framework

1 Fujitsu Laboratories Limited, 4-1-1 Kamikodanaka, Nakahara-ku,

Kawasaki-shi, Kanagawa-ken 211-8588, Japan
a) saso@extra.labs.fujitsu.com
b) haderbache.amir@jp.fujitsu.com
c) masahiro.miwa@jp.fujitsu.com
d) nakashima.kouta@jp.fujitsu.com

on a parallel file system commonly used in HPC. For this, we de-

ployed MPI-Caffe [12] with the FEFS R© [7] filesystem and per-

formed a performance analysis in order to improve the way we

access remotely stored data. Next, we analysed MPI-Caffe’s I/O

pattern by using the blktrace [3] and strace [8] tools to get

more insight into the particulars of the data access pattern. From

these I/O study results, we inferred a more efficient data access

pattern for MPI-Caffe to access data with, and which is better

suited to the capabilities of a parallel distributed filesystem. Our

experiments show that this new data access pattern can reduce

the training time by 5 to 6 times compared to the original one on

some storage configurations.

2. BACKGROUND INFORMATION
2.1 Deep learning

An important aspect of neural network training is that it relies

on iterative optimization algorithms. In general, and with proper

training, the more the cost function is minimized, the better the

built model can predict accurate values using new input data. Be-

cause training operations can be massively parallelized, we often

use GPUs to speed up the training. Until the weights converge,

the CPU repeatedly reads batches of image data from a storage

system and feeds them into GPU memory for computation, and

the more the algorithm iterates over a large amount of training

data, the better the model accuracy becomes—but note that the

quality of data is also important. As deep learning data require-

ments get bigger, we need to build larger and more sophisticated

models. Therefore, strong support from the underlying data stor-

age system has become a requirement for large-scale deep learn-

ing.

2.2 The HPC architecture
HPC computer clusters represent interesting platforms for run-

ning large scale deep learning applications, as their architecture

is optimized for compute-intensive applications. However, they

c© 2017 Information Processing Society of Japan 1

Vol.2017-HPC-160 No.39
2017/7/28



IPSJ SIG Technical Report

need to be enhanced with efficient data supply mechanisms to

meet the data requirements of deep learning applications. Tradi-

tionally, an HPC cluster physically separates compute nodes from

data nodes and uses a high speed interconnect between them.

HPC storage systems use both local file systems on compute

nodes and global parallel file systems served by data nodes. Local

file systems are used to store temporary data required for compu-

tation whereas parallel file systems store shared data. A parallel

file system makes the data accessible to all compute nodes, thus

enabling easy data sharing. However, the problem with this archi-

tecture is that it requires data to be transferred from data nodes to

a compute node through the network when the client makes a re-

quest. Because deep learning applications spend most of their

time in I/O requesting large, contiguous chunks of data, specific

strategies need to be developed to speed up large-scale training

on HPC systems.

2.3 MPI-Caffe
MPI-Caffe is a distributed version of the BVLC Caffe frame-

work developed internally at Fujitsu Laboratories. It embeds the

Caffe runtime into an MPI application in order to speed up com-

putation time when running on multiple machines, and especially

when learning on a large dataset. In essence, MPI-Caffe runs mul-

tiple parallel processes which perform interprocess communica-

tion for model parameter updates, and operate on either shared

data or multiple copies of it. The data domain decomposition

is simple, as the dataset is evenly divided among the processes.

Moreover, the training behaviour (i.e. the number of iterations,

mini-batch size, model definition, solver and the loss function

used) remains encapsulated by Caffe parameters defined in ded-

icated prototxt configuration files. Caffe proposes many data
layers as data storage backends from which processes can access

image data. We focus our study on the database layer which al-

lows Caffe to read from optimized key-value data stores such as

LMDB (Lightning Memory-Mapped Database) [2]. LMDB uses

two types of files for managing I/O access requested by applica-

tions: a data file and a lock file, both located in the same directory.

The data file stores the image training data, whereas the lock file

is a means of providing database integrity for concurrent access.

2.4 FEFS
The Fujitsu Exabyte File System (FEFS R©)*1 is a clustered dis-

tributed file system based [7] on the Lustre file system. It was

originally developed to handle the computing performance of the

K-computer, the world’s fastest supercomputer in 2011.

