
IPSJ SIG Technical Report

Randomized Kernel Mean Networks

for Bag-of-Words Data

Yuya Yoshikawa1,a) Tomoharu Iwata2,b)

Abstract: In various machine learning problems, bag-of-words (BoW) representation, i.e., a multiset of features, is

widely used as a simple and general data representation. Deep learning is successfully used in many areas. However,

with BoW data, deep learning models are often outperformed by kernel methods such as support vector machines

(SVMs), where each sample is simply transformed into a fixed-length count vector for the input. In this paper, we pro-

pose a deep learning model for BoW data. Based on the idea introduced in the framework of SVMs that has achieved

a better performance in BoW count vector inputs, the proposed model assigns each feature to a latent vector, and each

sample is represented by a distribution of the latent vectors of features contained in the sample. To transform the dis-

tribution efficiently and nonparametrically to the inputs of deep learning, we integrate kernel mean embeddings and a

random Fourier feature algorithm. Our experiments verify the effectiveness of the proposed model on BoW document

datasets. Because the proposed model is a general framework for BoW data, it can be applied directly to various su-

pervised and unsupervised learning tasks. Moreover, because the proposed model can be combined with existing deep

learning models, it further extends the potential applications of deep learning.

1. Introduction

In various machine learning problems, bag-of-words (BoW)

representation, i.e., a multiset of features, is widely used as a

simple and general data representation*1. In natural language pro-

cessing, BoW is used to represent a document in where each fea-

ture corresponds to a word appearing in the document. Although

a document can be treated as a word sequence, there are many

cases where the original word sequences are unavailable and only

BoW data are available because the original data contain privacy

information, public datasets have been already preprosessed, and

some words with unnecessary part-of-speech tags are removed.

In bioinformatics, BoW is used to represent a protein structure,

where each feature is a substructure of the protein structure [16].

Other examples include BoW of tags and key-phrases to search

objects [20] and BoW of individuals to represent groups in group

recommendation [1].

In this study, we propose a deep learning model for BoW data.

Deep learning is successfully used in many areas, such as im-

age recognition, machine translation and automatic game play-

ing [6, 21, 5]. Deep learning allows extracting effective repre-

sentations from complicated data, such as images and game of

Go [17], because of its high flexibility. However, with BoW data,

1 Software Technology and Artificial Intelligence Research Laboratory,

Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba

275–0016, Japan
2 NTT Communication Science Laboratories, 2-4, Hikaridai, Seika-cho,

Kyoto 619–0237, Japan
a) yoshikawa@stair.center
b) iwata.tomoharu@lab.ntt.co.jp
*1 Note that BoW data are also referred to as histogram over features and

count data.

deep learning models are often outperformed by kernel methods

such as support vector machines (SVMs) [10], where each sam-

ple is simply transformed into a fixed-length count vector for the

input. Therefore, an approach to handle the BoW data effectively

is needed to improve the deep learning performance.

The proposed method assumes that each feature is associated

with a latent vector, and each sample is represented by the distri-

bution of the latent vectors of features contained in the sample.

The concept underlying this method was first introduced in the

framework of SVMs [25], and it was shown that SVMs using this

concept achieve better performance than those with BoW count

vector inputs. Input uncertainty is incorporated by representing

a sample as a distribution, and the relationship between features

is captured by the latent vectors. We employ kernel mean em-

beddings [18] to represent distributions nonparametrically, where

a distribution is represented as a point in a reproducing kernel

Hilbert space (RKHS), (which is known as the kernel mean) with-

out the need to define parametric distributions. A kernel mean em-

bedding can be directly incorporated into kernel methods, such as

SVMs [25] and Gaussian processes [26]. However, it cannot be

directly incorporated into deep learning because the explicit value

of the kernel mean is unavailable; it is indirectly accessible via in-

ner product. With the proposed method, a random Fourier feature

(RFF) algorithm [14] is used to obtain explicit values of the ker-

nel mean efficiently. In particular, first, we obtain randomized

feature vectors, which are approximations of the latent vectors in

the RKHS, by applying the RFF algorithm to each of the latent

vectors. Then, we compute the mean of the randomized feature

vectors associated with each sample. The mean vector is an ap-

proximation of the kernel mean of the sample, and it preserves all

c© 2017 Information Processing Society of Japan 1

Vol.2017-MPS-113 No.11
Vol.2017-BIO-50 No.11

2017/6/23

IPSJ SIG Technical Report

the moment information such as the mean, covariance, and higher-

order moments, when characteristic kernels and enough length

of randomized vectors are used. The mean vector is the input

for deep learning such as multilayer perceptron (MLP), and pre-

dict the label as the output of the deep learning. We call the pro-

posed method Randomized Kernel Mean Networks (RKM-Nets).

