
Vol. 48 No. SIG 8(ACS 18) IPSJ Transactions on Advanced Computing Systems May 2007

Regular Paper

An Efficient Analysis of Worst Case Flush Timings

for Branch Predictors

Masahiro Konishi,†1,☆ Takashi Nakada,†2 Tomoaki Tsumura,†3

Hiroshi Nakashima†4 and Hiroaki Takada†5

This paper proposes an efficient algorithm to find the worst case flush timings for a given
program with respect to the number of branch mispredictions. We first give a basic algorithm
based on dynamic programming which takes O(N2F) computation time for a program with
N conditional branches and F flush timings. We then show it can be improved to achieve
a computation time of approximately O(NF) for practical programs with its proof obtained
through an evaluation with SPEC CPU95 benchmarks.

1. Introduction

For real-time system design, worst case exe-
cution time (WCET) analysis of a program is
indispensable to verify and/or to ensure that
the program completes its work within a given
temporal restriction. In this technological field,
a variation of the problem to find the upper
bound of the performance degradation caused
by an interruption/preemption is considered as
one of the greatest challenges.

This worst case interruption/preemption de-
lay is determined by two major factors. One is
external delay corresponding to the time spent
by preempting processes and the operating sys-
tem, and this is strongly related to the schedul-
ability problem for the interrupted/preempted
process. The target of our research, though, is
the other factor, internal delay, which the in-
terrupted/preempted process incurs during its
execution due to the loss of locality.

Since the efficiency of modern processors de-
pends on the various temporal/spatial locali-
ties of program execution, a process switch-
ing inevitably causes significant performance
damage to the interrupted/preempted process
which loses its own contents of caches, branch
predictors and instruction pipeline. Previ-
ous work mainly focused on the damage to
caches 11),15),18),22) to analyze how many misses
are added by one or more interruptions/
preemptions and to find the set of worst case

†1 Toyohashi University of Technology
†2 Nara Institute of Science and Technology
†3 Nagoya Institute of Technology
†4 Kyoto University
†5 Nagoya University
☆ Presently with PFU Ltd.

timings of these.
Although these worst case flush timing

(WCFT) analyses give a good approximation
of the delay because caches suffer the most
critical damage, we cannot ignore the dam-
age on the other important hardware compo-
nent, branch predictors, which we aim at in
this paper. Branch predictors have been almost
completely neglected in previous WCFT work
because their mechanism is more complicated
than caches. For example, the worst case cache
state for any program may be obviously defined
as the fully invalidated one, while that of a 2-
bit counter of a basic bimodal predictor 21) de-
pends on branches whose actions are predicted
by the counter. The other source of analysis
difficulty is that an arbitrary number of past
branches may affect the counter state, while a
cache set state is determined by a fixed number
of accesses to it, equal to its associativity.

These difficulties also imply that the delay
caused by a flush of predictor tables is as sig-
nificant as, or may be more significant than,
that of caches. For a cache, the number of ad-
ditional misses caused by a flush is obviously
bounded by its number of blocks (or lines) and
is often less than that because it may have un-
useful blocks. On the other hand, a flush of a
2-bit counter may affect the prediction accuracy
of an arbitrary number of branches following it
and thus the additional misses may be larger
than the number of counters in a predictor ta-
ble.

Our contribution to this hard WCFT prob-
lem for branch predictors is twofold. First
we show that a dynamic programming tech-
nique, which solved the WCFT problem of
caches 15), is also applicable to the problem for

127

128 IPSJ Transactions on Advanced Computing Systems May 2007

bimodal predictors to obtain an O(N2F) al-
gorithm. Secondly and more importantly, we
improve the algorithm to achieve O(NF) time
complexity in a practical sense and exhibit its
efficiency through our evaluation with SPEC
CPU95 benchmarks. In this paper, these two
contributions are discussed within the follow-
ing structure. First, previous related research
on WCET and WCFT is summarized in Sec-
tion 2 to show the background of our work.
Section 3 gives a few definitions and notation
to formulate the problem and algorithms. Sec-
tion 4 is the heart of this paper where two algo-
rithms, basic O(N2F) and improved O(NF),
are shown. Section 5 presents performance
numbers for the two algorithms with regard to
SPEC CPU95 benchmarks. After briefly dis-
cussing the applicability of our algorithms to
other predictors in Section 6, we conclude in
Section 7.

2. Related Work

Traditionally, the WCET problem has been
attacked by an analysis of the logical behavior
of a program to find, for example, the input
data set that maximizes the number of opera-
tions/instructions executed in the program 20).
Although the problem is not decidable in gen-
eral, a large number of practical programs for
real-time systems can be successfully analyzed
by sophisticated methods often relatively effi-
ciently.

On the other hand, it is harder to analyze
the physical behavior of a program running on
a given computational environment. For exam-
ple, a data set A to maximize the number of
executed instructions could result in a shorter
execution time than another set B, the execu-
tion with which has fewer executed instructions
but more cache misses than A. The problem
is made more complicated by other mechan-
isms of modern processors, such as instruction
pipeline, out-of-order and/or parallel instruc-
tion execution, and branch prediction combined
with speculative execution.

This physical behavior analysis to predict
WCET, however, is not the hardest problem
because it is widely believed that an execu-
tion with the worst case data set on a real
or simulated computational environment gives
a good approximation of WCET. Even when
this straightforward method does not work, var-
ious analytical methods would successfully give
you a safe and tight upper bound of WCET

with caches (e.g., Refs. 6), 8), 23)), branch pre-
dictors (e.g., Refs. 2), 4)), and/or their com-
bination with pipelined and speculative execu-
tion 3),5),12).

The first proposal to incorporate branch pre-
dictors into WCET analysis was presented by
Colin and Puaut 4). They focused on the resi-
dentiality of a branch in a branch target buffer
(BTB) and examined whether a branch must
reside in a BTB or may not, using a technique
similar to those for caches 23). Although they
modeled that a BTB entry also has a 2-bit
counter to predict the direction of a conditional
branch, they simply assumed that the direction
of a branch to iterate a loop is correctly pre-
dicted except for the loop termination if it re-
sides in BTB, while that for if-then-else is al-
ways mispredicted.

This simple but rough modeling was par-
tially refined by Bate and Reutemann 2), espe-
cially for nested loops for which they took into
account the cases with small iteration counts
and predictors using global history such as gse-
lect 19). Regarding if-then-else constructs, they
pointed out the scheme of Colin and Puaut may
cause underestimation, but they still adopted
the always-mispredict assumption. They also
proposed a method to combine the analyses of
misprediction and pipeline timing 3), while the
other effect, instruction cache pollution by mis-
prediction, is discussed by Li, et al. 12).

The behavior of a program in a real execu-
tion environment, in which an operating sys-
tem switches processes according to a schedul-
ing policy, is much harder to analyze. As briefly
discussed in the Introduction, a process pre-
empted by scheduling suffers two types of dam-
age: external delay time spent by preemptors
and the operating system, and internal delay
caused by the loss of execution locality. After
the former delay issue was explored as a sched-
ulability problem, the latter delay was incorpo-
rated by focusing on caches by Lee, et al. 11).