An example of its architecture is where data servers (OSS –

object storage servers) store data into external storage devices

like HDDs and SSDs, meta-data servers (MDS) store metadata

information and clients access and use the data. Each OSS cor-

responds to a data node. The different peripheral storage devices

connected to the OSS (HDD, SSD) are called object storage tar-
gets (OSTs).

One of FEFS’s key features is file striping. Basically, a large

file stored into FEFS is divided into several contiguous chunks of

*1 FEFS is a registered trademark of Fujitsu Limited.

data called stripes which are distributed, in a round-robin fashion,

among the different OSTs. This is what we did for our data. With

striping, the maximum file size is not limited by the capacity of a

single OST. Moreover, when multiple clients access the same file,

the total read throughput increases. The user can set up a stripe
size and a stripe count for each directory in the FEFS file sys-

tem. The stripe count corresponds to the number of OSTs where

the stripes have to be distributed, whereas the stripe size corre-

sponds to the size of one “slice” of the file that can be distributed

across the servers. FEFS also uses multiple levels of cache to

improve client data accesses: a cache on the server side (OSS

cache) and another on the client side (the FEFS client cache).

Both cache systems leverage the local Linux page cache to retain

data in memory, avoiding disk access.

3. EXPERIMENTAL ENVIRONMENT
This section describes the hardware and software environment

that was used for all experiments described in this paper.

Fig. 1 Experimental environment logical diagram

All experiments were performed on our kagami cluster hosted

at the Fujitsu Laboratories HPC division. It is composed of six-

teen compute nodes and four data nodes connected to an Infini-

Band EDR network (one Mellanox ConnectX-4 EDR 2-port IB

HCA per node, one InfiniBand EDR cable per node). Each node

is dual-socket with two 2.1 GHz 18-core (36-thread) Intel Xeon

E5-2695 v4 processors and 8 16 GiB DDR4 memory modules

(128 GiB total). Storage–wise each node has an Intel NVMe

SSD 750 Series with a storage capacity of 1.2 TiB and two Nvidia

Tesla P100 GPUs. The data nodes are equipped with four SSDs

(each) with the same specifications as above and eighteen 1.8 TiB

SAS HDDs (2x9 RAID 5) and six 256 GiB SATA HDDs (3x2

RAID 10) each. Thus, the complete compute capacity is 1152

vCPUs and 32 GPUs, and the total usable storage capacity of the

whole cluster is around 160 TiB.

We deployed the FEFS file system, based on Lustre version

2.6.0, over the kagami cluster as described in Figure 1: the com-

pute nodes as FEFS clients, one data node as the MGS/MDS

(management/metadata server) and the three other data nodes as

c© 2017 Information Processing Society of Japan 2

Vol.2017-HPC-160 No.39
2017/7/28



IPSJ SIG Technical Report

OSSs (object storage servers). The MDS has one SSD for the

MGT (management target) and two SSD for MDTs (metadata

targets). Each OSS has four SSD OSTs (object storage targets)

and two HDD OSTs.

For training, we used the ImageNet data set which is a collec-

tion of images typically rescaled to 256 x 256 pixels. The train-

ing dataset is stored in a 240 GiB LMDB file and the testing set

into another 9.4 GiB LMDB file. The FEFS stripe count was set

to 12 for SSDs and 6 for HDDs, which means striping to every

available device, and we used multiple stripe sizes with multi-

ple copies of the data. For the purpose of these experiments, we

turned off the FEFS OSS cache, cleared the FEFS client cache

and the Linux page cache before every experiment, and used both

SSD and HDD OSTs for data access.

On the FEFS clients, we deployed the MPI-Caffe framework

based on Caffe 0.1.0-rc3 with OpenMPI 2.0.2 and ran distributed

deep learning training using 16 MPI processes, one per node, us-

ing two GPUs per node, each of them effectively accessing differ-

ent regions of the same LMDB data file. The maximum number

of iterations performed during the training has been set to 1000.

This value corresponds approximately to 1.5 epochs which means

that, as training is an iterative process over the data set, we iterate

over the entire data set approximately 1.5 times.