In RKM-Nets, we estimate the latent vectors associated with the

features and weight parameters for deep learning. The learning of

these parameters can be performed efficiently through a standard

backpropagation with stochastic gradient descent.

The method obtaining the randomized kernel mean can be re-

garded as a type of pooling methods. Instead of the randomized

kernel mean, average pooling, i.e., calculating the mean of the

latent vectors, can be used. However, average pooling loses co-

variance and high-order moments of the distribution for the latent

vectors. Thus, by using the randomized kernel mean, RKM-Nets

sufficiently capture the characteristics of the given BoW data and

propagate them to next layers.

Because RKM-Nets are a general framework for BoW data,

they can be applied directly to various supervised and unsuper-

vised learning tasks. For example, by changing the MLP in RKM-

Nets so as to output BoW count vectors, an auto-encoder model,

an unsupervised representation learning method, can be produced.

Moreover, because RKM-Nets are formulated as neural networks

and implemented on deep learning frameworks, their extensions

can be easily developed*2. For example, new models can be devel-

oped by concatenating RKM-Nets with other deep learning mod-

els such as convolutional neural networks. Such models can then

be used, for example, in multimodal learning with BoW docu-

ments and images, and with BoW items purchased by users and

their life logs. We believe that this study extends the potential

applications of deep learning that contain BoW data.

2. Related Work

The present study is inspired by the work of Yoshikawa et al.

which proposed a SVM-based discriminative model for BoW data

based on kernel mean embeddings [25]. Although their method

achieved state-of-the-art classification accuracy for BoW data, it

had two drawbacks. First, the method is computationally quite ex-

pensive because it requires to calculate a Gram matrix of O(n2w2)

time complexity for each iteration where n is the number of sam-

ples and w is the average number of features contained in the sam-

ples. Thus, it cannot be applied to practical large-scale datasets

like those used in our experiments. Second, although their idea

can be applied to various machine learning tasks, e.g., [27], in

order to develop a new model based on that idea, one needs to

define a new formulation and derive a new parameter estimation

method. This is a quite complicated and time-consuming process.

Our work overcomes these drawbacks using an RFF algorithm

and formulating it as a deep learning model, while inheriting the

advantages of their aforementioned previous method.

For document and sentence data that retain the word order,

recurrent neural networks and convolutional neural networks

(CNN) that can model the word order were proposed by many

*2 The implementation will be open when this paper is published.

studies [10, 8, 22, 7]. However, as we stated in Section 1, in

many cases, only BoW data are provided in practice, thus, these

models cannot be applied for BoW data.

Moreover, there are no studies on deep learning models spe-

cific for BoW data. In previous studies using BoW data in deep

learning models, the data is converted to BoW count vectors and

associated with fully-connected networks. In such cases, it was

experimentally shown that the performance of the deep learning

models is as good as or worth than that of kernel methods such

as SVM [10]. RKM-Nets overcome the weakness of the previ-

ous deep learning models for BoW by incorporating techniques

successful in kernel methods into deep learning.

In a few previous studies, kernel mean embeddings and ran-

dom Fourier feature algorithms were applied to deep learning

models. Dziugaite et al. and Li et al. used maximum mean

discrepancy, an application of kernel mean embeddings, to train

deep generative networks that generate true samples from noisy

samples [3, 11]. Oliva et al. used both kernel mean embeddings

and random Fourier features to capture the high-level features of

images in CNN efficiently [13]. Our work is different from the

existing studies since we employs these techniques for improving

performance of deep learning with BoW data.

3. Preliminaries

In this section, we introduce two key techniques in RKM-Nets:

the RFF algorithm and kernel mean embeddings.

3.1 Random Fourier Features

We introduce a RFF algorithm proposed in [14], which is used

for approximating kernel values. The RFF algorithm is used

for approximating shift-invariant kernels such as Gaussian RBF,

Laplacian and Cauchy kernels.

Let x, x′ ∈ RD be data points, and k(x, x′) be a shift-invariant

kernel between x and x′. The RFF algorithm allows us to obtain a

random feature map z : RD → RL such that k(x, x′) ≈ z(x)⊤z(x′).

