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Zigzag-HVP: A Cost-effective Technique to Mitigate

Soft Errors in Caches with Word-based Access
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Error Correction Code (ECC) is widely used to detect and correct soft errors in VLSI
caches. Maintaining ECC on a per-word basis, which is preferable in caches with word-based
access, is expensive. This paper proposes Zigzag-HVP, a cost-effective technique to detect
and correct soft errors in such caches. Zigzag-HVP utilizes horizontal-vertical parity (HVP).
HVP maintains the parity of a data array both horizontally and vertically. Basic HVP can
detect and correct a single bit error (SBE), but not a multi-bit error (MBE). By dividing the
data array into multiple HVP domains and interleaving bits of different domains, a spatial
MBE can be converted to multiple SBEs, each of which can be detected and corrected by the
corresponding parity domain. Vertical parity updates and error recovery in Zigzag-HVP can
be efficiently executed through modifications to the cache data paths, write-buffer, and Built-
In Self Test. The evaluation results indicate that the area and power overheads of Zigzag-HVP
caches are lower than those of ECC-based ones.

1. Introduction

Radiation particle strikes cause soft error
problems. Therefore, measures must be em-
ployed in processors to ensure greater reliabil-
ity against them. Since most of the processor
resources are allocated for caches, making the
caches resilient to soft errors is important.

Error Correction Code (ECC)— specifically
Single Error Correcting and Double Error De-
tecting Hamming Code (SECDED)— is widely
used to detect and correct soft errors in caches.
ECC maintains the check bits per unit of data.
Table 1 lists the number of check bits and the
SECDED overheads for various unit sizes.

Maintaining ECC for a large unit is prefer-
able to keep the overhead low. However, for
caches with word-based access (e.g., L1 data
caches or L2 caches with write-through L1
caches), maintaining ECC on a per-word basis
is preferred 6),12). Otherwise, partial updates to
the larger ECC units will frequently occur, in-
curring expensive read-modify-write operations
that read the entire units, recompute the check
bits, and write back the units. However, the
cost of maintaining ECC per-word is high. For
instance, a 32-bit word requires seven SECDED
check bits and incurs a 22% area overhead.

This paper proposes Zigzag-HVP— a low-
cost technique to detect and correct soft er-
rors for these word-based accessed caches. The
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technique makes use of horizontal-vertical par-
ity (HVP) 10). HVP maintains the parity of the
data array both horizontally and vertically. Ba-
sic HVP can detect and correct a single bit error
(SBE), but not a multi-bit error (MBE). The
probability that multiple errors will be accumu-
lated from multiple particle strikes is very low
in frequently accessed caches. Instead, MBE is
mostly caused by a single particle strike that
corrupts multiple bits at once 11). Therefore,
the corrupted bits are located close to one an-
other. By dividing the data array into multiple
HVP domains and interleaving bits of different
domains, a spatial MBE is converted into mul-
tiple SBEs, each of which can be detected and
corrected by the corresponding domain.

An error recovery routine is executed when
an error is detected by horizontal parity. By
sequentially reading the data words belonging
to the parity domain, vertical parity can be re-
computed to locate the error bit. The Built-
In Self Test (BIST) hardware 1),3) is enhanced
to include such a recovery function. We also
modify the cache data path and write buffer
to efficiently accommodate the vertical parity
updates. The evaluation results indicate that
the area and power overheads of Zigzag-HVP
caches are lower than those of ECC-based ones.

The remainder of the paper is organized as
follows. Section 2 discusses related work. Sec-
tion 3 explains the basic concept of HVP and
its limitations. Section 4 describes Zigzag-HVP.
Section 5 discusses the applications of Zigzag-
HVP. Section 6.1 presents the evaluation re-
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Table 1 Number of SECDED check bits for various
data unit sizes.

Data unit size (bits) 16 32 64 128 256
No. of check bits 6 7 8 9 10
Overhead (%) 37.5 21.9 12.5 7.0 3.9

sults. Finally, Section 7 concludes the paper.

