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Abstract: Deep learning is a state-of-the-art learning method that is used in fields such as visual object recognition
and speech recognition. It uses very deep layers and a huge number of units and connections, so overfitting is a se-
rious problem. The dropout method is used to address this problem. Dropout is a regularizer that neglects randomly
selected inputs and hidden units during the learning process with probability q; after learning, the neglected inputs and
hidden units are combined with the learned network to express the final output. Wager et al. pointed out that conven-
tional dropout is an adaptive L2 regularizer, so we compared the learning behavior of conventional dropout with that
of stochastic gradient descent with the L2 regularizer. We found that combining the neglected hidden units with the
learned network can be regarded as ensemble learning, so we analyzed, on the basis of on-line learning, conventional
dropout learning from the viewpoint of ensemble learning. Next we compared conventional dropout and ensemble
learning from two additional viewpoints and confirmed that conventional dropout can be regarded as ensemble learn-
ing that divides a student network into two sub-networks. On the basis of this finding, we developed a novel dropout
method that divides the network into more than two sub-networks. Computer simulation demonstrated that this method
enhances the benefit of ensemble learning.
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1. Introduction

Deep learning [1], [2] is attracting much attention in visual ob-
ject recognition, speech recognition, object detection, and many
other fields. It provides automatic feature extraction and can
achieve outstanding performance [3].

Deep learning uses a very deep layered network and a huge
amount of training data, so overfitting is a serious problem. To
avoid overfitting, the conventional dropout method [3] is used for
regularization. Conventional dropout consists of two processes.
During learning, randomly selected hidden units are neglected
with probability q, thereby reducing the network size; therefore,
this relaxs overfitting. During testing, the learned and unlearned
sub-networks are summed up and multiplied by p = 1 − q to cal-
culate the network output. Hinton observed that dropout seems
like a type of ensemble learning. Wager et al. pointed out that
dropout is an adaptive L2 regularizer.

Baldi et al. showed that the result of conventional dropout is
approximated by the normalized weighted geometric mean [4].
Since the weighted geometric mean is related to ensemble learn-
ing, conventional dropout is also related to ensemble learning.
Ensemble learning improves the performance of a single net-
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work by using the average for many networks. Bagging and the
Ada-boost algorithm are well known as a type of ensemble learn-
ing [5]. We theoretically analyzed ensemble learning using linear
or non-linear perceptrons [6], [7].

In this paper, we first present our analysis of conventional
dropout as a regularizer and then as a type of ensemble learn-
ing. On-line learning [8], [9] is used to learn a network. To esti-
mate the regularization performance of conventional dropout, we
compared the residual error of conventional dropout with that of
the stochastic gradient descent (SGD) algorithm with L2 regular-
ization [10]. Next, we compared the learnability of conventional
dropout with that of ensemble learning using the same network
structure [10]. The results revealed that conventional dropout can
be regarded as ensemble learning of learned network and un-
learned network. After that, we present a novel dropout method
called “group dropout” [11], [12]. The proposed method divides
the hidden units in a student network into several sub-networks,
and each sub-network learns from the teacher independently and
simultaneously. After the learning, the group outputs are aver-
aged to obtain the student output. The proposed method thereby
enhances ensemble learning compared with that of conventional
dropout. Finally, we present the results of computer simulation,
which demonstrate the validity of the proposed method.

2. Formulation

2.1 Model
Here, networks are learned by on-line learning. We use a

teacher-student formulation and assume the existence of a teacher

c© 2017 Information Processing Society of Japan 25



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.10 No.2 25–32 (July 2017)

Fig. 1 Network structures of teacher and student.

that produces the output desired for training data. By introducing
a teacher, we can directly measure the similarity of the student
weight vector to that of the teacher. First, we formulate a teacher
network (referred to as the “teacher”) and a student network (re-
ferred to as the “student”) and then introduce the SGD algorithm.

The teacher and student are a soft committee machine with
N input units, several hidden units, and an output, as shown
in Fig. 1. The teacher consists of K hidden units, and the stu-
dent consists of K′ hidden units. Each hidden unit is a per-
ceptron. The kth hidden weight vector of the teacher is Bk =

(Bk1, . . . , BkN), and the k′th hidden weight vector of the student is
J (m)

k′ = (J(m)
k′1 , . . . , J

(m)
k′N), where m denotes the number of learning

iterations. In the soft committee machine, all hidden-to-output
weights are fixed to +1 [9]. This network calculates the majority
vote of the hidden outputs.