4. PERFORMANCE ANALYSIS
4.1 Local configuration

We start the analysis with the simplest configuration: MPI-

Caffe running across multiple compute nodes, where each node

has its own copy of the LMDB data and each process accesses its

data from the local SSD. This configuration is easy to deploy as

it does not require a distributed file system installation. However,

it has two main drawbacks: first, it requires a local SSD for each

compute node which is often prohibitively expensive, and second,

it uses several replicas of the same dataset which is a tremendous

waste of data storage capacity. This configuration is clearly not

scalable in terms of cost, and because MPI-Caffe processes ac-

cess the same dataset, we next consider a shared file system as a

better solution for our needs.

4.2 FEFS configurations
We deployed the FEFS file system architecture, created multi-

ple directories with different stripe sizes and placed a copy of the

LMDB dataset in them. This time, all MPI-Caffe processes ac-

cess a single shared LMDB data file during the training. This con-

figuration uses only one copy of the data regardless of the number

of compute nodes, saving a lot of storage resources. However,

when running performance benchmarks with this configuration,

we noticed unstable behaviour (stalling, no consistent results) we

did not experience before. After some investigation it became

clear that this problem is related to the LMDB lock mechanism

policy. When multiple MPI processes try to access the same data

and lock file (even when accessing different data within the file),

some lock contention occurs and degrades the I/O access perfor-

mance. To reduce lock contention, we made the MPI-Caffe pro-

cesses open the LMDB database read-only by modifying file sys-

tem attributes of the files to read-only—this is called the shared

file configuration. With this, results and stability are slightly im-

proved, but most problems still persist. As documented, LMDB

has not been developed to be used in such distributed contexts

with multiple concurrent accesses. To make it work properly, we

use a trick consisting of using not a single lock file, but instead

using a separate lock file for each process, while still sharing the

data file. In technical terms, each process should point to a spe-

cific directory containing a materialized LMDB lock file and a

symbolic link to the shared LMDB data file. With this configura-

tion, we still use only one copy of the data while solving the lock

contention problem by using multiple copies of the lock file. This

solution is essentially free, as each lock file is only sized at a few

kilobytes. We call this new solution the ownlock configuration.

0

500

1000

1500

Local Shared file Ownlock
Storage configuration

Ti
m

e 
ta

ke
n 

[s
]

Fig. 2 Performance results of using a dataset stored on shared storage ver-

sus a local one

As seen in Figure 2, we have slightly improved the perfor-

mance with this solution, as well as solved all stability issues,

as the training process now does not stall or fail to complete. We

are still quite far from the performance that multiple copies on

local SSD storage offer us initially, but have significantly reduced

the overall storage capacity requirement.

4.3 Further configuration details
We keep the previous configuration, where we have one data

file and multiple lock files, and analyse the influence of the stripe

size parameter on the performance.

In our experiments, we use two GPUs (see Section 3 for de-

tails) on each compute node and set the training batch size to

64 images. Those images come from the ImageNet dataset,

a broadly used collection of coloured images scaled down to

256x256 pixels.

As depicted in Figure 3, the stripe size giving the best perfor-

mance among the ones we have tested with the original imple-

mentation, is 1 MiB. This corresponds to the fact that we have, in

essence, a lot of smaller file accesses, rather than large sequential

reads. We use this stripe size as a default whenever we do not

explicitly mention a specific stripe size.

We next analysed the influence of the storage device on the per-

formance, comparing the performance between HDDs and SSDs

when we use them as FEFS OSTs on data servers. It turns out

c© 2017 Information Processing Society of Japan 3

Vol.2017-HPC-160 No.39
2017/7/28



IPSJ SIG Technical Report

1560

1590

1620

1650

1M 6M 12M 64M 2G
Lustre stripe size

Ti
m

e 
ta

ke
n 

[s
]

Fig. 3 Training time for different stripe sizes with the sequential pattern

that while we have improved the performance by using a separate

LMDB lock file for each compute node, and made significant sta-

bility improvements, performance on HDD-backed FEFS storage

remains bad. Furthermore, using a single LMDB lock file and a

single data file on HDD-backed storage stalled training, and we

could not get any training run to succeed.

5. DATA ACCESS PATTERN
In order to get a better insight into these performance results,

we performed a thorough I/O analysis described in the next sec-

tion using the Linux strace and blktrace tools.