In the literature, they formalized cache-
related preemption delay as the sum of the num-
ber of useful cache blocks at each preemption
point. By a data-flow analysis of a target pro-
gram, each point of the program execution is
labeled with the number of useful cache blocks
which will afterward be accessed. The point
having the highest cost, the maximum number
of useful blocks, is then chosen as the worst-case
preemption point and its worst-case visit count
is multiplied by the cost to obtain the total cost

Vol. 48 No. SIG 8(ACS 18) An Efficient Analysis of WCFT for Branch Predictors 129

of multiple preemptions. If the predefined num-
ber of preemptions is larger than the visit count,
the points with the second highest cost and suc-
ceeding costs are chosen up to the preemption
count. Finally, the preemption costs are com-
bined with the external delays to determine the
worst-case delay calculated by an integer liner
programming technique.

Although this method gives us a safe upper
bound of the preemption delay, it is heavily
overestimated because the cost is incurred each
time the point is visited by an execution of the
process. Thus if a point in a loop has the max-
imum cost and the loop iteration count is large
enough, the total cost of F preemptions will
be F times the maximum cost which is ob-
viously and heavily overestimated since a se-
ries of contiguous preemption results in a much
smaller cost. Other proposals aim at refining
this scheme by taking account of preempting
processes 18),22), but they still stand on Lee’s
assumption. It is also noteworthy that, to our
knowledge, no proposals have been made to
combine Lee’s scheme and branch predictors al-
though this would be technically feasible.

Another approach to the preemption delay
problem is to analyze a workload —— i.e., the
combination of a program and its (worst-case)
input data set —— rather than to analyze the
program solely and statically. While this ap-
proach should be too natural and trivial for typ-
ical WCET problems, it is still challenging for
the preemption delay problem because we have
a huge search space from which we have to find
out the worst-case preemption points. In the
first proposal using this approach, Miyamoto,
et al. 15) used it to find the worst case flush tim-
ings (WCFT) of direct-map caches for a process
preempted F times. That is, WCFT is the set
of preemption timings that maximizes the total
cache misses in the execution of the process.

They also gave the following formula to ob-
tain WCFT from a trace of N memory accesses:

Γ (i, f) = max
i≤j≤N

{C(i, j) + Γ (j, f − 1)}
where C(i, j) is the number of useful cache
blocks loaded after the i-th memory access and
flushed just after the j-th access, and which are
referred to by the (j + 1)-th and subsequent
memory accesses, and Γ (i, f) is the worst-case
total useful blocks lost by f flushes which occur
after the flush at the i-th access. This formula
strongly suggests that the problem is solved
by a dynamic programming technique in time

O(N2F). Their more recent report 14) showed
a better algorithm whose time complexity is
O(NF) if we assume the average gap between
two accesses to a cache block is a constant in-
dependent of N . This improvement is based on
the fact that the effect of an access to a direct-
map cache is nullified by the following access
to the same cache block because what resides
in the block is determined only by the second
access regardless of the first one.

Our WCFT analysis is, to our knowledge,
the first attempt to analyze the worst-case pre-
empted behavior of branch predictors. Al-
though our method is inspired by Miyamoto’s,
predictors are much harder to analyze than
caches for the following reasons. First, a cache
block has the apparent worst-case invalid state,
while four states of a bimodal predictor’s 2-
bit counter are equally meaningful for branches
whose actions are predicted by the counter.
Thus the worst-case value of a counter at a pre-
emption point is a function of all the branches
executed after the point, whose straightforward
evaluation should take O(N) time with N exe-
cuted branches rather than O(1) in the case of
caches. Second, a cache block forgets its past
after a constant number of accesses but a 2-bit
counter may remember the action of a branch
executed long ago. Since the forgetfulness of
caches is the basis of Miyamoto’s O(NF) algo-
rithm, the strong retention of 2-bit counters is
a substantial barrier to efficient solutions.

3. Definitions and Notation

First we define the bimodal branch predictors
we aim to analyze as follows (Fig. 1).

Definition 1 Let b1, . . . , bN be conditional
branches having indices 1 ≤ i ≤ N executed
in a process to be analyzed in this order, P
be a set of 2-bit saturating counters c[0], . . . ,
c[|P |−1], and e be the function of branch index
i to associate a branch bi to a counter c[e(i)].
A branch bi is predicted to be taken (or not-
taken) if c[e(i)] ≥ 2 (or c[e(i)] < 2). After
the prediction, c[e(i)] is atomically updated to
min(c[e(i)]+1, 3) (or max(c[e(i)]−1, 0)) if bi is
eventually taken (or is not taken) as denoted
by bi �→ T (or bi �→ N). A taken (or not-
taken) branch bi is mispredicted if and only if
c[e(i)] < 2 (or c[e(i)] ≥ 2). The function p(i)
gives the index of the immediate predecessor of
bi which shares the counter c[e(i)], or 0 if bi is
the first branch referring to c[e(i)]. That is,

p(i) = max({j | e(i) = e(j), j < i} ∪ {0})

130 IPSJ Transactions on Advanced Computing Systems May 2007

Fig. 1 Definitions and notation.

In the usual configuration, |P | is a power of
2 and e(i) is calculated by extracting the low
log |P | bits of the address where bi resides. The
atomic update of the counters means that the
update of c[e(i)] by bi is immediately reflected
in the predictions of succeeding branches bi+1,
bi+2, . . . if they refer to the counter c[e(i)]. Al-
though this assumption is not always correct
in real implementations because a branch could
refer to a counter before its predecessor updates
the counter, this racing seldom occurs in real
executions on a simple pipeline for embedded
processors and almost never affects the predic-
tion.

Next we define the worst case flush timings
(WCFT) and related costs as follows.

Definition 2 Let mγ
e (i, j) be the number of

mispredictions of the branches in {bk | i < k ≤
j, e(k) = e} assuming c[e] = γ when bi is com-
pleted (or at the beginning if i = 0). If the
execution is preempted somewhere between bi

and bi+1 (or before b1 if i = 0) and thus c[e]
is flushed to have an arbitrary value, the worst
case number of mispredictions of the branches is
given by me(i, j) = max0≤γ≤3{mγ

e (i, j)}. Thus,
the flush cost at i which bi+1, . . . , bj suffer is
defined as C(i, j) =

∑
e me(i, j). The following

equation gives the worst case cost caused by the
flush at i and subsequent f flushes.

Γ (i, f) = max
j1,...,jf

{
f∑

k=0

C(jk, jk+1)

∣∣∣∣∣
j0 = i, jf+1 =N, jk≤jk+1

}
(1)

Thus, Γ (0, F) gives the worst case cost of F
flushes, and WCFT is the set of branch indices
j1, . . . , jF which maximizes

∑
C(jk, jk+1) to

define Γ (0, F).