We assume that both the teacher and the student receive N-
dimensional training data ξ(m) = (ξm1 , . . . , ξ

(m)
N ) and that the

teacher outputs t(m) and the student outputs s(m) are

t(m) =

K∑
k=1

t(m)
k =

K∑
k=1

g(d(m)
k ), (1)

s(m) =

K′∑
k′=1

s(m)
k′ =

K′∑
k′=1

g(y(m)
k′ ), (2)

where g(·) is the activation function of a hidden unit, d(m)
k is the

inner potential of the kth hidden unit of the teacher, and y(m)
k′ is the

inner potential of the k′th hidden unit of the student:

d(m)
k =

N∑
i=1

Bkiξ
(m)
i , (3)

y(m)
k′ =

N∑
i=1

J(m)
k′i ξ

(m)
i . (4)

We assume that the ith elements ξ(m)
i of the independently

drawn training data ξ(m) are uncorrelated random variables with
zero mean and unit variance; that is, the ith element of the training
data is drawn from probability distribution P(ξi). The thermody-
namic limit of N → ∞ is also assumed. The statistics of training
data ξ(m) at the thermodynamic limit of N → ∞ are
〈
ξ(m)

i

〉
= 0,
〈
(ξ(m)

i )2
〉
≡ σ2

ξ = 1,
〈
||ξ(m)||

〉
=
√

N, (5)

where 〈·〉 denotes the mean, and || · || denotes the norm of a vector.
For each element Bki, k = 1 ∼ K is drawn from a probabil-

ity distribution with zero mean and 1/N variance. With the as-
sumption of the thermodynamic limit, the statistics of the teacher
weight vector are

〈Bki〉 = 0,
〈
(Bki)

2
〉
≡ σ2

B =
1
N
, 〈||Bk ||〉 = 1.

This means that any combination of Bl ·Bl′ = 0. The distribution
of inner potential d(m) follows a Gaussian distribution with zero
mean and unit variance at the thermodynamic limit.

For the sake of analysis, we assume that for each element J(0)
k′i ,

k′ = 1 ∼ K′ which is the initial value of the student weight vector
J (0)

k′ , is drawn from a probability distribution with zero mean and
1/N variance. At the thermodynamic limit, the statistics of the
initial value of the student weight vector are

〈
J(0)

k′i

〉
= 0,
〈
(J(0)

k′i )2
〉
≡ σ2

J =
1
N
,
〈
||J (0)

k′ ||
〉
= 1.

This means that any combination of J (0)
l ·J (0)

l′ = 0. The activation
function of the hidden units of the student g(·) is the same as that
of the teacher. The statistics of the student weight vector at the
mth iteration are

〈
J(m)

k′i

〉
= 0,
〈
(J(m)

k′i )2
〉
=

(Q(m)
k′k′ )

2

N
,
〈
||J (m)

k′ ||
〉
= Q(m)

k′k′ .

Here,

(Q(m)
k′k′ )

2 = J (m)
k′ · J (m)

k′ .

The distribution of the inner potential y(m)
k′ follows a Gaussian dis-

tribution with zero mean and (Q(m)
k′k′ )

2 variance in the thermody-
namic limit.

2.2 On-line Learning on Soft Committee Machine
Next, we introduce the SGD algorithm for the soft committee

machine. For the possible training data {ξ}, we want to train the
student to produce the desired outputs, t = s. The generaliza-
tion error is defined as the squared error ε averaged over possible
training data:

ε(m)
g =

〈
ε(m)
〉
=

1
2

〈
(t(m) − s(m))2

〉

=
1
2

〈⎛⎜⎜⎜⎜⎜⎜⎝
K∑

k=1

g(d(m)
k ) −

K′∑
k′=1

g(y(m)
k′ )

⎞⎟⎟⎟⎟⎟⎟⎠
2〉
. (6)

At each learning step m, a new uncorrelated training data in-
stance, ξ(m), is presented, and the current hidden weight vector of
the student J (m)

k′ is updated using

J (m+1)
k′ =J (m)

k′ +
η

N

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l ) −

K′∑
l′=1

g(y(m)
l′ )

⎞⎟⎟⎟⎟⎟⎟⎠
× g′(y(m)

k′ )ξ(m), (7)

where η is the learning step size and g′(x) is the derivative of the
activation function of the hidden unit g(x).