5.1 strace analysis
strace is a Linux utility for tracing system calls and signals.

It lists the system calls that are called by a process and the sig-

nals received by a process. Examining the strace output can

give valuable information about a process’s data access pattern

by parsing the open, read and write system calls. With this, we

trace the MPI-Caffe processes during deep learning training and

get a system call timeline as illustrated in Figure 4.

Fig. 4 strace diagram for a run including both training and testing phases

The strace timeline brings to light the different phases oc-

curring during the learning process. The write timeline shows

a series of clusters of writes separated by blank intervals. Be-

cause writes mainly happen during the training phase when we

update the model parameters and write to logs, we infer that those

clusters of writes correspond to the training phases and the blank

spaces to the testing phases. Note that the y-value jitter is only

for visualization, that is to say just manually introduced to help

with reading the plot. Two open areas appear at the beginning

of the timeline aligned to the first training section, corresponding

to the opening of the LMDB training and validation data files.

The second one is aligned with the first testing blank space and

corresponds to the opening of the LMDB testing data file. Two

similar areas of read calls are aligned with open. We infer that

those areas correspond to data headers from the LMDB data files.

However, we can’t see any read calls which would correspond

to the image accesses. This is because LMDB read accesses are

made through memory maps, which involve no system calls, be-

cause processes can directly access data from virtual memory.

We also notice mmap system calls that are aligned with the open
areas, which correspond to the moments when the LMDB data

addresses are mapped to the process address space before access.

Because strace’s scope is limited to userspace I/O events, we

can’t obtain further information on the training read access be-

cause of its use of memory-mapping. We decide to use other

tools for this purpose.

5.2 blktrace analysis
blktrace is a Linux utility for tracing I/O at the device block

level. Unlike strace, blktrace can provide information about

requests happening at the system level, between the kernel and

the storage devices. We trace MPI-Caffe data accesses with

blktrace and use blkparse to obtain a formatted output.

Additionally, because blktrace outputs information corre-

sponding to the raw device blocks, we mapped those to file offsets

in order to have consistent results across different machines. The

tool we used was xfs bmap, which the XFS filesystem provides

to obtain block mappings for specific files. Using this informa-

tion, we converted the raw block information to filesystem file

offsets. From this output we created a timeline of the LMDB data

block accesses as illustrated in Figure 5.

Here, the y axis corresponds to the LMDB data file offset, with

0 meaning the beginning of the file. As we can see, although each

MPI process accesses its own set of images, they all pass through

the entire file, from the beginning to the end. In the MPI-Caffe

implementation, each process reads an image, then skips n − 1

images (where n is the number of processes), then reads the next

one, and so on. This is also visible by the mixing of differently-

coloured (and differently-shaped) points in the plot.

This data access pattern produces significant overhead for large

file access as it involves a lot of skipping operations—one after

each image, and also because each process accesses a data range

through the entire file. The effects of this are that there is some

useless data cached for each node—the overflow data after each

image that is read by necessity of the underlying storage interface.

This can cause the entire data to not fit into memory, reducing

caching performance.

This skipping pattern was the natural implementation choice

during MPI-Caffe development as it does not involve significant

modification of the Caffe data layer source code. Moreover, the

development priority of MPI-Caffe was to produce a parallel ver-

sion of Caffe, leaving data access optimizations for further work.

In the next section, we propose an adapted implementation of

c© 2017 Information Processing Society of Japan 4

Vol.2017-HPC-160 No.39
2017/7/28



IPSJ SIG Technical Report

0

50

100

150

200

250

0 50 100 150
Time [s]

Fi
le

 o
ffs

et
 [G

iB
]

Node
Node 02

Node 08

Fig. 5 blktrace visualization and diagram for the skipping pattern

data access for MPI-Caffe which eliminates the skipping pattern
overhead and limitations on distributed filesystems.

6. SEQUENTIAL PATTERN
PERFORMANCE IMPROVEMENT

We modified the MPI-Caffe implementation to make each pro-

cess access its logically separated part of the data, contiguously,

without any skipping between images. Each process has a spe-

cific region of the file logically assigned to it, corresponding to the

colours in the plot, and to the set of images the process accesses

during training. This implementation has the merit of avoiding

going through the entire file and reading unnecessary data. As

shown in the Figure 7 blktrace visualisation, each process seeks

to its first image at the start and then only goes through its own

part of the data.