2. Related Work

The use of a small cache to store check bits
or replicas of recently used data has been pro-
posed 9). Replication cache 20) enhances this
concept by using a small fully associative cache
to store the replica of every write to the L1
cache. ICR cache 21) uses those cache blocks
that are predicted to be “dead” as replicas of
“hot” dirty data. While these techniques of-
fer lower overheads than ECC, a large portion
of the dirty data still remains unprotected if
the locality of the data is low. The portion
of unprotected data for some benchmarks has
been as high as 40% 9), 30% 21), or 5% 20). The
level of dependability achieved by these tech-
niques is obviously not acceptable for applica-
tions demanding extremely high reliability. In
addition, while a replication cache 20) may be
suitable for small L1 caches, its application to
large L2 caches is impractical. Zigzag-HVP can
reduce the error rate by many orders of mag-
nitude and can be applied to both L1 and L2
caches.

Cross-parity 14) can deal with MBEs by main-
taining diagonal parity, in addition to horizon-
tal and vertical. However, an examination of
the horizontal parity alone cannot expose the
existence of some MBEs (e.g., MBEs where the
number of error bits in the same row is even).
Recomputation and checking of vertical or di-
agonal parity are required to detect such MBEs.
However, these operations are expensive and it
is impractical to execute them on every data
access. By relying on interleaving to disperse
the error bits, the existence of spatial MBEs in
Zigzag-HVP can be detected by only examin-
ing the horizontal parity and the vertical parity
only needs to be recomputed after the errors
have been detected.

The concept of interleaving has been used
to combat burst errors. Existing interleav-
ing schemes usually require intensive compu-
tation to detect and correct the errors. How-
ever, on-chip caches are latency-critical, mak-
ing these complex interleaving schemes unac-
ceptable. Simple interleaving of ECC units in

d1|1 d1|2 . . . d1|n hp1

d2|1 d2|2 . . . d2|n hp2

...
...

. . .
...

...
dm|1 dm|2 . . . dm|n hpm

vp1 vp2 . . . vpn hvp
hpi = di|1 ⊕ di|2 ⊕ . . . ⊕ di|n
vpj = d1|j ⊕ d2|j ⊕ . . . ⊕ dm|j
hvp = vp1 ⊕ vp2 ⊕ . . . ⊕ vpn

= hp1 ⊕ hp2 ⊕ . . . ⊕ hpm
⊕ denotes Exclusive OR

Fig. 1 Horizontal-vertical parity.

the same row to tolerate MBEs has been used
in caches or memories 13),18). Zigzag-HVP in-
terleaves the data in two dimensions and its su-
perior practicality is explained in this paper.

3. Horizontal-Vertical Parity and
Multi-Bit Errors

3.1 HVP Concept
Figure 1 shows the concept of HVP 10). The

parity of the m × n data array is maintained
both horizontally and vertically. di|j denotes a
data bit in the i-th row and j-th column of the
array. hpi and vpj are the parity bits of the i-th
row and j-th column, respectively. hvp is the
sum parity of the vertical parity bits, and this
is also equal to the sum parity of the horizontal
parity bits.

HVP can detect and correct SBEs. Assume
that the bit di|j is corrupted. When row i is
accessed, the parity of the row is recomputed
and compared to hpi. A mismatch indicates the
existence of an error in the row. The vertical
parity bits are then recomputed by sequentially
reading all rows. The resulting vertical parity
bits are compared to those currently stored in
the array. A mismatch in column j of the verti-
cal parity indicates the position of the error in
the victim row.

For an m×n data array, HVP requires m+n
check bits or an (m + n)/(m × n) area over-
head. The overhead is small when m and n are
sufficiently large.

3.2 Limitations with Basic HVP
While the basic HVP scheme previously de-

scribed can detect and correct an SBE, it may
be unable to detect and correct an MBE.

Figure 2 shows several cases of MBEs in a
4×4 data array. In case A, since the corruption
of both d2|1 and d2|2 leaves the parity of row 2
unchanged, horizontal parity is unable to detect
the existence of the errors. In case B, while the
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Fig. 2 Examples of multi-bit errors.

existence of errors in row 3 and row 4 can be
detected by hp3 and hp4, the exact positions of
the errors in the rows cannot be revealed by ver-
tical parity since the vertical parity of column 1
remains unchanged. In case C, while horizontal
parity reveals the existence of errors in rows 3
and 4 and vertical parity reveals the existence
of errors in columns 3 and 4, HVP still cannot
determine which one of the two pairs (d3|4, d4|3)
or (d3|3, d4|4) is corrupted.