4. WCFT Algorithms

4.1 Dynamic Programming Algorithm
Similar to the formulation in Ref. 15), Eq. (1)

can be rewritten as follows because C(jk, jk+1)
may be calculated independently from any
other C(jk ′ , jk ′+1).

Γ (i, f) = max
i≤j≤N

{C(i, j)+Γ (j, f−1)} (2)

From this recurrence and the initial condition
Γ (i, 0) = C(i, N) derived from Eq. (1), the
following algorithm, namely DPWCFT is ob-
tained by a dynamic programming (DP) tech-
nique.

Algorithm DPWCFT :
Γ [0 . . .N][0]← cost(N);
for f = 1 to F do begin

Γ [0 . . .N][f]← 0;
for j = N downto 0 do begin

C [0 . . . j]← cost(j);
for i = j downto 0 do begin

Γ [i][f]← max{C [i] + Γ [j][f − 1],
Γ [i][f]};

end
end

end
In the algorithm above, the function cost(j) re-
turns C(i, j) for all i s.t. 0 ≤ i ≤ j as we
later describe. Thus, at the end of the algo-
rithm, Γ [0][F] will have Γ (0, F) as the final re-

Vol. 48 No. SIG 8(ACS 18) An Efficient Analysis of WCFT for Branch Predictors 131

sult ☆. The time complexity of the algorithm is
O(N2F) providing that of cost(j) is O(j) as we
later show. Its space complexity is O(NF) if
we need not only the worst case cost but also
the timings ☆☆, or O(N) otherwise because only
Γ [0 . . .N][f] and Γ [0 . . . N][f − 1] are required
for all f .

We now show that cost(j) is evaluated in time
O(j). If we know mγ

e(k)(k, j) for γ = 0 and 1,
for example, m0

e(k)(k
′, j) for all p(k) ≤ k′ < k

is calculated by

m0
e(k)(k

′, j) =
{

m1
e(k)(k, j) + 1 bk �→ T

m0
e(k)(k, j) bk �→ N

That is, if c[e(k)] is set to 0 somewhere be-
tween bp(k) and bk, and bk is a taken branch, bk

is mispredicted and c[e(k)] becomes 1, result-
ing in the total number of mispredictions being
m1

e(k)(k, j) + 1. If bk is a not-taken one, on
the other hand, its action is correctly predicted
and c[e(k)] remains 0. Since similar equations
are obtained for γ ≥ 1 and mγ

e (j, j) = 0 for any
e, γ and j by definition, it is easy to calculate
mγ

e (i, j) for all γ and i such that 0 ≤ i ≤ j in
time O(j). Therefore, it is also easy to have an
O(j) algorithm to calculate me(i, j) by a simple
maximization of mγ

e (i, j), and C(i, j) using the
recurrence

C(i− 1, j)
= C(i, j) + (me(i)(i− 1, j)−me(i)(i, j))

derived from Definition 2. The complete defini-
tion of cost(j) is given in Ref. 16).

4.2 Saturating Branch Sequence
Since N may be a huge number, some hun-

dred millions in the majority of SPEC CPU95
benchmarks, the O(N2F) algorithm should
be impractical. Thus we have to improve
DPWCFT to make its time complexity O(NF)
for, at least, practical programs to be analyzed.
Our targets for the complexity reduction are
cost(j) and the innermost loop of DPWCFT
both of which have time complexity O(j) to be
improved to O(1).

The key idea for the improvement is that a
specific sequence of branches associated with
a counter guarantees its saturation independ-

☆ Since Γ (i, F) for all i > 0 are needless, the last
iteration for f = F can be modified to calculate
maxj{C(0, j) + Γ (j, F − 1)} as is done in our real
implementation.

☆☆ Although not shown in the algorithm for the sake
of simplicity, it is easy to keep the value of j that
maximizes C(i, j) + Γ (j, f − 1) for all i and f .

ently from its initial value. For example, three
consecutive taken branches, namely TTT, re-
ferring to a counter always makes its value 3
after their execution. In general, a sequence
TT(NT)∗T infallibly saturates the counter with
3, while NN(TN)∗N does so with 0. Such se-
quences, namely saturating branch sequences
(SBS), are obviously detectable by a simple fi-
nite automaton to accept the regular expression
TT(NT)∗T + NN(TN)∗N in time O(N).

The effect of SBS for the improvement is
twofold. Suppose bh and bt are the head and tail
of an SBS whose members refer to the counter
c[e] (i.e., e = e(h) = e(t)). Since c[e] definitely
becomes 0 or 3 after the execution of bh, . . . ,
bt, the number of mispredictions me(i, j) for all
i < h and j ≥ t can be calculated by the fol-
lowing formulae:

−→
me(t, j) =

{
m0

e(t, j) bt �→ N
m3

e(t, j) bt �→ T
me(i, j) = me(i, t) + −→me(t, j) (3)

From Eq. (3) above, we have the following two
recurrences for C(i, j), where

←−
h (j) and←−t (j) are

the indices of the head and tail of the most re-
cent SBS of e(j) preceding bj , while

−→
h (i) and−→

t (i) mean those of the earliest SBS of e(i) fol-
lowing bi.

∀i <
←−
h(j) : C(i, j − 1)

= C(i, j)− (me(j)(i, j)−me(j)(i, j − 1))
= C(i, j)− (−→me(j)(

←−
t (j), j)

− −→me(j)(
←−
t (j), j − 1))

≡ C(i, j)− −→δ (j) (4)
∀j ≥ −→t (i) : C(i− 1, j)

= C(i, j) + (me(j)(i− 1, j)−me(j)(i, j))
= C(i, j) + (me(i)(i− 1,

−→
t (i))

−me(i)(i,
−→
t (i)))

≡ C(i, j) +
←−
δ (i) (5)

Equation (4) means C(i, j−1) can be calculated
for all i <

←−
h (j) from C(i, j) and

−→
δ (j), which

is independent from i, rather than calculated
iteratively as cost(j) does. It is also derived
from Eq. (5) that C(i − 1, j) can be calculated
for all j ≥ −→t (i) from C(i, j) and

←−
δ (i), which

is independent from j, rather than calculated
iteratively as the innermost loop of DPWCFT
does.

4.3 Improvement of cost()
From Eq. (4), cost(j − 1) for the calculation

of C(i, j − 1) for all i < j is replaced with the
following equivalent operations as illustrated in

132 IPSJ Transactions on Advanced Computing Systems May 2007

Fig. 2 Calculating C(i, j − 1) from C(i, j).

Fig. 2. First, let H(j) = {h1, . . . , hmj
} be the

set of SBS head indices h1 < · · · < hmj
that

satisfy the following:

H(j) = {h |h =
←−
h(k), k > j,

←−
t (k) ≤ j,

j < ∀l < k : [
←−
h(k) <

←−
h(l)]}

For example, in the upper half of the figure,
h1 =

←−
h (j+3), h2 =

←−
h (j+2) and h3 =

←−
h (j+1),

which are left edges of the rectangles represent-
ing SBS, are members of H(j), but

←−
h (j + 4) is

not because
←−
h (j + 3) <

←−
h (j + 4).