The on-line learning framework is based on the assumption of
an infinite size training data set with independent generation, so
that overfitting is not theoretically considered. However, to ad-
dress overfitting in the on-line learning framework, we assume
that the size of the training data set is limited to 10× N data in-
stances are generated. We also assume that the training patterns
in the generated data are reused in the training phase. This as-
sumption holds hereafter.
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3. Analysis of Conventional Dropout

Conventional dropout [3] is used in deep learning to prevent
overfitting. A small amount of training data compared with the
network size may cause overfitting [13], and overfitting can cause
the training error to differ from the test error. Hereafter, we de-
note “training errors” and “test errors” as errors for the training
and test data respectively. We assume that the test errors are inde-
pendent of the training data. The conventional dropout learning
equation for the soft committee machine can be written as

J (m+1)
k′ =J (m)

k′ +
η

N

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l ) −

pK′∑
l′∈D(m)

g(y(m)
l′ )

⎞⎟⎟⎟⎟⎟⎟⎠
× g′(y(m)

k′ )ξ(m), (8)

where D(m) includes a number of hidden units that are randomly
selected with probability p from all hidden units at the mth iter-
ation. Subscript k′ of the student weight vector J is included in
D(m). Note that the second term in the brackets on the right hand
side of Eq. (8) is a soft committee machine composed of selected
hidden units. The hidden units in D(m) are subject to learning, so
the size of the student decreases, and a smaller student may be
immune from overfitting. This effect is the conventional dropout
opportunity. After the learning, the student’s output, s(m), is cal-
culated as the sum of the learned and unlearned hidden outputs
multiplied by p.

s(m) = p ∗
⎧⎪⎪⎪⎨⎪⎪⎪⎩

pK′∑
l′∈D(m)

g(y(m)
l′ ) +

qK′∑
l′�D(m)

g(y(m−1)
l′ )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9)

This equation is regarded as the ensemble of a learned soft com-
mittee machine (first term on right hand side) and that of an un-
learned soft committee machine (second term on right) when the
probability is p = 0.5. However, in conventional deep learn-
ing, the set of hidden units in D(m) is changed at every iteration,
and the same set of hidden units is used in the ensemble learning.
Therefore, conventional dropout is regarded as ensemble learning
using a different set of hidden units at every iteration. Therefore,
we refer to conventional dropout as “random dropout” in this pa-
per.

Figure 2 shows the results of the SGD algorithm without regu-
larization and those of random dropout. The soft committee ma-
chine was used for both the teacher and student. A sigmoid-like
function, erf(x/

√
2), was used as the activation function, g(x).

We generated 10 × N training data instances and N test data in-
stances. The number of inputs was N = 1,000. The teacher had
two hidden units, and the student had 100 hidden units. The train-
ing data and their target were generated as described in Section 2.
Learning step size η was set to 0.01. The horizontal axis is time,
α = m/N, where m is the iteration number, and N is the num-
ber of input units. The vertical axis shows the normalized mean
squared error (MSE) for input scale N.

Figure 2 (a) shows the learning curve of the SGD algorithm
without regularization. In this setting, overfitting will occur. Fig-
ure 2 (b) shows the learning curve of the SGD algorithm with
dropout. The learning error was less than the test error; however,
the difference between the training error and the test error was not

Fig. 2 Effect of dropout: (a) learning curve of SGD algorithm; (b) learning
curve of dropout learning.

Fig. 3 Learning curve of SGD with L2.

as substantial as that of the SGD algorithm (Fig. 2 (a)). Therefore,
these results show that random dropout prevents overfitting.

3.1 Comparison between Dropout and SGD Algorithm with
L2 Regularization

As mentioned above, Wager et al. pointed out that random
dropout is an adaptive L2 regularizer [14]. Thus, in this subsec-
tion, we present a comparison of dropout and the SGD algorithm
with L2 regularization (“SGD with L2”), which is represented
here as

J (m+1)
k′ =J (m)

k′ +
η

N

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l ) −

K′∑
l′=1

g(y(m)
l′ )

⎞⎟⎟⎟⎟⎟⎟⎠
× g′(y(m)

k′ )ξ(m) − γJ (m)
k′ , (10)

γ is the coefficient of the L2 penalty. As shown, L2 penalty de-
creases ||J (m)

k′ ||.
Figure 2 (b) and Fig. 3 show the learning results of dropout and

of SGD with L2. We used soft committee machines that included
100 hidden units. Activation function g(x) is a sigmoid-like func-
tion erf(x/

√
2). For random dropout, we set p = 0.5. For SGD

with L2, we selected γ = 10−6 as the optimum coefficient. The
learning step size was set to η = 0.01. We prepared 10 × N pat-
terns for the training data and N patterns for the test data. Training
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Fig. 4 Squared norms of SGD with L2 and of random dropout.