According to Bochner’s theorem [15], the kernel k(x, x′) can

be written as a Fourier transform as follows:

k(x, x′) =

∫

RD

p(r) exp
(

jr⊤(x − x′)
)

dr

= Er

[

ζr(x)ζr(x′)∗
]

, (1)

where j indicates a complex number, and we placed ζr(x) =

exp(jr⊤x). Because both the probability distribution p(r) and

the kernel k(x, x′) are real, the complex exponentials in the inte-

gral (1) can be replaced with cosines. Therefore, instead of ζr(x),

we consider using z(x; r, s) = cos(r⊤x + s), where r ∈ RD and

s ∈ [0, 2π] are random variables generated from the distribution

p and an uniform distribution. Therefore, (1) can be rewritten as

k(x, x′) = Er,s[z(x; r, s)z(x′; r, s)]. The expectation is calculated

by Monte Carlo approximation with L samples as follows:

k(x, x′) = Er,s[z(x; r, s)z(x′; r, s)]

≈ 1

L

L
∑

l=1

z(x; rl, sl)z(x′; rl, sl)

= z(x; R, s)⊤z(x′; R, s), (2)

c© 2017 Information Processing Society of Japan 2

Vol.2017-MPS-113 No.11
Vol.2017-BIO-50 No.11

2017/6/23

IPSJ SIG Technical Report

Algorithm 1 Constructing random features for Gaussian RBF ker-

nel

Require: Input vector x ∈ RD, bandwidth parameter for Gaussian RBF ker-

nel γ > 0, random feature length L.

Ensure: random features z such that k(x, x′) = exp
(

−γ||x − x′ ||2
2
/2

)

≈
z(x; R, s)⊤z(x′; R, s)

1: for l in L do

2: Generate random variable rl =
√

2γal where al ∼ N(0D, ID).

3: Generate random variable sl ∼ Uniform(0, 2π)

4: Construct random feature fl = z(x; rl, sl) =
√

2 cos(r⊤
l

x + sl)

5: end for

6: return z(x; R, s) =

√

1
L

[f1, f2, · · · , fL]⊤ where R = {rl}Ll=1
and s = {sl}Ll=1

where z(x; R, s) are known as the random features of x and is de-

fined as

z(x; R, s) =
1
√

L
[z(x; r1, s1), z(x; r2, s2), · · · , z(x; rL, sL)]⊤,(3)

where R = {rl}Ll=1
and s = {sl}Ll=1

. In particular, the RFF algorithm

for the Gaussian RBF kernel is shown in Algorithm 1. By using

the random features z(x; R, s) in various machine learning prob-

lems instead of original data point x, it is possible to produce non-

linear models while maintaining the formulation of linear ones,

which incur much smaller computational costs than directly learn-

ing their corresponding nonlinear extended models.

3.2 Kernel Mean Embeddings

Kernel mean embeddings are used to embed any probability

distribution P on a space X into a reproducing kernel Hilbert

space (RKHS) Hk specified by kernel k, and the distribution

is represented as an element µ∗(P) in the RKHS. µ∗(P) is also

known as a kernel mean. More precisely, given a distribution P,

the kernel mean µ∗(P) is defined as follows:

µ∗(P) := Ex∼P[k(·, x)] =

∫

X
k(·, x)dP ∈ Hk, (4)

where kernel k is referred to as the embedding kernel. Indeed, ker-

nel mean µ∗(P) preserves the properties of the probability distribu-

tion P including the mean, covariance and higher-order moments

by using characteristic kernels (e.g., Gaussian RBF kernel) [19].

When a set of samples X = {xs}ns=1
is drawn from the distribu-

tion and by interpreting sample set X as the empirical distribution

P̂ = 1
n

∑n
s=1 δxs

(·), where δx(·) is the Dirac delta function at point

x ∈ X, the empirical kernel mean µ(X) is given by

µ(X) =
1

n

n
∑

s=1

k(·, xs), (5)

which can be approximated with an error rate of ||µ(X) −
µ∗(P)||Hk

= Op(n−
1
2) [18]. Unlike kernel density estimation, the

error rate of the kernel embeddings is independent of the dimen-

sionality of the given distribution.

The kernel mean embeddings technique was previously used

for distribution data. The examples include statistical test of inde-

pendence for two distributions [4] and discriminative learning for

distributions [12].

4. Randomized Kernel Mean Networks

We propose that randomized kernel mean networks (RKM-

Nets) are effective for modeling BoW data. RKM-Nets are for-

mulated as a deep neural network incorporating the techniques of

kernel methods described in Section 3 for representing BoW data.

In order to demonstrate the effectiveness of the proposed method,

we only consider classification problems, although it can be di-

rectly applied to regression problems as well.

Suppose that we are given training data Dtr = {xi, ti}Ntr

i=1
, where

xi = (Ai,mi) is a multi-set of the features associated with the ith

training sample and ti ∈ {1, 2, · · · ,C} denotes its corresponding

label indicator. Here, Ai ⊆ V is a set of features included in

a unique feature set (or vocabulary set) V, and mi : