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Predicting Strengths of Protein-protein Interactions
Through Online Regression Algorithms

Morihiro Hayashida1,a) Mayumi Kamada†1 Hitoshi Koyano†2

Abstract: In a living molecular cell, protein-protein interactions have various important roles. In particular, we focus
on interaction strengths that provide useful knowledge to understand complicated cellular networks, and several pre-
diction methods have been developed. In our previous work, new feature space mappings based on protein domains
were proposed, and support vector regression and relevance vector machine were employed. The combination of the
mapping and the supervised regression method outperformed the existing methods.
In this work, online learning algorithms, the regression passive-aggressive (PA) and adaptive regularization of weights
for regression with covariance reset (ARCOR) algorithms, are examined. Furthermore, nonlinear transformation to a
linear regression formula is introduced, and ensemble learning is examined. For evaluation, we performed three-fold
cross-validation computational experiments, and took the root mean square error (RMSE). The RMSE by our pro-
posed method was smaller than those by the existing methods. The result implies that our method combining online
regression algorithms with nonlinear transformation and sequences of domain regions is useful.

1. Introduction
It is essential to analyze strengths of protein-protein interac-

tions (PPIs) to understand dynamic cellular systems. If a protein
weakly interacts with its protein complex, the protein temporar-
ily changes the state of the complex. In addition, weak interac-
tions are known to be involved with enzyme regulation and signal
transduction [1], [2]. In contrast, if a protein strongly interacts
with another protein, the proteins form a stable complex, and the
complex maintains its function.

The interaction strength between proteins is often represented
by the dissociation constant that is the ratio of the rate constant of
the dissociation reaction to that of association reaction. Physico-
chemical methods for measuring strengths of PPIs have been de-
veloped by utilizing solution nuclear magnetic resonance (NMR)
[3], [4]. These methods, however, take long time to exhaustively
measure whole pairs of proteins in an organism. Hence, several
computational methods for predicting strengths of PPIs have been
developed. Deng et al. proposed a probabilistic model repre-
senting protein-protein interactions using domain-domain inter-
actions [5]. LPNM was developed as a linear programming-based
method based on the probabilistic model, and minimizes the sum
of errors between predicted and actual strengths [6]. ASNM is
a faster method developed by modifying the association method
[7], the prediction accuracy was comparable to that of LPNM [8].
Chen et al. proposed association probabilistic method (APM) by
improving ASNM in consideration of the probabilistic model [9].
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In our previous work [10], we proposed new feature space map-
pings from protein pairs using domain information such as amino
acid sequences and domain compositions in a protein, and com-
bined them with machine learning methods, support vector re-
gression (SVR) [11] and relevance vector machine (RVM) [12].
The results of the cross-validation experiments showed that the
root mean square error (RMSE) by our previous method was
smaller than those by the existing methods, APM, ASNM, and
LPNM.

For analyses of big data, fast and efficient online linear clas-
sifiers have been applied. In online learning, a learning algo-
rithm takes instances in a sequential manner, and outputs a new
model after each observation. Crammer et al. proposed a passive-
aggressive (PA) algorithm and two alternative modifications for
coping with noise [13]. The PA algorithms update weights as lit-
tle as possible such that the current training instance is correctly
classified. Adaptive regularization of weights (AROW) is another
online algorithm, can deal with non-separable data, and achieves
state-of-the-art performance [14]. These classification algorithms
can be extended to linear regression problems. The ARCOR al-
gorithm is a modification of AROW for regression [15]. We ex-
amine the regression PA and ARCOR algorithms for improving
prediction accuracy of strengths of PPIs. Furthermore, we intro-
duce nonlinear transformation to a linear regression formula and
examine ensemble learning. For evaluation, we performed three-
fold cross-validation computational experiments. The RMSE by
our proposed method was smaller than those by the existing meth-
ods.

2. Methods
In this section, we briefly review SPD feature space mapping

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-MPS-114 No.5
2017/7/17



IPSJ SIG Technical Report

MAALGNDNDMERTDPARTRIDSPEAQPLLNEHNNHRTLGAGSANGPVNEGR

D
1

D
2

removed

Fig. 1 Illustration on the feature space mapping of restriction of spectrum
kernel to domain regions (SPD). A protein sequence contains two
domains D1 and D2. Spectrum kernel is applied to the concatenated
amino acid string belonging to domain regions.

proposed in [10], and online learning algorithms, the regression
passive-aggressive (PA) algorithm [13] and adaptive regulariza-
tion of weights for regression with covariance reset (ARCOR)
[15]. We explain the proposed method using nonlinear transfor-
mation and ensemble learning.

2.1 Feature space mapping of SPD
The feature space mapping by restriction of spectrum kernel to

domain regions (SPD) is obtained by restricting the application
of the spectrum kernel [16] to domain regions (see Fig. 1).