Fig. 5 Overlap of SGD with L2 regularization and that of random dropout.

data were frequently reused in the training. Results were obtained
using an average of ten trials.

Comparison of Fig. 2 (b) and Fig. 3 reveals that, under our as-
sumptions, the residual error of random dropout was almost the
same as that of SGD with L2. These results suggest that the
regularization performance of random dropout is close to that of
SGD with L2; however, their strategies are very different. For
SGD with L2, we must choose tuning parameter γ through trials
whereas random dropout learning has no tuning parameter.

Figure 4 shows the time course of the average and variance
of the squared norm of the student weight vector ||Jk ||2 that were
used in Fig. 2 (b) and Fig. 3. The vertical axes are the squared
norm of the student weight. The solid lines are the averages of
||Jk′ ||2 (“L2 avg.” and “Dropout avg.”), and the broken lines are
the averages of the variances (“L2 variance” and “Dropout vari-
ance”). The ||Jk′ ||2 decreased as learning proceeded for both SGD
with L2 and random dropout. As shown in Eq. (10), L2 penalty
decreases ||Jk′ ||. Therefore, regularization is effective for both
methods. The average of ||Jk′ ||2 for SGD with L2 was smaller
than for random dropout, so regularization is more effective with
SGD with L2 than with random dropout. However, the variance
of ||Jk′ ||2 for random dropout was higher than that for SGD with
L2. This means that the diversity of hidden unit outputs when
using random dropout is maintained. This may be an advantage
for ensemble learning.

Next, we present our investigation of the time course of the
overlap of Rkk′ . Rkk′ :

Rkk′ = Bk · Jk′ . (11)

By measuring Rkk′ at each time α, we can understand the learning
dynamics of SGD with L2 and that of random dropout. Figure 5
shows the results obtained using B1 and Jk′ , where k′ = 1 ∼ 100.
The average of R1k′ for SGD with L2 at t = 3,000 was about

R = 0.67, and that of random dropout was R = 0.17. The variance
of R1k′ for SGD with L2 at t = 3,000 was about σ2

R = 4.5 × 10−3,
and that of random dropout was about σ2

R = 1.1×10−1. These re-
sults indicate that SGD with L2 may move all the student weight
vectors toward B1 +B2 because B1 and B2 are orthogonal with
each other, and B1+B2 is located at their mid-point. The overlap
between B1 and B1 +B2 is cos( π4 ), i.e., ∼ 0.71. This is close to
R = 0.67. For random dropout, R = 0.17 and σ2

R = 1.1 × 10−1.
The effect of ensemble learning using students with small over-
lap is higher than that with a large overlap [6]. The σ2

R of random
dropout is high, so the diversity of hidden unit outputs when us-
ing random dropout is maintained. These results show that the
regularization performance of SGD with L2 and that of random
dropout are almost the same; however, their strategies are very
different. Random dropout is more suitable for ensemble learn-
ing. Therefore, we investigated random dropout as a type of en-
semble learning, as described in next subsection.

3.2 Ensemble Learning
Baldi et al. showed that the average properties of the result of

random dropout are characterized by approximation of expecta-
tions by using the normalized weighted geometric mean [4]. The
normalized geometric mean is strongly related to ensemble learn-
ing. The geometric mean can applied to a positive value, so Baldi
used a sigmoid function, g(x) = 1/(1 + exp(−x)), as the activa-
tion function. We used g(x) = erf(x/

√
2), so we cannot use the

geometric mean. However, since the geometric mean is related to
the numerical mean, we analyzed ensemble learning by using the
numerical mean.

Ensemble learning is performed by using many learners (re-
ferred to as “students”) to achieve better performance [6]. In en-
semble learning, each student learns from the teacher indepen-
dently simultaneously, and student outputs sk′en

are averaged to
calculate the ensemble output sen. We assume that the teacher
and students are soft committee machines. Thus, the ensemble
output sen is calculated using

sen =

Ken∑
k′en=1

Ck′en
sk′en
=

Ken∑
k′en=1

Ck′en

K′∑
k′=1

g(yk′ ), (12)

where K′ is the number of hidden units in the students, Ck′en
is a

weight for averaging, and Ken is the number of students to be av-
eraged. The learning equation of ensemble learning is the same
as Eq. (7).