3.3 Multi-Bit Errors and Characteris-
tics

An MBE results from the error bits accumu-
lated from multiple particle strikes, or the error
bits caused by a single particle strike. We call
the former a multi-strike multi-bit error (MS-
MBE), and the latter a single-strike multi-bit
error (SS-MBE).

A particle strike occurs and corrupts a sin-
gle bit in an MS-MBE. Another strike occurs
and corrupts a different bit before the erro-
neous data are accessed, through which the er-
ror could have been detected and corrected. An
MS-MBE could pose a problem in very large
memories where the data might not be accessed
for a long time and the probability that unde-
tected errors will accumulate cannot be ignored.

A single strike corrupts multiple bits at once
in an SS-MBE. In contrast to MS-MBE, the
error bits in SS-MBE are closely located. The
scaling trend towards smaller device dimensions
and lower supply voltages has increased the
probability that a strike will result in an SS-
MBE 7),11).

4. Zigzag-HVP

Since on-chip caches usually have a high ac-
cess frequency, an error generated by a strike is
likely be detected and corrected before the next
strike occurs. The results in Section 6.1 confirm
that the MS-MBE rate in caches is very low.
We therefore focus on the measures against SS-
MBE.

Zigzag-HVP exploits the property that error

bits in SS-MBE are closely located. Zigzag-
HVP groups the data bits into multiple parity
domains. Each parity domain consists of sev-
eral data words and is protected by HVP. By
interleaving different parity domains, the spa-
tial error bits in an SS-MBE are converted to
multiple SBEs. Each SBE belongs to a parity
domain that can be successfully detected and
corrected.

Let us define some terminology. A cache can
be expressed as a data array with NR rows.
Each row contains NL cache lines, each line con-
tains NW words, and each word contains NB

bits. The cache size is NR × NL × NW × NB

bits.
4.1 Bit Interleaving Scheme
SS-MBE can have multiple error bits in the

same row, or the same column 11). We will now
describe the interleaving scheme to deal with
these kinds of errors.

4.1.1 Dealing with Horizontal MBE
Interleaving layout of words converts adja-

cent error bits in the same row into SBEs in dif-
ferent words. ECC-protected caches have used
this technique to effectively reduce MBEs on
the same ECC unit 13),18). We use the same
technique in Zigzag-HVP to deal with horizon-
tal MBE. The interleaved words in a row be-
long to different parity domains. Figure 3-a
illustrates a simple example; two words are in-
terleaved in each row and up to two bit errors
can be tolerated (bj

i indicates the j-th bit of the
i-th word in a row).

We must interleave at least d different words
to tolerate up to d bit errors. In a typical
SRAM design, several neighbor bits in the same
row share a sense amplifier, from which only one
bit is multiplexed and amplified in an access.
We have two possible options in choosing how
to interleave words horizontally. If the num-
ber of cache lines in each row NL is larger than
or equal to d, we should interleave words from
different cache lines. In this case, the words
belonging to a cache line can be accessed at
once, which is preferred for line-based cache op-
erations such as line replacements or cache re-
fills. If NL is smaller than d (possible in small
caches), the interleaved word could be selected
from the same line. In this case, reading a whole
cache line requires several cache accesses since
an access can only read a subset of words of the
cache line.

The number of horizontal parity bits is equal
to the number of cache words (NR ×NL ×NW )
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Fig. 3 Interleaving schemes to deal with MBEs. Bits are interleaved to tol-
erate horizontal MBEs in (a). Scheme in (b) tolerates horizontal &
vertical MBEs but requires many vertical parity bits. Scheme in (c)
can tolerate horizontal & vertical MBEs with fewer vertical parity
bits.

and is independent of how the words are inter-
leaved.