Each member of H(j) = {h1, . . . , hmj
} =

{←−h (k1), . . . ,
←−
h (kmj

)}, where kl = min{k > j |

←−
h (k) = hl} and k0 = min({k > j |←−h (k) =
0} ∪ {N + 1}), has an associated differential
cost

−→
∆(hl, j) =

kl−1−1∑
k=j+1

−→
δ (k) (6)

Thus, in the upper half of the figure,
−→
∆(hl, j)

for h1, h2 and h3 have the values shown in the
figure.

Finally, for each i ≤ j, we define the base cost
C̃(i, j) partially calculated by improved cost()
as follows:

Vol. 48 No. SIG 8(ACS 18) An Efficient Analysis of WCFT for Branch Predictors 133

C̃(i, j) =


C(i, j) +

−→
∆(h1, j) i < h1

C(i, j) +
−→
∆(hl, j)

hl−1 ≤ i < hl, 1 < l ≤ mj

C(i, j) hmj
≤ i

(7)

Note that hmj
is considered as 0 if H(j) = ∅.

Also note that since
−→
∆(h1, j) =

∑N
k=j+1

−→
δ (k)

from Eq. (6) and C(i, j) = C(i, N) − −→∆(h1, j)
for all i < h1 by the iterative applications of
Eq. (4) ☆, we have C̃(i, j) = C(i, N) for all i <
h1. The final remark is that C(i, j) is calculated
from C̃(i, j) and

−→
∆(hl, j) with hl appropriate to

i, which will be found by a binary search of the
data structure (a simple array) for H(j).

Now we show how H(j−1),
−→
∆(hl, j−1), and

C̃(i, j − 1) are calculated from their counter-
parts of j. We descendingly scan branches
bi from i = j to i =

←−
h (j). Until we find

i = hmj
∈ H(j), we calculate C̃(i, j−1) through

the following equation.
δ(i, j) = me(j)(i, j)−me(j)(i, j − 1)
C̃(i, j − 1) = C̃(i, j)− δ(i, j)

= C(i, j)− δ(i, j) = C(i, j − 1)

If we find i = hmj
, we pop it from H(j) and

switch the equation to
C̃(i, j − 1) = C̃(i, j)− −→∆(hmj

, j)− δ(i, j)
= C(i, j)− δ(i, j) = C(i, j − 1)

and do the same each time i = hl is found.
Before we reach i =

←−
h (j), we must encounter

i = ←−
t (j) at which we have

−→
δ (j) = δ(←−t (j), j)

according to its definition in Eq. (4). Finally, we
reach i =

←−
h (j), and push it onto the remaining

members of H(j) to form H(j − 1) if
←−
h (j) /∈

H(j) ☆☆. Then, for all hl ∈ H(j − 1),
−→
δ (j) is

added to
−→
∆(hl, j) ☆☆☆ to have

−→
∆(hl, j − 1) and

to keep the following invariant for all i <
←−
h (j).

C̃(i, j − 1)
= C̃(i, j) = C(i, j) +

−→
∆(hl, j)

= C(i, j − 1) + (
−→
δ (j) +

−→
∆(hl, j)) (∗)

= C(i, j − 1) +
−→
∆(hl, j − 1)

Note that the equation marked with (∗) is de-
rived from Eq. (4). The important point of the

☆ If we do not have k > j such that
←−
h (k) = 0. Oth-

erwise N in this discussion should be replaced with
k0 − 1 where k0 = min{k > j |←−h (k) = 0}.

☆☆
←−
h (j) is not pushed if it is 0; i.e., bj does not have
the preceding SBS.

☆☆☆ If
←−
h (j) /∈ H(j),

−→
∆(
←−
h (j), j) is considered as that for

the element popped last, or zero if nothing has been
popped.

equation above is that we can omit the calcu-
lation for C̃(i, j − 1) for all i <

←−
h (j), and thus

have a procedure of O((j −←−h (j)) + |H(j − 1)|)
to perform operations equivalent to cost(j− 1),
namely c̃ost(j−1), paying a cost of log |H(j−1)|
for each reference of C(i, j − 1) for the binary
search of H(j − 1).

The result of c̃ost(j − 1) applied to the upper
half of Fig. 2 is shown in the lower half. The
complete definition of c̃ost() and the proof of
its correctness are given in Ref. 16).

4.4 Improvement of DPWCFT
The next target is the innermost loop of

DPWCFT in which we evaluate the following
to obtain Γi(i, f) = Γ (i, f) at the end of the
outer j loop.

Γj(i, f)=max(C(i,j)+Γ (j,f−1), Γj+1(i,f))
= max

j≤k≤N
{C(i, k)+Γ (k, f−1)} (8)

Combining Eq. (8) above and Eq. (5) from Sec-
tion 4.2, we have the following recurrence to
calculate Γj(i− 1, f) for any j s.t. j ≥ −→t (i):

Γj(i− 1, f)
= max

j≤k≤N
{C(i− 1, k) + Γ (k, f − 1)}

= max
j≤k≤N

{C(i, k) +
←−
δ (i) + Γ (k, f − 1)}

=
←−
δ (i) + max

j≤k≤N
{C(i, k) + Γ (k, f − 1)}

= C(i− 1, j)− C(i, j) + Γj(i, f) (9)

This means that we may not calculate Γj(i −
1, f) for all j ≥ −→t (i) but do so only for j <

−→
t (i)

with the initial value derived from Γj(i, f) if we
already know it.

This optimization requires two modifications
of the loop structure of DPWCFT. First, the
set of branch indices A(j) = {i | i ≤ j <

−→
t (i)},

whose elements are the targets of Γj(i − 1, f)
calculation, is inconsecutive; i.e., there may be
i < i ′ ≤ j such that i ∈ A(j) but i ′ /∈ A(j).
Thus, as shown in Fig. 3, we need to maintain
A(j) as the union of A(e, j) = {i | e(i) = e, i ≤
j <

−→
t (i)} (double-headed arrows in the figure)

for all e. This maintenance, however, is easy
because members of A(e, j) are easily found by
following the links to connect branches sharing
a counter; i.e., bi to bp(i).