There are three cases for setting the number of hidden units in
the students: (1) K′ < K, (2) K′ = K, and (3) K′ > K. The case of
K′ < K is unlearnable and insufficient because the degree of com-
plexity of the students is less than that of the teacher. The case
of K′ = K is learnable because the degree of complexity of the
students is the same as that of the teacher. The case of K′ > K is
learnable and redundant because the degree of complexity of the
students is higher than that of the teacher [13]. Figure 6 shows
the time course of the MSE for different settings of students. The
teacher includes two hidden units (K = 2), and the students in-
clude K′ = 2, 10, 20, 30, or 40. The activation function, g(x), is
the error function erf(x/

√
2). The horizontal axis shows the time
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Fig. 6 Effect of different number of hidden units in students (K = 2 and
K′ = 2, 10, 20, 30, or 40).

Fig. 7 Effect of ensemble learning.

(α = m/N), and the vertical axis shows the normalized MSE for
input scale N (N = 1,000). The learning step size was set to
η = 0.1. The MSE decreased the fastest when K = K′ (K′ = 2
in the figure). When K < K′, the convergence time increased
for larger K′. Therefore, setting K′ = K will optimize network
performance.

Next, we show the effect of ensemble learning for different
numbers of students. Figure 7 shows the computer simulation
results. Each student has the same architecture as the teacher,
and each student includes two hidden units, i.e., K = K′ = 2. The
activation function, g(x), is the error function, erf(x/

√
2). We

generated 10× N training data ξ(m) instances, where N = 10,000,
and they were reused in training. Each of the elements ξ(m)

i of the
independently drawn training data ξ(m) were uncorrelated random
variables with zero mean and unit variance, as shown in Eq. (5).
We also generated N test data. The target for training data in-
stance ξ is the output of the teacher. In the figure, the horizontal
axis shows the time, α = m/N, where m is the iteration number,
and N is the number of input units. The vertical axis shows the
normalized MSE for the input scale, N. The MSE was calculated
for the test data, which had N independent patterns. In the figure,
“single” is the results of using a single student. “Ken=2” is the
results of using an ensemble of two students, “Ken=3” is that of
an ensemble of three students, and “Ken=4” is that of an ensem-
ble of four students. The MSEs for the test data are plotted. The
performance of the ensemble improved when a larger number of
students was used. Therefore, the ensemble of four students out-
performed the other two ensembles.

Next, we modified the ensemble learning. We assume that stu-
dent has more hidden units than that of the teacher. We divided
the students (with K′ hidden units) into Ken sub-networks (See
Fig. 8. Here, K′ = 4 and Ken = 2). These sub-networks learned

Fig. 8 Network divided into two sub-networks (s1 and s2) to apply ensem-
ble learning.

from the teacher independently simultaneously. We calculated
ensemble output sen by averaging the outputs of the sub-networks,
sk′en

:

sen =
1

Ken

Ken∑
k′en=1

sk′en
=

1
Ken

Ken∑
k′en=1

K∑
l′=1

g(yk′enl′ ), (13)

where sk′en
is the output of a sub-network with K hidden units, and

g(yk′enl′ ) is the l′th hidden output in the k′enth sub-network. Equa-
tion (13) corresponds to Eq. (12) when Ck′en

= 1
Ken

and K′ = K.
The next section presents our comparison of random dropout

and ensemble learning to clarify the effect of the random selection
of hidden units.

3.3 Comparison between Random Dropout and Ensemble
Learning

We compared random dropout and ensemble learning from
three viewpoints: (1) selecting the hidden units in a sub-network
randomly or using the same hidden units, (2) dividing the stu-
dent into two or more sub-networks that contain some of the
hidden units, and (3) averaging the outputs of learned and un-
learned sub-networks or averaging only the output of learned sub-
networks. Random dropout involves selecting the hidden units
in a sub-network randomly, dividing the student into two sub-
networks and learning one sub-network, and averaging the output
of learned sub-network and that of unlearned sub-network. En-
semble learning involves using the same hidden units in a sub-
network throughout the learning, dividing the students into more
than two sub-networks, and averaging the output of learned sub-
networks. Thus, this subsection concentrates on the effect of se-
lecting the hidden units in a sub-network.