4.1.2 Dealing with Vertical MBE
Vertical MBE can also be dealt with by using

the same interleaving concept as in the case of
horizontal MBE. Consecutive bits in the same
column are protected by different vertical par-
ity bits. In Fig. 3-b, bits in the even and odd
rows are protected by a different vertical par-
ity and up to two bit errors can be tolerated in
this example. This scheme requires d vertical
parity bits in each column to tolerate up to d
bit errors. Since the vertical parity bits are fre-
quently updated, they should be implemented
as flipflops or latches but this would use larger
areas than normal SRAM cells. The overheads
for vertical parity increase with a large d and
may offset the benefit of HVP.

We instead propose an original scheme for en-
coding vertical parity. The HVP domain is con-
structed so that a vertical bit is calculated from
bits located in a zig-zag path, rather than from
bits in the same column. The physical locations
of any two bits in the same zig-zag path are
separated by a sufficient distance so that both

cannot be corrupted by a particle strike. The
number of vertical parity bits in this scheme is
equal to the number of columns and is indepen-
dent of d.

To formalize the scheme, the expression wijk

(0 ≤ i < NW , 0 ≤ j < NL, 0 ≤ k < NR) is
used to refer to the i-th word of the j-th cache
line of the k-th row. A parity domain PDmn

(0 ≤ m < NW , 0 ≤ n < NL) is a set of words
that can be expressed by Eq. (1).

PDmn = {winj | (i − j) ≡ m (mod NW )}
(1)

Figure 3-c illustrates a simple example. The
data array has four rows, each row contains two
cache lines, and each cache line has two two-
bit words. bl

ijk indicates the l-th bit of word
wijk. The two cache lines in each row are in-
terleaved to tolerate horizontal MBEs. Two
zigzag paths which consist of bits belonging to
the same parity domain (PD00) are shown in
the figure. The parity domain consists of four
words: w000, w101, w002, and w103. MBEs hav-
ing up to two bits can be tolerated in this ex-
ample.
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The proposed scheme can tolerate up to an
NW -bit vertical MBE. Given that a cache line
typically consists of 8∼32 words and an SS-
MBE contains no more than four bits in current
processes 11), our zigzag scheme can effectively
deal with vertical MBEs.

4.1.3 Other MBE
If the interleaving scheme in Section 4.1.1 tol-

erates up to d1 consecutive error bits in a row
and the interleaving scheme in Section 4.1.2 tol-
erates up to d2 consecutive error bits in a col-
umn, then any MBE in which the error bits are
confined to a d2 × d1 array can be successfully
detected and corrected.

4.2 Parity Update Mechanism
Any update of a word (e.g., in processor

writes or cache line replacements) requires the
parity of the corresponding domain to be up-
dated. From Eq. (1), the parity domain that a
word belongs to can easily be determined from
the values of the bits used to index the row, and
the values of the bits used to index the word in-
side the cache line.

Updating the horizontal parity is simple; i.e.,
the parity bit is newly calculated from the
updated word value and stored together with
the word. Updating the vertical parity follows
Eq. (2).

VPnew = VPold ⊕ wold ⊕ wnew (2)
The new vertical parity of the domain

(VPnew) is the exclusive-OR of the old vertical
parity (VPold), old and new values of the data
word (wold and wnew). The horizontal parity
bits are included in the wold and wnew.

The update of the vertical parity requires the
old value of the word. Section 5 discusses how
caches can be modified to effectively supply the
old words.

Updating vertical parity can be done in par-
allel with writing the data word into data array.
Therefore, the access latency of a Zigzag-HVP
cache is comparable to that of a cache protected
by a simple parity.

4.3 Error Recovery
When a word is read, the horizontal parity

bit is recomputed and compared with the pre-
stored value. A mismatch indicates the exis-
tence of a bit error in the word. A dedicated
error recovery routine is then triggered. Since
there is a possibility that bit error(s) may also
be present in other word(s), the routine exam-
ines not only the parity domain containing the
identified erroneous word but also all the par-

ity domains. For each domain, the routine se-
quentially reads all the words belonging to that
domain. The horizontal parity of each word
and the vertical parity of the domain are re-
computed, and compared with the old ones. If
an SBE is present in the domain, its location
can be determined.