275

280

285

290

1M 6M 12M 64M 2G
Lustre stripe size

Ti
m

e 
ta

ke
n 

[s
]

Fig. 6 Training time for different stripe sizes with the contiguous pattern

Notably, we have no second read of the data in the improved

case, which we did have in the skipping implementation. This

is due to the clients being able to cache data into local memory

completely, whereas in the skipping implementation, clients also

have to cache some unnecessary data, which is the overhead from

each skip-read cycle.

Performance analysis results for different stripe sizes, depicted

in Figure 6, show that with the contiguous implementation the op-

timal stripe size is now larger, not 1 MiB, as it was with skipping.

This is due to larger sequential reads and the FEFS read-ahead

functionality, as described in the next section. All performance

25

50

75

100

125

0 50 100 150 200 250
Time [s]

Fi
le

 o
ffs

et
 [G

iB
]

Node
Node 02

Node 08

Fig. 7 blktrace visualization and diagram for the contiguous pattern

results where the stripe size is not explicitly mentioned for the

contiguous pattern use the 64 MiB stripe size, as it showed good

performance.

6.1 FEFS cache and read-ahead
The main benefit of this pattern is that the application caches

only a specific part of the file for each process, reducing the cache

storage capacity requirement. Sometimes, all data required by a

single process can fit into the local compute node memory which

can be reasonably large. In this case, the future demand for the

data (from the second pass onwards) can be performed faster by

directly accessing the local cache—during the first pass, the pro-

cess data is automatically cached by FEFS on the compute nodes

for further access.

0

500

1000

1500

2000

Skipping Contiguous
Configuration

Ti
m

e 
ta

ke
n 

[s
]

Lustre HDD

Lustre SSD

Local SSD

Fig. 8 Final performance results, comparing the original skipping to our

improved contiguous pattern

FEFS also provides heuristic read-ahead functionality that pre-

fetches additional data into the client cache before an explicit re-

quest. The read-ahead algorithm detects sequential read accesses

performed by the client and takes the initiative to pre-read some

more data. The size of this additional read is the read-ahead win-
dow. The more the frequency of sequential reads increases, the

more the read-ahead window grows (up to 40 MiB, according to

the documentation [10]). Because the contiguous pattern always

reads the next data block (except for the last one where it loops

back to the beginning), the next few data blocks are pre-fetched

by the read-ahead function which improves performance.

c© 2017 Information Processing Society of Japan 5

Vol.2017-HPC-160 No.39
2017/7/28



IPSJ SIG Technical Report

Figure 8 shows a significant performance enhancement of the

contiguous pattern compared to the original skipping pattern for

SSD-backed FEFS storage. We also notice that the performance

on local SSDs is worse than on FEFS, which we attribute to

FEFS’s advantage with the pre-fetching functionality. The skip-
ping implementation result for HDD-backed FEFS storage, as it

was over ten times slower compared to the other values.

5

10

15

20

25

0 250 500 750 1000
Iteration

Ti
m

e 
fo

r i
te

ra
tio

n 
[s

]

Implementation
Contiguous

Skipping

Fig. 9 Detailed per-iteration times

Figure 9 shows a training timeline, where the x axis corre-

sponds to the iteration number, and the y axis corresponds to the

time taken for that iteration. As with all our benchmarks, we have

performed 1000 iterations of training, which corresponds to 1.5

training epochs. The end of the epoch is noticeable by the reduc-

tion in training time at two-thirds of the training.

We see that our improved contiguous implementation is much

more consistent in training times, as well as significantly faster

both in the first and the later epochs. In the contiguous imple-

mentation, in the second epoch, we see that the data is being

accessed completely into memory—where it was cached during

the first epoch. This represents the best-case performance, as the

memory is the fastest storage available for our use-case. This

phenomenon does not occur with the original, skipping imple-

mentation, as each file is only partially and very loosely cached

in local memory, due to pre–caching unnecessary parts of the data

as explained before.

7. RELATED WORK
Deploying a distributed deep learning environment on an HPC

cluster is a popular research topic and spans various optimization

areas. A study [9] analysed different image storage backends for

training convolutional neural networks with Caffe. They enumer-

ate possible solutions and find that using a key-value store like

LMDB gives significantly better performance compared to the

other options. However, this study only considers local training

and not data access from remote disks as we did in this analysis.