For ensemble learning, we used 2 soft committee machines
with 50 hidden units. For random dropout, we used 100 hidden
units and set p = 0.5; random dropout thus selected 50 hidden
units in D(m), with 50 unselected hidden units remaining. There-
fore, random dropout and ensemble learning had the same archi-
tectures. The number of input units N was 1,000, and the learning
step size η was set to 0.01. The activation function, g(x), was a
sigmoid-like function, erf(x/

√
2). The training data and corre-

sponding targets were generated as described in Section 2. We
used 10 × N patterns for training and N for testing.

Figure 2 (b) and Fig. 9 show the results obtained by taking the
average of the results of ten trials. The number of training data
instances was 10 × N, and the number of test data instances was
N. To calculate the MSE, N training data instances were ran-
domly selected from 10 × N training data instances. The hori-
zontal axes are time α = m/N, and the vertical axes are the MSE
calculated for N data instances. Figure 9 shows the time courses
of the MSE for the training data and the test data. Two soft com-
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Fig. 9 Learning curve of ensemble learning.

mittee machines with 50 hidden units were used. Figure 9 shows
that the error for “test” was larger than that for “train,” indicating
that overfitting occurred. Figure 2 (b) shows that random dropout
had an MSE less than that of ensemble learning. Moreover, the
error for “test” and that for “train” were almost the same, so over-
fitting did not occur with random dropout. Therefore, random
dropout outperformed ensemble learning. This happened because
it uses randomly selected hidden units and averages the outputs
of learned and unlearned sub-networks.

4. Group Dropout

In random dropout, during testing, the output of the learned
sub-network and that of unlearned sub-network are summed up
and multiply by p to calculate the student output, as shown in
Eq. (9). This is regarded as ensemble learning using only two
students. In ensemble learning, using more students improves
performance. Therefore, the ensemble effect of random dropout
can increase by using more than two sub-networks. Therefore,
we developed group dropout, which involves dividing the student
into more than two sub-networks (see Fig. 10) and applying en-
semble learning.

As discussed in Section 3.2, the performance of ensemble
learning is optimized when the number of teacher hidden units
K and that of student K′ are equal. Given this result, in group
dropout, we divided the hidden units in the student into Kgd =

K′/K sub-networks before the learning was started. Therefore,
the number of hidden units in each sub-network was the same
as that in teacher. In group dropout, we assume that each sub-
network has the same number of hidden units when dividing the
student into sub-networks (see Fig. 10). From the statistical sym-
metry of the model, our analysis has generality under this as-
sumption.

Each sub-network (s1, s2, and s3 in Fig. 10) learned from the
teacher independently and simultaneously. We calculated the en-
semble output sen by averaging sub-network outputs sgd:

sgd =
1

Kgd

Kgd∑
k′
gd=1

sk′
gd
=

1
Kgd

Kgd∑
k′
gd=1

K∑
k′=1

g(yk′
gdk′ ), (14)

where sk′
gd

is the output of a sub-network with K hidden units,
and yk′

gdk′ is the k′th hidden output in the k′gdth sub-network. We
set the number of hidden units in a sub-network to K, which
enabled learning of the sub-network. The learning equation for
group dropout is

Fig. 10 Student divided into three sub-networks for ensemble learning. We
assume teacher includes two hidden units.

Fig. 11 Effects of proposed method (a) for K′ = 8 and K = 2 and (b) for
K′ = 30 and K = 2 (average of ten trials).

J (m+1)
k′ =J (m)

k′ +
η

N

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l ) −

K∑
l′=1

g(y(m)
l′ )

⎞⎟⎟⎟⎟⎟⎠
× g′(y(m)

k′ )ξ(m). (15)

Figure 11 shows the results obtained by taking the average of
the results of ten trials. The training data and their targets were
generated as described in Section 2. We generated 10 × N train-
ing data instances and N test data instances in the same manner
as described in Section 2. Each training data instance was fre-
quently reused in the training phase. The number of input units
was N = 1,000. Teacher included two hidden units. We used two
students: (1) one included 8 hidden units, and (2) one included 30
hidden units. Case (1) will not lead to overfitting whereas case (2)
will lead to overfitting. The effect of ensemble learning is small
for case (1) and large for case (2).