Modern caches are typically equipped with
a Built-In Self Test (BIST) 1). The BIST ac-
cesses data in particular access patterns, also
called marching patterns, to locate potential
manufacturing defects. Modern BISTs are pro-
grammable and support various marching pat-
terns 3). The capability of sequentially read-
ing the words belonging to a parity domain can
be supported by extending the existing BIST
hardware. The address patterns of those data
words belonging to the same parity domain are
derived from Eq. (1). By accommodating such
patterns into the BIST, an error recovery rou-
tine can be achieved at modest hardware cost.

Recovering from errors requires the cache to
be fully scanned. Nevertheless, the overhead for
error recovery is small since soft errors occurs
very infrequently. For instance, let us consider
a 512 KB cache. Assuming a per-word access
throughput of 512 M-word/sec, a full scan of all
parity domains in the cache requires 269 µsec.
Such an overhead is incurred once every 17
years and is therefore negligible (refer to Sec-
tion 6.5 for the cache error rate).

5. Applications of Zigzag-HVP

Two possible candidates for Zigzag-HVP are
1) L1 write-back caches and 2) L2 caches with
write-through L1 caches. This section focuses
on how the data paths of these caches can be
modified so that the vertical parity update of
Zigzag-HVP can be efficiently executed.

5.1 L1 Write-back Caches
Before writing a word, the L1 cache needs to

probe its tag to determine whether it is holding
the word or not. The L1 cache is adapted so
that data access occurs in parallel with the tag
probing. If the line is found in the L1 cache,
the old value of the data word is accessible after
the tag probe phase. The cache then proceeds
to write the new value while the old value is
passed to the vertical parity update unit. Such
a modification is easily accomplished since, in
practice, L1 caches already perform tag probe
and data access in parallel to achieve minimum
latency.

Write-back caches usually employ a write-
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allocate policy 8): A write miss fetches the
missed line from the lower level cache and al-
locates the location for storing the line. In the
case of a write miss, the vertical parity update
unit will receive the old value of the modified
word when the line is retrieved from the lower
level cache.

5.2 L2 Caches with Write-through L1
Caches

Many processors adopt a cache hierarchy in
which the L1 data cache is write-through and is
backed by a large L2 write-back cache. Making
the L1 data cache a write-through cache sim-
plifies the task of maintaining cache coherency
in multiprocessor systems 5). Maintaining sim-
ple parity for the detection of errors is suffi-
cient for write-through L1 caches since correct
data can be obtained from the L2 caches. The
application of Zigzag-HVP to the L2 caches is
discussed after this.

5.2.1 Write Buffer and Its Implica-
tions:

A processor with a write-through L1 cache
usually includes a write buffer. The write
buffer can coalesce writes to the same cache
block, thereby reducing the traffic to the L2
cache. One could maintain ECC in large data
units (e.g., double-word (64 bits) 15), or per
quad-word (128 bits) 19)) to reduce the hard-
ware overheads, and rely on the write buffer
to merge updates to consecutive words into a
single update of a large ECC word so that the
read-modify-write operations could be reduced.
However, our experiments confirmed that even
with the write buffer having sufficient entries, a
majority of ECC words are still partially writ-
ten back.

Per-word ECC incurs a large hardware cost,
while a larger ECC unit incurs frequent read-
modify-write operations even with the presence
of the write buffer. Zigzag-HVP can deal with
such shortcomings with ECC schemes.

5.2.2 Support for Efficient Vertical
Parity Updates:

The old values of the modified words, which
are required for vertical parity updates in
Zigzag-HVP, can be supplied directly by the
L2 cache. However, since the L2 cache is large,
reading the old values from L2 caches incurs a
large power overhead.

The old words can be supplied by the L1
cache instead of being supplied from the L2
cache. Before writing a word, the L1 cache must
probe its tag to determine whether it is hold-

Fig. 4 Modified data path of L2 cache with write-
through L1 cache and write buffer in (a). An
entry of write buffer in (b).

ing the word or not. The L1 cache is adapted
so that data access occurs in parallel with tag
probing. If the write hits in the L1 cache, the
old value of the data word is accessible and
passed to the vertical parity update unit of
the L2 cache. Reading the data word from a
small L1 cache consumes less power than read-
ing from a large L2 cache. The modified data
path is shown in Fig. 4-a.