Second, when we find bj being the tail of
an SBS, we need not only add new members
{i |−→t (i) = j} (dashed arrow in Fig. 3) to A(j)
to have A(j − 1), but also have to initialize
Γj(i − 1, f) for them by Eq. (9). This is easy
if i + 1 ∈ A(j) because we have already had
Γj(i, f) (as i = i2 in the figure), but we have

134 IPSJ Transactions on Advanced Computing Systems May 2007

Fig. 3 Optimal calculation of Γj(i, f).

to pay some attention for the case of i = i1
in the figure where i1 + 1 /∈ A(j). This prob-
lem is solved by iteratively applying the recur-
rence Eq. (9), as shown in the figure, because−→
t (i + 1) > j if i + 1 /∈ A(j). In general, we
can find a(i) = min{k | i < k,

−→
t (i) ≤ −→t (k)} by

scanning all branches once and in advance, to
calculate Γj(i− 1, f) through the following:

Γj(i− 1, f) = C(i− 1, j)− C(a(i)− 1, j)
+ Γj(a(i)− 1, f) (10)

Now we have an optimized version of
DPWCFT, namely OptWCFT, which is logi-
cally equivalent to DPWCFT and whose outline
is illustrated as follows:

Algorithm OptWCFT :
Γ [0 . . .N][0]← cost(N); find a(i) for all i;
for f = 1 to F do begin

Γ [0 . . .N][f]← 0;
C̃[0 . . .N]← cost(N);
H ← ∅; A← A(N);
for j = N downto 1 do begin

for ∀i ∈ A do
Γ [i−1][f]←

max(C (i−1, j) + Γ [i−1][f−1],
Γ [i−1][f]);

A← A− {j};
if bj is an SBS tail then begin

A′ ← {i |−→t (i) = j};
for ∀i ∈ A′ do

Γ [i−1][f]←
C (i−1, j)− C (a(i)−1, j) +
Γ [a(i)−1][f];

A← A ∪A′;
end
(H , C̃[])← c̃ost(j − 1);

end
end

Note that the initial value of A = A(N) has
the indices of branches which follow the last
SBS of each counter. Also note that C(i, j)
is calculated by the equation (7) from C̃[i] =
C̃(i, j) and

−→
∆(h, j) associated with each element

of H = H(j) with a binary search of it. The
complete definition of OptWCFT and the proof
of its correctness are given in Ref. 16).

4.5 Complexity of OptWCFT
To evaluate the time complexity of Opt-

WCFT, we need a few definitions. Let B be
the number of counters referred to in the exe-
cution to be analyzed. Obviously, B ≤ |P | and
is bounded by the static count of branches in
the program even if P is infinitely large. Let
σ(j) be the set of branch indices {i |−→h (i) = j}
preceding an SBS head bj , and L be the average
of |σ(j)|. Finally, let λ be the average number
of branches in an SBS.

First, the time complexity of c̃ost(j − 1) is
O((j−←−t (j))+|H(j−1)|), the average of j−←−t (j)
is B(L+λ)/2, and |H(j−1)| ≤ B. Thus, its av-
erage time complexity is evaluated as O(B(L+
λ)). Second, since the average of |A(j)| is again
B(L+λ)/2 and it is the number of iterations of
the innermost loop of OptWCFT (the first one)
in which we need log |H(j)| ≤ log B operations
for a binary search to calculate C(i, j), the aver-
age time complexity of the loop is evaluated as
O(B log B · (L+λ)). Thus, the total time com-
plexity of OptWCFT is O(NB log B ·(L+λ)F).

Now we estimate L and λ, assuming that each
branch is randomly taken or not taken. This as-
sumption is not the worst for our algorithm, but

Vol. 48 No. SIG 8(ACS 18) An Efficient Analysis of WCFT for Branch Predictors 135

Table 1 Statistics of benchmarks.

benchmark N(×103) B L λ

099.go 62,098 1,902 1.65 3.36
124.m88ksim 6,496 936 1.11 3.11
126.gcc 198,388 2,048 1.28 3.16
129.compress 3,889 427 1.39 3.25
130.li 24,233 587 1.26 3.16
132.ijpeg 97,793 1,103 1.18 3.10
134.perl 328,327 1,327 1.16 3.12
147.vortex 299,712 1,979 1.04 3.03
101.tomcatv 361,766 835 1.04 3.03

benchmark N(×103) B L λ

102.swim 28,859 790 1.06 3.05
103.su2cor 792,679 1,032 1.08 3.03
104.hydro2d 739,074 1,117 1.01 3.00
107.mgrid 205,374 812 1.11 3.10
110.applu 17,842 912 1.80 3.60
125.turb3d 734,122 1,075 1.26 3.20
141.apsi 100,362 1,169 1.11 3.07
145.fpppp 3,385 806 1.16 3.09
146.wave5 192,736 1,132 1.02 3.01

is sufficiently pessimistic because it means the
prediction accuracy is 50%. With this assump-
tion, the probability of a branch being the head
of SBS (TT(NT)∗T or NN(TN)∗N), namely pS ,
is 1/3 because pS = 2(1/23 +1/25 +1/27 + · · ·).
Thus, it is obvious that L = 1/pS = 3. The ex-
pected value of λ is calculated from the fact that
the probability of the length of an SBS being
2k+1 is 3(1/4)k and the formula

∑∞
k=1kxk−1 =

1/(1 − x)2. That is, λ =
∑∞

k=13(2k + 1)/4k =
11/3. Thus, L + λ is a small constant of 20/3
even with the random branch assumption, and
is smaller than the number in practical program
executions as measured by our evaluation, as we
later discuss.

We can then consider that B is a constant
independent from and much smaller than N .
Thus, we can conclude that the time complexity
of OptWCFT is O(NF) in a practical sense.

As for the space complexity, OptWCFT re-
quires the following data structures. First, each
of N branches, bi, may be represented by a con-
stant number of elements for e(i), p(i), a(i),←−
h (i), ←−t (i),

−→
h (i) and

−→
h (i) and a Boolean flag to

indicate bi �→ T or bi �→ N . The other struc-
tures, whose sizes are proportional to N , are
Γ [0 . . .N][0 . . . F] to hold Γ (i, f) for each i and
f , and C̃[0 . . . N] to hold C̃(i, j) for each i and a
particular j. We also need the following O(|P |)
size structures: an array of 4|P | elements to
hold mγ

e (i, j) in the calculation of cost() and
c̃ost(); a stack H to hold H(j) and

−→
∆(h, j) as-

sociated to each element H(j); and an array to
have α(i, e) = max{k | bk ∈ A(i), e(k) = e} for
each e to represent A(i) together with the link
of bj to bp(j).

The space complexity of OptWCFT is thus
O(NF + |P |), or O(NF) because |P | is a con-
stant that is usually much smaller than N , if
we need the worst case timings as discussed
in Section 4.1. Otherwise, if only the worst
case delay is required, so only Γ [0 . . . N][f] and
Γ [0 . . .N][f − 1] are necessary, the complexity

is O(N), also as discussed in Section 4.1

5. Experiments

We implemented two algorithms DPWCFT
and OptWCFT, and evaluated their perfor-
mance with SPEC CPU95 benchmarks and a
bimodal predictor of |P | = 2,048. The bench-
marks, except for ijpeg, are rarely executed
in real-time systems, but their widely varying
characteristics should be useful for examining
how wide an application range our algorithms
are effective for. The analysis programs are
written in C, compiled by gcc 3.2.2 with the
-O2 option, and run on a Linux PC of 2.0 GHz
Opteron-246 with 2 GB memory.