As can be seen from Fig. 11, the residual errors for random
dropout and group dropout converged to a low value, so there
was no overfitting for the training data. Therefore, both random
dropout and group dropout can work as a regularizer. When the
number of hidden units was low (Fig. 11 (a)), the MSEs for group
dropout and random dropout were identical. When the number
was high (Fig. 11 (b)), the MSE for group dropout was smaller.

Next, we analyze the dynamic behavior of the proposed
method. When the teacher has B1 and B2 and that the student
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Fig. 12 Dynamic behaviors of overlap R during learning for random dropout and group dropout: (a) and
(b) K′ = 8; (c) and (d) K′ = 30.

has J1 and J2, the same performance was achieved when R11 = 1,
R12 = 0, R21 = 0 and R22 = 1 and when R11 = 0, R12 = 1, R21 = 1
and R22 = 0. This symmetry of the weight vectors occurred in
each trail. Therefore, we cannot calculate the average dynamics
of Rkk′ . Figure 12 shows typical behavior of overlap Rkk′ during
learning for one of several trials using random dropout and group
dropout. Figure 12 (a) and (b) show the results when K′ = 8, and
Fig. 12 (c) and (d) show the results for K′ = 30. In Fig. 12 (a) and
(b), the horizontal axis is R1x, with x from 1 to 8. This axis shows
the overlap of the teacher weight vector B1 and the student hid-
den weight vectors. The vertical axis is R2y, with y from 1 to 8.
This axis shows the overlap of teacher weight vector B2 and the
student hidden weight vectors. In Fig. 12 (c) and (d), the x in R1x

on the horizontal axis runs from 1 to 30, and the y in R2y on the
vertical axis runs from 1 to 30. Learning started at label “start”
and ended at label “end.”

In Fig. 12 (a), thin lines start from “start” and converge near
“end.” During learning, the lines followed R1x = R2y. This means
that the credits assigned to most of the weight vectors of the hid-
den units were similar. In Fig. 12 (b), the lines start from “start”
and follow R1x = R2y for a while but then turn in different di-
rections near “end.” This means that the credits assigned to the
weight vectors differed. This broke the symmetry of the hidden
unit weight vectors. Symmetry breaking of the hidden unit weight
vectors occurs to escape from the singular point in the weight vec-
tors space.

In Fig. 12 (c), the lines also started from “start” and converged
into an area near “end.” However, the lines for random dropout
kept moving in a wider area than those in Fig. 12 (a). This mean
that random dropout had more diversity when using many hid-
den units, thereby enhancing the ensemble effect. In Fig. 12 (d),
the lines started from “start” and behaved similarly to those in

Fig. 12 (b). Therefore, the residual error of group dropout tends
to be smaller than that of random dropout when using many hid-
den units. Figure 12 (a) and (c) show that symmetry breaking did
not occur. This suggests that random dropout does not fall into a
singular point in the weight vector space.

Group dropout differs from random dropout in three ways.
First, random dropout divides the student into two sub-networks
whereas group dropout divides the student into more than two
sub-networks. Second, random dropout randomly selects the hid-
den units to be neglected at each learning step whereas group
dropout uses the same hidden units in each sub-network. Third,
random dropout is the ensemble of learned and unlearned sub-
networks whereas group dropout is the ensemble of only learned
sub-netwroks.

Note that in group dropout, we assume that the number of hid-
den units in teacher is known. In general, the number of hidden
units in teacher is not known. However, we can predict the num-
ber of hidden units in teacher by using model selection methods.
By using the predicted number of hidden units in teacher, the pro-
posed method may achieve performance similar to that described
here.

5. Conclusion

We have presented our analysis of why random dropout can be
regarded as ensemble learning. We first showed that the perfor-
mance of dropout learning is similar to that of the SGD algorithm
with L2 regularization despite their differing strategies. We then
showed that random dropout can be regarded as ensemble learn-
ing except for when using a different set of hidden units in every
learning iteration. This analysis clarified that using a different
set of hidden units outperforms ensemble learning. We next pre-
sented our proposed method, group dropout, which divides the
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student into several sub-networks, each with the same number of
hidden units included in the teacher and showed that its ensemble
learning performance is better than that of random dropout when
the number of hidden units in a sub-network is the same as that
in the teacher. Future work includes clarifying the effect of aver-
aging the outputs of the learned and unlearned hidden units and
investigating group dropout when the number of hidden units in
the sub-networks differs.
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