Let us consider the case in which a write
miss occurs in the L1 cache. Write-through
caches usually employ a no-write-allocate pol-
icy: The missed line is not allocated in the L1
cache. When a write miss occurs in the no-
write-allocate L1 cache, the old value of the
updated word is explicitly supplied by the L2
cache to the vertical parity update unit. Since
the majority of writes hit in the L1 cache, the
frequency of access to the L2 cache to obtain
the old values is low.

The write buffer is also modified. Figure 4-b
shows an entry of the write buffer. The v bit,
if set, signifies that the entry is valid and it is
holding the words addressed by the addr field.
The vi bit indicates whether the i-th word is
valid or not. A new bit h bit is added to each
word. The hi bit, if set, indicates that the i-th
word did hit in the L1 cache and that the verti-
cal parity update unit has already been updated
with the old value of the word. When the entry
is retired, the valid words are written back to
the L2 cache. For those valid words for which
h bits are not set, the old values must be ex-
plicitly read from L2 and passed to the vertical
parity update unit. When an error is detected
in the L2 cache, the write buffer must write
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back all valid entries to the L2 cache before the
error recovery can take place.

6. Evaluation

This section evaluates the application of
Zigzag-HVP to L2 caches with write-through
L1 caches. Compared to L1 caches, L2 caches
are typically much larger and the costs of imple-
menting protection against soft errors are also
higher; therefore, the reduction of such costs is
preferred. The L2 caches also present other in-
teresting considerations due to the presence of
write buffers.

6.1 Evaluation Methodology
The L2 cache used in the evaluation is a uni-

fied, 512-KB, 64B-line, four-way set associative
cache. It is accompanied by a 16 KB, write-
through L1 data cache, and an eight-entry write
buffer. The write buffer attempts to retire the
oldest entry whenever more than six entries
have been occupied (retire-at-6 policy 17)). The
detail configuration of the evaluated architec-
ture is shown in Table 2.

While 64-bit processors are increasingly gain-
ing popularity, there are many 32-bit processors
and software built on 32-bit architectures still
in use in practice. Even in 64-bit processors,
support for efficient execution of 32-bit software
is essential. For instance, the L2 caches in Ita-
nium processors maintain ECC per 32-bit data
to accommodate frequent 32-bit data updates
encountered when executing 32-bit software 6).
A 32-bit word size is assumed in the evaluation.

Four caches with different error protection
schemes are assumed in the evaluation:
• NOPRT: L2 cache without any soft error

protection.
• ECCSW: L2 cache in which both the

tag and data portions are protected by
SECDED per single-word.

• ECCQW: L2 cache in which both the tag
and data portions are protected SECDED
per quad-word.

• ZHVP: L2 cache in which the tag and data
portions are protected by Zigzag-HVP.

We evaluate the unrecoverable error rate,
number of check bits, and power consumption.
Cache access activity, which is required for cal-
culating the error rate and power consumption,
is collected from cycle-accurate processor simu-
lation using SimpleScalar toolset 4). SPEC2000
benchmarks are used in the evaluation. Each
benchmark is run for four billion instructions.
Cacti tool 16) is used to determine the physical

Table 2 Parameters of simulated architecture.

Processor Parameters
Frequency 1GHz

Functional Units 4 integer ALUs, 4 FP ALUs
1 integer multiplier/divider

1 FP multiplier/divider
LSQ size 8 instructions
RUU size 16 instructions

Issue Width 4 instructions/cycle
Memory Hierarchy Parameters

L1 i-cache 16KB, direct-map, 32B block
1 cycle latency

L1 d-cache 16KB, 4-way, 32 B block
1 cycle latency

write-through & no-write-allocate
Write buffer eight 32 B entries

retired-at-6
L2 512KB, unified, 4-way

64 B block
6 cycle latency

write-back
Memory 100 cycle latency

configurations of the L2 caches.
6.2 Physical Configurations of L2

caches
Soft error experiments with SRAM fabricated

in 130 nm and 90 nm processes confirmed the
existence of up to four-bit MBEs 11). The im-
plementation of protection schemes to tolerate
up to four bit SS-MBEs is considered in the
evaluation.