Let A and Al be an alphabet and the set of all strings with
length l consisting of letters in A, respectively. Let ϕs(Pi) be the
number of occurrences of string s in the sequence restricted to the
domain regions in protein Pi. The feature space mapping fi j of
SPD for a pair of proteins Pi and P j is defined by

f (n)
i j = ϕsn (Pi), f (|A|l+n)

i j = ϕsn (P j) (1)

for all sn ∈ Al, where |A| indicates the number of elements inA.

2.2 PA algorithm
Let (xt, yt) be t-th example, where xt and yt mean a feature

vector obtained from a pair of proteins Pi and P j and the strength
that Pi and P j interact with each other for our purpose. Then, on-
line linear learners find a weight vector w such that w · xt is close
to yt. Let wt be the weight vector on round t. w1 is initialized
to (0, . . . , 0). In the regression passive-aggressive (PA) algorithm,
the new weight wt+1 is determined depending on the t-th example
(xt, yt) such that it minimizes ||wt+1 − wt ||2 under the constraint
l(wt+1; (xt, yt)) = max{0, |yt − wt+1 · xt | − ϵ} = 0 for some ϵ > 0.
If l(wt; (xt, yt)) = lt = 0, then wt+1 is determined to be wt to min-
imize ||wt+1 − wt ||2. Otherwise, wt+1 is aggressively determined
to satisfy l(wt+1; (xt, yt)) = 0. The Lagrange function is defined
as L(wt+1, τ) = ||wt+1 − wt ||2 + τ(|yt − wt+1 · xt | − ϵ) using a La-
grange multiplier τ > 0. By solving ∂L(wt+1, τ)/∂wt+1 = 0 and
∂L(wt+1, τ)/∂τ = 0, we have the update formula,

wt+1 = wt + sign(yt − wt · xt)τt xt, (2)

where τt =
lt
||xt ||2 , and sign(z) = −1 if z < 0, 0 if z = 0, 1 if z > 0.

By allowing l(wt+1; (xt, yt)) , 0 and introducing a constant
C > 0, called aggressiveness parameter, two variants were pro-
posed. One is to minimize ||wt+1 − wt ||2 + Cξ under the con-
straints l(wt+1; (xt, yt)) ≤ ξ and ξ ≥ 0. Another is to minimize
||wt+1 −wt ||2 +Cξ2 under the constraint l(wt+1; (xt, yt)) ≤ ξ. Then,
the corresponding update formulas are given by replacing τt in
Eq. (2) with min{C, lt

||xt ||2 } for PA-I, and with lt
||xt ||2+ 1

2C
for PA-II,

respectively.

2.3 ARCOR algorithm
In ARCOR (adaptive regularization of weights for regres-

sion with covariance reset) algorithm, a Gaussian distribution
N(wt,Σt) with a mean vector wt and a covariance matrix Σt is
maintained. First, w1 and Σ1 are initialized as (0, · · · , 0) and the
identity matrix, respectively. Given the t-th example (xt, yt), the
new weight wt+1 and covariance matrix Σt+1 are determined such
that they minimize DKL(N(wt+1,Σt+1)||N(wt,Σt)) + 1

2r ||yt − wt+1 ·
xt ||2 + 1

2r x⊤t Σt+1xt, where DKL indicates the Kullback-Leibler di-
vergence, r is a positive constant, and x⊤ indicates the transpose
of x. The first term of the objective function requires not much
to change the parameters wt+1 and Σt+1 from wt and Σt. The sec-
ond term requires to minimize the squared error for the current
example, and the last term requires to reduce the variance for
the parameter wt+1. Then, the update formula is derived from the
minimization problem as wt+1 = wt+(yt−wt ·xt)Σt xt/(r+x⊤t Σt xt)
and Σ−1

t+1 = Σ
−1
t +

1
r xt x⊤t .

2.4 Nonlinear transformation and ensemble learning
In linear regression algorithms including PA-I, PA-II, and AR-

COR, the weight w of y = w · x is often estimated such that the
value of some cost function for all examples (xt, yt) is close to
zero. However, actual values yt do not always follow such a lin-
ear formula, w · x. Especially, for our purpose, in a feature vector
fi j for a pair of proteins Pi and P j, a part of the feature vector
involved with Pi can be related to those with P j. Hence, it is
reasonable that quadratic or more terms of xix j and xix jxk are in-
cluded in the predictive function as well as linear terms. Thus, we
introduce a nonlinear transformation function g as y = g(w · x).

In addition, we examine a simple ensemble learning using the
weights w(m) (m = 1, . . . ,M) obtained by M regression learners,
that is, we predict the interaction strength between proteins Pi and
P j as 1

M
∑M

m=1 g(w
(m) · fi j).

3. Results
In the previous studies [6], [9], interaction sequence tags (ISTs)

obtained by high-throughput yeast two-hybrid (Y2H) experi-
ments [17] were used as strengths of protein-protein interactions.
It, however, is known that Y2H includes a high false-positive
rate mainly caused by non-specific interactions [18]. Hence,
we used more reliable WI-PHI protein-protein interaction dataset
[19] with 50000 protein pairs, in which PPIs are weighted by
some reliability calculated in a statistical manner from several
biological experiments, as interaction strengths under the diffi-
culty of measuring strengths for many protein pairs. In our pre-
liminary work [20], it was shown also for the IST dataset that
our previous method ’SVR+SPD’ outperformed the best existing
method APM. We used the value dividing the weight of PPI by
the maximum weight as the strength. We calculated the SPD fea-
ture vector using amino acid sequences and domain compositions
of proteins stored in UniProt database [21]. Among 50000 pro-
tein pairs, we used 1387 pairs that contain complete domain se-
quences, which include 758 proteins and 327 domains. We added
100 randomly selected protein pairs as PPIs with strength 0. To-
tally 1487 protein pairs are the same as those in the previous ex-
periment. The alphabetA consists of 20 amino acids and ambigu-
ous one. For evaluating prediction accuracy, we performed three-
fold cross-validation experiments, and calculated RMSE defined
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Table 1 Result of root mean square error (RMSE) for test data by our pro-
posed methods using SPD with l = 4 and transformation g(y) =√
y, and existing methods. The bold number denotes the best case.

The italic numbers denote better cases than those by existing meth-
ods using RVM, SVR, and APM.

method without bias with bias
SPD+PA-I 0.1288 0.1304
SPD+PA-Iσ 0.1288 0.1304
SPD+PA-II 0.1274 0.1215
SPD+PA-IIσ 0.1275 0.1215
SPD+ARCOR 0.1280 0.1221
SPD+ARCOR-H 0.1288 0.1303
SPD+ARCOR-Hσ 0.1274 0.1217
Ensemble 0.1235 0.1195
RVM+SPD(l=2)[10] 0.12470
SVR+SPD(l=2)[10] 0.12654
RVM+DN[10] 0.12873
SVR+DN[10] 0.12573
RVM+APM[10] 0.13556
SVR+APM[10] 0.13112
APM[9] 0.13517

by
√

1
N
∑N

t=1(yt − ŷt)2 for N actual values yt and predicted val-
ues ŷt. We used the regression PA and ARCOR algorithms im-
plemented in Hivemall with default parameters [22], which run
under Hadoop scalable and distributed computing environment
(https://hadoop.apache.org/).

Table 1 shows the results of RMSE for test data by our pro-
posed method using SPD with l = 4, our previous methods,
and APM. ’SPD+PA-I’ indicates the combination of SPD and
PA-I. ’ARCOR-H’ indicates the algorithm obtained by replac-
ing the loss function of ARCOR with the hinge loss function as
l(w; (xt, yt)) = max{0, |yt − w · xt | − ϵ}. ’ARCOR-Hσ’, ’PA-Iσ’
and ’PA-IIσ’ indicate the algorithms obtained by replacing ϵ of
the hinge loss function with ϵσt, respectively, where σt is the
standard deviation of y1, . . . , yt. ’without bias’ and ’with bias’
mean whether or not a bias term b is added as y = g(w · x+ b). In
our previous methods, ’RVM+SPD’, ’SVR+SPD’, ’RVM+DN’,
and ’SVR+DN’, the Laplacian kernel K(x, y) = exp(−σ||x − y||)
was employed instead of the dot product. ’DN’ indicates a fea-
ture vector concerning the number of domains in a protein. The
RMSE by the ensemble method with a bias term was the smallest
in the experiments. It implies that the nonlinear transformation is
useful for predicting the strength of PPIs.

4. Conclusion
For predicting strengths of protein-protein interactions, we

proposed a simple ensemble learning with nonlinear transforma-
tion. To evaluate our proposed method, we performed three-fold
cross-validation experiments, and took the root mean square er-
ror (RMSE). The RMSE by our proposed method was smaller
than those by the existing methods, APM, and our previously de-
veloped methods combined with RVM and SVR. It implies that
our method combining online regression algorithms with non-
linear transformation and sequences of domain regions is use-
ful although further evaluation for more data directly related to
the dissociation constant is required. In this work, we used on-
line learners, the regression PA and ARCOR algorithms for lin-
ear regression. These algorithms, however, can also handle ker-
nel functions. For example, the PA-I algorithm was combined
with the polynomial kernel and applied to dependency parsing

and hyponymy-relation extraction [23]. For further improvement
of prediction accuracy, we would like to employ kernel functions
combined with the regression PA and ARCOR algorithms.
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