A recent project [13] focuses on reducing the network con-

tention occurring during parameter updates to improve deep

learning training scalability. They exploit the layered model

structure of neural networks to overlap communication and com-

putation which has some similarities with the optimization imple-

mented in MPI-Caffe.

Another number of projects such as CaffeOnSpark [11] and

BigDL [6] chose to distribute deep learning training using

Apache Spark instead of MPI. They leverage Spark features (Re-

silient Distributed Datasets) to distribute the workload among re-

mote Spark instances and in some cases import the Caffe run-

time within the Spark JVM. Spark has many merits: it caches the

training data within the JVM heap memory, thus increasing the

performance, provides a high level interface for developing ap-

plications and a set of automatic eviction policies which facilitate

cache management. However, it abstracts away a lot of low level

details which makes fine tuning and custom control harder.

8. CONCLUSION
We performed a step-by-step analysis of the MPI-Caffe data

access pattern in a distributed environment and inferred a more

appropriate approach to accessing the data. Our analysis lever-

ages different characteristics of the LMDB storage backend, the

FEFS file system and the Caffe framework, and uses them to en-

hance their performance. The new access pattern implementation

significantly improved the performance and reduced the training

time by 5 to 6 times compared to the previous implementation of

the same remote storage configuration.

For further work, we want to leverage the FEFS client cache

coupled with a pre-fetch mechanism to make data always avail-

able from local memory. As the contiguous pattern implemented

in this work facilitates the inference of the next required batch of

data, we plan to build a pre-cache mechanism based on memory-

mapped file access monitoring.

References
[1] BVLC: Deep learning framework by the BVLC, Berkeley University

(online), available from 〈http://caffe.berkeleyvision.org/〉 (accessed
2017-05-12).

[2] Chu, H.: Lightning Memory-Mapped Database, Symas (online), avail-
able from 〈http://www.lmdb.tech/doc/〉 (accessed 2017-06-22).

[3] Community, L.: Blktrace: block layer I/O tracer, GNU/Linux (online),
available from 〈https://linux.die.net/man/8/blktrace〉 (accessed 2017-
06-22).

[4] community, M.: Numerical library for Python, University of Montreal
(online), available from 〈http://deeplearning.net/software/theano/〉
(accessed 2017-06-22).

[5] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L.: Im-
agenet: A large-scale hierarchical image database, Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
IEEE, pp. 248–255 (2009).

[6] Intel: distributed deep learning on Apache Spark, Intel-analytics (on-
line), available from 〈https://github.com/intel-analytics/BigDL〉 (ac-
cessed 2017-06-22).

[7] Kenichiro Sakai, Shinji Sumimoto, M. K.: High-Performance and
Highly Reliable File System for the K computer, Technical Report
11, Fujitsu Laboratories Limited (2012).

[8] Kranenburg, L.: Strace: diagnostic tool for Linux, Sun Microsystems
(online), available from 〈https://strace.io/〉 (accessed 2017-06-22).

[9] Lim, S.-H., Young, S. R. and Patton, R. M.: An analysis of image
storage systems for scalable training of deep neural networks, system,
Vol. 5, No. 7, p. 11 (2016).

[10] Wang, F., Oral, S., Shipman, G., Drokin, O., Wang, T. and Huang, I.:
Understanding lustre filesystem internals (2009).

[11] Yahoo: CaffeOnSpark, Yahoo (online), available from
〈https://github.com/yahoo/CaffeOnSpark〉 (accessed 2017-06-22).

[12] Yamazaki, M., Kasagi, A., Tabaru, T. and Nakahira, T.: Accelerating
a Deep Learning Framework with MPI, Technical Report 6, Fujitsu
Laboratories Limited (2016).

[13] Zhang, Zheng, X.: Poseidon: An Efficient Communication Architec-
ture for Distributed Deep Learning on GPU Clusters, Proceedings of
the international conference on Supercomputing, USENIX Assoca-
tion, pp. 22–32 (2017).

c© 2017 Information Processing Society of Japan 6

Vol.2017-HPC-160 No.39
2017/7/28