As the input of our analyzer, we obtained
the trace of conditional branches executed in
each benchmark with “train” data set using an
instruction simulator based on sim-fast of the
SimpleScalar 3.0 tool-set 1) for the PISA in-
struction set. Statistics regarging the bench-
marks are summarized in Table 1, from which
we confirmed that L and λ are smaller than the
estimation in Section 4.5.

Figure 4 shows the execution times of two
algorithms for each benchmark ☆. Up to one
million leading branches were analyzed for each
benchmark with the parameter F = 2. In
the graph, the results for DPWCFT are rep-
resented by dashed lines and in the shaded box
the benchmarks are listed in descending order
by the execution times for N = 106. The
graph clearly shows that DPWCFT requires a
time of O(N2), which is almost independent of
each benchmark’s nature, and is distributed in
a range between 8,310 to 10,737 seconds (or
about 2.5 hours) when N = 106.

On the other hand, the results for OptWCFT
(solid lines and unshaded boxes) strongly de-
☆ The time needed for the instruction simulation to

obtain the trace of one-million branches is excluded
from the execution time because it is negligibly
small, less than 3 seconds on average.

136 IPSJ Transactions on Advanced Computing Systems May 2007

Fig. 4 Execution time of DPWCFT and OptWCFT.

pend on the benchmark characteristics. From
the graph, we can observe that benchmarks are
categorized into two groups, one with tomcatv,
hydro2d, fpppp and apsi, and the other with
remaining benchmarks. In the second group,
OptWCFT greatly outperforms DPWCFT, as
expected, by up to 173-fold and 80-fold on av-
erage when N = 106. As anticipated, we also
found that OptWCFT takes O(N) time with
about 5,000 branches per second on average.

The performance curves of the first group,
however, are quite different and look non-
linear, especially for the slowest three bench-
marks, giving counter-examples to the com-
plexity analysis discussed in Section 4.5. How-
ever, we consider their curves to be linear but
with steep slopes after N exceeds about 400
thousand. This belief is supported by the
fact that these program executions have branch
sequences hardly saturating the counter they
commonly refer to, resulting in a very long SBS
of more than 150 branches. Such a long SBS
does not affect the time complexity because it
is affected by the average length, which is small
even in these benchmarks; however, it strongly
degrades real computation time by decreasing
access locality. That is, occasional long SBS oc-
currences force c̃ost() and the innermost loop to
scan widely distributed and/or a large number
of branches causing frequent cache misses and
even TLB misses.

The worst case misprediction counts shown
in Table 2 also depend on characteristics of
the benchmarks as one would expect. Notably,
the number of mispredictions caused by two
flushes, d in the table, cannot be estimated
from, for example, the proportion of B. That
is, the increment of mispredictions per counter,

Table 2 Misprediction count (×103, N = 106).

F=2 F=0 d†
go 154.2 146.5 7.8
m88ksim 55.1 52.7 2.5
gcc 114.6 107.1 7.6
compress 171.0 165.6 5.4
li 113.0 111.3 1.6
ijpeg 95.8 93.3 2.6
perl 46.1 42.8 3.3
vortex 48.3 40.4 7.9
tomcatv 66.6 52.6 14.0
swim 45.0 42.8 2.3
su2cor 191.5 184.4 7.1
hydro2d 59.6 44.6 15.0
mgrid 45.8 42.5 3.3
applu 236.7 234.1 2.6
turb3d 7.2 5.3 1.9
apsi 102.2 89.9 12.3
fpppp 102.5 85.6 16.9
wave5 2.9 1.1 1.9

† d is the difference of mispredictions
between F = 2 and F = 0.

d/B, widely varies from 1.7 of wave5 to 21.0
of fpppp. Another insight gained from the ta-
ble is that the four benchmarks having highest
d —— fpppp, hydro2d, tomcatv and apsi ——
are those which OptWCFT takes a long time
to analyze. This is not an accident but is ex-
plained again by the long SBS in their execu-
tion. A long SBS has a long sequence of (TN)∗
that we would expect to cause (5/8)l mispredic-
tions on average, where l is the length of the se-
quence, because l/2 misses result from three out
of four possible counter values at its beginning.
The sequence, however, suffers l mispredictions
—— i.e., fails always —— with the worst case
counter value. These insights strongly support
the importance of accurate worst case analysis.

The large values of d also support our claim
that the interruption delay caused by the flush
of the predictor is as significant as that of
caches. First, d being larger than 10,000 for
four benchmarks means that the prediction ac-
curacy is degraded by more than 1%, which is
considered significant by branch predictor ar-
chitects. For example, two recent papers on
predictors 7),9) discuss new prediction mechan-
isms which improve the accuracy by less than
1%. This does not means their proposals are
insignificant but proves a great impact on the
overall performance can result from a small ac-
curacy improvement. In fact, the first paper 7)

reports that a 0.5% accuracy improvement gives
a 4.5% performance gain, while the second pa-
per 9) claims a 0.6% accuracy improvement re-
sults in a 17% performance gain. In general, it

Vol. 48 No. SIG 8(ACS 18) An Efficient Analysis of WCFT for Branch Predictors 137

is widely believed in this community that a 1%
accuracy improvement/degradation results in a
10% performance gain/loss.

Further support comes from comparing the
amount of delay caused by flushes of a predic-
tor and a cache. Let us assume that two flushes
of the predictor increase its misses by 15,000 as
in the case of hydro2d, and each miss costs 20
cycles as in the case for modern microproces-
sors with deep pipelines such as the Pentium
4. This means the total delay is 300,000 cycles.
As for the cache, let us assume we have 32KB
level-1 instruction and data caches with 32B
block size. This means that a flush causes each
cache to lose up to 1,024 useful blocks, so two
flushes cause two caches to suffer up to 4,096
addtional misses in total. In the worst case,
these misses also cause misses in a level-2 (and
higher levels if so equipped) cache with a large
delay for physical memory access, say 100 cy-
cle per miss, resulting a total delay of 409,600
cycles. These two delays, 300,000 and 409,600
cycles, are clearly comparable. Moreover, since
caches may not be fully filled with useful blocks
(roughly half or less of the total blocks were use-
ful in the experiment reported in Ref. 15)), the
delay caused by the prediction misses may be
larger than that due to the cache misses.

6. Application to Other Predictors

In this section, we discuss the applicability of
our scheme to other predictors for branch di-
rection. For example, gselect 19) and gshare 13)

predictors, whose 2-bit counter table is indexed
by a function of the global branch history , will
make the story complicated because the history
is also flushed . This uncertainty problem of
counter indices will be directly solved by search-
ing for the worst case in 2g multiple worlds built
with a g bit global history as follows.