The L2 cache contains 2,048 sets. Each set
has four 64-B cache lines. Each tag entry has
19 bits (15 tag bits and four status bits). Cacti
tool suggests that the tag portion should be di-
vided into 256 rows; each row containing 32 tags
from eight sets. Interleaving the tags of the dif-
ferent sets in the same row together tolerates
horizontal MBE while allowing four tags of the
same set to be read simultaneously in a cache
access. Each tag is an ECC unit in ECCSW
and ECCQW. For ZHVP, the tag portion con-
sists of 32 parity domains and each domain is a
256 × 19 bit array.

Cacti similarly suggests the data portion to
be an array of 2,048 rows; each row holds four
cache lines of the same set. The tag portion
and the data portion of a L2 cache are accessed
sequentially to attain low power consumption.
Thus, while four tags of the same set are re-
quired to be read simultaneously, only the data
for the hitting line are read from the data por-
tion. Therefore, four lines of the same set can
be interleaved to tolerate MBEs without com-
promising the latency of line-based access. In
ECCSW, each word in the data portion is an
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Table 3 Number of check bits.

Protection Number of Overhead (%)
Scheme check bits (Kb)
NOPRT 0 0
ECCSW 944 22.2
ECCQW 336 7.9
ZHVP 138.6 3.3

ECC unit. The ECC unit in ECCQW is com-
prised of four consecutive words of the same
line. For ZHVP, the data portion consists of 64
parity domains; each domain is a 2,048×32 bit
array.

6.3 Area Overhead
Table 3 lists the overhead in terms of the

number of check bits required to implement the
protection schemes. For ECCSW, each tag re-
quires six check bits and each data word re-
quires seven check bits, resulting in 944 Kb of
check bits in total, or an 22.22% overhead.
For ECCQW, each tag requires six check bits
and nine check bits are required for every four
words, resulting in 336 Kb of check bits in total,
or an 7.91% overhead.

In ZHVP, the tag and data portions respec-
tively require 8.6 and 130 Kb of check bits or
an 3.26% overhead in total. The overhead
of ZHVP is definitively smaller than those for
ECCSW and ECCWQ.

We implemented a BIST similar to the one
described in Ref. 3). It is synthesized using the
Hitachi 0.18 µm process. The original BIST oc-
cupies 0.28% the area of the L2 cache. The
BIST is then extended to support the error re-
covery function. The modified BIST occupies
0.35% the area of the cache. Therefore, the
cost of implementing the error recovery is very
small.

6.4 Power Overhead
The L1 data cache needs to supply the old

values to the vertical parity update unit of the
L2 cache when implementing Zigzag-HVP to
the L2 cache. This increases the power con-
sumption of the L1 cache. Power consumed by
both the L1 data cache and the L2 cache are
taken into account in the evaluation.

The power consumption of individual ac-
cesses to the L1 and L2 caches are computed
with Cacti. We modify Cacti to allow the
power consumption to be computed based on
the granularity of the accessed data. We imple-
mented 32-bit SECDED, 128-bit SECDED, and
horizontal vertical parity calculation circuits in
the 0.18 µm process and then used Synopsis
NanoSim to calculate their power consumption.

Figure 5 breaks down the power consumed
in the L1 data cache and L2 cache for the bench-
marks. ECCSW increases the power consump-
tion in the L2 cache by 28% on average, mainly
due to the power consumed by accessing the
check bits in the tag and data portions. EC-
CQW increases the power consumption in the
L2 cache by 80%, of which 54% is consumed by
reading the partially-modified quad-words and
the remaining 26% is consumed by accessing
and computing the check bits. The power con-
sumption of the L1 cache remains unchanged
for ECCSW and ECCQW.