Let e(i, η) be a function to obtain the counter
c[e(i, η)] referred to by bi with a global history
η. Let us assume that a flush just after bi makes
the global history some specific value x. With
this assumption we can easily calculate the se-
quence of global histories x = ηx

i+1, ηx
i+2, . . . ,

ηx
N for branches bi+1, . . . , bN . Note that ηx

j de-
pends on x if j ≤ i+g, but is independent from
it if j > i + g because ηx

j is determined by the
action (taken or not taken) of bj−g, . . . , bj−1

and thus by scanning all the branches once in
advance.

Now we have a recurrences such as

m0
e(k,ηx

k
)(k
′, j)

=

{
m1

e(k,ηx
k
)(k, j) + 1 bk �→ T

m0
e(k,ηx

k
)(k, j) bk �→ N

for all k′ such that p(k) ≤ k′ < k, where
p(k) = max{l | e(k, ηx

k) = e(l, ηx
l), l < k}

as is done in Section 4.1. Therefore, we
have me(i, j, x) = max0≤γ≤3{mγ

e (i, j)} for all
e and thus C(i, j, x) =

∑
e me(i, j, x) for the

initial history x following the Definition 2.
Finally, we have the flush cost C(i, j) =
max0≤x<2g{C(i, j, x)}. Note that the recur-
rences

xi = 2xi−1 +
{ 1 bi �→ T

0 bi �→ N (mod 2g)

C(i− 1, j, xi−1)
= C(i, j, xi) + me(i,xi−1)(i− 1, j, xi−1)
−me(i,xi−1)(i, j, xi)

are also derived from the definition and the his-
tory maintenance mechanism by a shift register.
Therefore, a version of cost(j) with a global his-
tory can be designed to compute C(i, j) for all
i ≤ j in time O(2gN), or O(N) if we can assume
2g is a constant.

Alternatively, if the 2g factor is too large, a
more efficient solution will be obtained by as-
suming that a flush lets counters have the worst
case pattern after g branches following it are
executed. That is, since ηi = ηx

i for all i > g
can be determined in advance independently of
the initial history x, C(i, j, ηi) for all i and j
such that g < i ≤ j may be calculated with-
out exploring the 2g multiple worlds. Then a
conservative definition,

C(i, j) =
{

j − i j < i + g
C(i + g, j, ηi+g) + g j ≥ i + g

which assumes up to g leading branches are al-
ways mispredicted, gives us another version of
cost() which should be as efficient as that with-
out a global history. Although this simplifica-
tion is a little bit pessimistic because the worst
case counter pattern deriving C(i + g, j, ηi+g)
could be infeasible with any initial global his-
tory, the higher efficiency will compensate for
the pessimism.

Note that the concept of SBS is still useful
with both the direct and simplified methods
shown above, but we have to modify the base
formula (4) and the definitions of

−→
h (i) and −→t (i).

That is, the qualifier ∀i <
←−
h (j) in (4) should be

rewritten as ∀i <
←−
h (j)−g, while

−→
h (i) and −→t (i)

should be the head and tail of the SBS that is

138 IPSJ Transactions on Advanced Computing Systems May 2007

the earliest one following bi+g rather than bi.
Finally, a predictor with multiple prediction

mechanisms, such as combined 13), will be also
targetable for our scheme if it consists of mul-
tiple tables of 2-bit counters optionally with a
global history. For a combined predictor with
a bimodal and gselect/gshare predictors whose
predictions are selected by a meta-predictor,
for example, C(i, j) may be computed by ex-
ploring 22+2+2 = 64 cases to calculate me(i, j)
if we adopt the simplified method for the gs-
elect/gshare predictor. That is, with three ta-
bles and thus three counter values, namely γb of
bimodal, γg of gselect/gshare, and γm of meta-
preditctor, we have to keep track of the number
of misses for each of 64 cases of 0 ≤ γb ≤ 3,
0 ≤ γg ≤ 3 and 0 ≤ γm ≤ 3. Additionally,
since each predictor should have its own SBS,
our optimization is applicable using the furthest
one of the three; i.e., the earliest for c̃ost() and
the latest for OptWCFT ’s innermost loop.

7. Conclusion and Discussion

We proposed two algorithms for the WCFT
problem of bimodal branch predictors. First we
formulate the problem to confirm it is solvable
by a dynamic programming technique and to
provide an O(N2F) algorithm DPWCFT. The
concept of SBS is then introduced, by which we
improve the time complexity to O(NF). The
improved algorithm OptWCFT greatly out-
performs DPWCFT in the analysis of SPEC
CPU95 benchmarks, thus showing the signifi-
cance of our optimization.

There are many directions to follow to extend
of our contribution in the future. The most
important direction is to apply our method to
other predictors as discussed in Section 6. An-
other direction is to incorporate other hardware
components such as caches, TLBs, and branch
target buffers into our analysis scheme to ap-
proach the ultimate goal, an accurate estima-
tion of interruption/preemption delay. The in-
corporation will be straightforward if a good
estimation is given for the total cost caused by
misses of these components whose worst case
behaviors can be analyzed by algorithms similar
to ours or Miyamoto’s 14). We must take care
in the incorporation, though, since each com-
ponent has its own event patterns to disconnect
causality —— e.g., an SBS for a bimodal pre-
dictor —— and so optimization to exploit them
will become more difficult.

We have already partially explored a slightly

different direction towards the ultimate goal as
reported in Refs. 10) and 17). In these papers,
we proposed an efficient method to estimate the
worst case delay with a cycle accurate simulator
for the case of F = 1. Although this simulation-
based analyzer is very accurate with a realistic
hardware model and is reasonably fast (2 to 6
minutes per one million executed instructions
with its O(N log N) time complexity), we still
need an unacceptably long O(N2F) time to ap-
ply this method to the cases of F > 1. Thus,
efficient trace-based methods for branch predic-
tors and caches should be combined with the
simulation-based method so that, for example,
we can focus on interruption points with large
miss counts to reduce the complexity.

Another direction is to analyze partial flush
cases in which one of a number of predefined
sets of counters is flushed by a preemption.
Since this type of flush does not disconnect the
causality, it is an open problem to design ef-
ficient algorithms that should be much faster
than a straightforward O(NF) one.

Acknowledgments This research is partly
supported by Grant-in-Aid of Scientific Re-
search #17300015 of MEXT Japan, and the
21st Century COE Program entitled “Intelli-
gent Human Sensing” of MEXT Japan.

References

1) Austin, T., Larson, E. and Ernst, D.: Simple-
Scalar: An Infrastructure for Computer Sys-
tem Modeling, Computer, Vol.35, No.2, pp.59–
67 (2002).

2) Bate, I. and Reutemann, R.: Worst-Case Exe-
cution Time Analysis for Dynamic Branch Pre-
dictors, ECRTS’04, pp.215–222 (2004).

3) Bate, I. and Reutemann, R.: Efficient In-
tegration of Bimodal Branch Prediction and
Pipeline Analysis, RTCSA 2005, pp.39–44
(2005).

4) Colin, A. and Puaut, I.: Worst Case Execu-
tion Time Analysis for a Processor with Branch
Prediction, Real-Time Systems, Vol.18, No.2/3,
pp.249–274 (2000).

5) Engblom, J. and Ermedahl, A.: Pipeline Tim-
ing Analysis Using a Trace-Driven Simulator,
RTCSA’99, pp.88–95 (1999).

6) Healy, C.A., Arnold, R.D., Mueller, F.,
Whalley, D.B. and Harmon, M.G.: Bounding
Pipeline and Instruction Cache Performance,
IEEE Trans. Computers, Vol.49, No.1, pp.53–
70 (1999).

7) Ishii, Y. and Hiraki, K.: Path Trace Branch
Prediction, IPSJ Trans. Advanced Computing

Vol. 48 No. SIG 8(ACS 18) An Efficient Analysis of WCFT for Branch Predictors 139

Systems, Vol.47, No.SIG 3(ACS13), pp.58–72
(2006). In Japanese.

8) Kim, S.-K., Min, S.L. and Ha, R.: Efficient
Worst Case Timing Analysis of Data Caching,
RTAS’96, pp.230–240 (1996).

9) Kise, K., Katagiri, T., Honda, H. and
Yuba, T.: The Bimode-Plus Branch Predic-
tor, IPSJ Trans.Advanced Computing Systems,
Vol.46, No.SIG 7(ACS10), pp.85–102 (2005). In
Japanese.

10) Konishi, M., Nakada, T., Tsumura, T.
and Nakashima, H.: Measuring Worst-Case
Performance of Microprocessor by Interrup-
tion with Omitting Redundant Execution,
IPSJ Trans. Advanced Computing Systems,
Vol.47, No.SIG12(ACS15), pp.159–170 (2006).
In Japanese.

11) Lee, C.-G., et al.: Analysis of Cache-Related
Preemption Delay in Fixed-Priority Preemp-
tive Scheduling, IEEE Trans. Computers,
Vol.47, No.6, pp.700–713 (1998).

12) Li, X., Mitra, T. and Roychoudhury, A.: Ac-
curate Timing Analysis by Modeling Caches,
Speculation and their Interaction, DAC 2003,
pp.466–471 (2003).

13) McFarling, S.: Combining Branch Predictors,
Technical Report WRL TN-36, DEC (1993).

14) Miyamoto, H., Iiyama, S., Tomiyama, H.,
Takada, H. and Nakashima, H.: A Search Al-
gorithm of Worst-Case Cache Flush Timings
Using Dynamic Programming, IPSJ Trans.Ad-
vanced Computing Systems, Vol.46, No.SIG 16
(ACS12), pp.85–94 (2005). In Japanese.

15) Miyamoto, H., Iiyama, S., Tomiyama, H.,
Takada, H. and Nakashima, H.: An Efficient
Search Algorithm of Worst-Case Cache Flush
Timings, RTCSA 2005, pp.45–52 (2005).

16) Nakashima, H.: WCFT Algorithms for Branch
Predictor and Proofs of Their Correctness,
Technical report, Kyoto University (2006).
http://www.para.media.kyoto-u.ac.jp/TR/
bpred-alg.pdf.

17) Nakashima, H., Konishi, M. and Nakada, T.:
An Accurate and Efficient Simulation-Based
Analysis for Worst Case Interruption Delay,
CASES 2006, pp.2–12 (2006).

18) Negi, H.S., Mitra, T. and Roychoudhury, A.:
Accurate Estimation of Cache-Related Pre-
emption Delay, CODES+ISSS 2003, pp.201–
206 (2003).

19) Pan, S.-T., So, K. and Rahmeh, J.T.: Im-
proving the Accuracy of Dynamic Branch Pre-
diction Using Branch Correlation, ASPLOS-V,
pp.76–84 (1992).

20) Puschner, P. and Burns, A.: A Review of
Worst-Case Execution-Time Analysis, Real-
Time Systems, Vol.18, No.2/3, pp.115–128

(2000).
21) Smith, J.E.: A Study of Branch Prediction

Strategies, ISCA’81, pp.135–148 (1981).
22) Tan, Y. and Mooney, V.: Integrated Intra-

and Inter-Task Cache Analysis for Preemptive
Multi-tasking Real-Time Systems, SCOPES
2004, LNCS 3199, pp.182–199 (2004).

23) White, R., Mueller, F., Healy, C., Whalley,
D.B. and Harmon, M.G.: Timing Analysis
for Data Caches and Set-Associative Caches,
RTAS’97, pp.192–202 (1997).

(Received October 10, 2006)
(Accepted January 18, 2007)

Masahiro Konishi received
his M.E. degree from Toyohashi
University of Technology in 2006
and joined PFU Ltd. that year.
As a student, he engaded in re-
search work on microprocessor
simulators.

Takashi Nakada received his
M.E. degree in 2004 and his
Ph.D. in 2007 from Toyohashi
University of Technology. He
joined Nara Institute of Science
and Technology in 2007 as an as-
sistant professor. His current re-

search interests are computer architecture and
related simulation technologies. He is a mem-
ber of IPSJ.

Tomoaki Tsumura received
his M.E. and Ph.D. degree from
Kyoto University in 1998 and
2004 respectively. After gradu-
ating from the Ph.D. candidate
course of the Graduate School
of Informatics, Kyoto University

in 2001, he joined the university as a research
associate. He joined Toyohashi University of
Technology in 2004, and then joined Nagoya
Institute of Technology as an associate profes-
sor in 2006. His current research interests are
computer architecture, applications of parallel
processing, and brain-type information process-
ing. He is a member of IPSJ, JNNS, IEICE and
ACM.

140 IPSJ Transactions on Advanced Computing Systems May 2007

Hiroshi Nakashima re-
ceived his M.E. and Ph.D. from
Kyoto University in 1981 and
1991 respectively, and was en-
gaged in research on inference
systems with Mitsubishi Electric
Corporation from 1981. He be-

came an associate professor at Kyoto Univer-
sity in 1992, a professor at Toyohashi Univer-
sity of Technology in 1997, and a professor at
Kyoto University in 2006. His current research
interests are the architecture of parallel pro-
cessing systems and the implementation of pro-
gramming languages. He received the Motooka
award in 1988 and the Sakai award in 1993. He
is a Board Member of IPSJ, and a member of
IEEE-CS, ACM, ALP and TUG.

Hiroaki Takada has been a
professor at the Graduate School
of Information Science, Nagoya
University since 2003, after his
academic career as a research
associate at the University of
Tokyo and as an associate pro-

fessor at Toyohashi University of Technology.
He received his Ph.D. from the University
of Tokyo in 1996. He has pursued his re-
search work on embedded systems and has led
ITRON and TOPPERS projects to establish
the µITRON 4.0 specification and to develop an
open-source implementation of the ITRON op-
erating system. He received the Sakai award in
2000. He is a representative member of IPSJ as
the Chair of SIGEMB, and a member of IEICE,
JSSST, ACM and IEEE.