Reading the old values of the updated data
words for ZHVP increases the power consump-
tion of the L1 cache by 18%. We confirmed
that 94.4% of writes hit in the L1 cache. Addi-
tional access to the L2 cache to obtain the data
words missed in the L1 cache and parity calcu-
lation increases the power consumption of the
L2 cache by 4%.

When both the L1 cache and L2 cache are
taken into account, ECCSW, ECCQW, and
ZHVP respectively increase the total power by
17%, 49%, and 10%. ZHVP therefore consumes
less power than ECC-based schemes.

6.5 Unrecoverable Soft Error Rate
We assume that the soft error rate of an un-

protected SRAM (SER) equal to 1.6 KFIT☆ per
megabit 2) and soft errors follow a uniform dis-
tribution. We will now describe the mechanism
for calculating the unrecoverable soft error rates
(URSER) of the L2 caches.

Any error in NOPRT results is unrecoverable;
thus the URSER in this case is equal to SER×
cachesize.

Unrecoverable errors in caches other than
NOPRT result from errors accumulated from
multiple strikes. Figure 6 shows two succes-
sive accesses to the same data unit. The second
access is a read access, following the first after
a delay of T . Two strikes occurring in the inter-
val between the two accesses result in unrecov-
erable errors in the data unit, and such a possi-
bility is equal to P1(T ) × P2(T ), where P1(T ),
P2(T ) are the probabilities of the two strikes oc-
curring in a time interval T . For ECCSW, the
data unit in consideration is a data word, and
P1(T ), and P2(T ) are the probabilities of strikes
occurring in the same data word (P1(T ) =
P2(T ) = SER × T × wordsize). Similarly, the

☆ One FIT (Failure In Time) corresponds to one fail-
ure per 109 hours
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Fig. 5 Breakdown of power consumption.

Fig. 6 Two strikes between two data accesses result
in unrecoverable error.

Table 4 Unrecoverable soft error rate.

Protection Scheme URSER(KFIT)
NOPRT 6.63
ECCSW 1.72 ∗ 10−16

ECCQW 5.85 ∗ 10−16

ZHVP 2.37 ∗ 10−13

data unit is a quad-word, and P1(T ) and P2(T )
are equal to SER× T × quadwordsize for EC-
CQW.

In ZHVP, the data unit is a single word. Un-
recoverable errors result if one strike occurs in
the data word (P1(T ) = SER×T ×wordsize),
and the other strike occurs in the same par-
ity domain with the data word in consideration
(P2(T ) = SER × T × paritydomainsize where
paritydomainsize is the number of bits in a
parity domain).

Cache access activity for each data unit col-
lected from the cycle-accurate processor simu-
lation allows us to compute the URSER of each
data unit. The USRER of the entire cache is
the sum of the URSER of all individual data
units.

Table 4 lists the URSER of the L2 caches,
averaged for all benchmarks. NOPRT’s
URSER is 6.63 KFIT, or roughly one error in
17 years. Such an URSER would be unaccept-
able since a parallel system consisting of 1024
processor nodes must fail every week.

The protection schemes other than NOPRT
achieved great reduction in URSER. While

ECCSW and ECCQW have lower URSER, the
level of URSER achieved by ZHVP is clearly
sufficient for all practical purposes. More
specifically, ZHVP’s URSER is equivalent to
one failure in one million products about every
500 million years.

7. Conclusion

VLSI caches must employ measures against
soft errors to ensure greater reliability. Main-
taining ECC on a per-word basis, which is
preferable for word-based accessed caches, is
expensive. This paper presents Zigzag-HVP,
an alternative technique to ECC to detect and
correct the soft errors in such caches. Two-
dimensional interleaving of data words con-
verts a spatial MBE to multiple SBEs, each
of which can be successfully detected and cor-
rected. Modifications to the cache data paths,
write buffer, and BIST allow parity updates and
error recoveries to be executed efficiently. The
implementation of Zigzag-HVP in a 512-KB L2
cache indicates that the respective overheads in
terms of area and power consumption are 3.3%
and 10%, which are smaller than those of the
ECC-based ones. While Zigzag-HVP is vulner-
able to MBEs accumulated from multiple par-
ticle strikes, our results demonstrate that such
a probability would be extremely small.
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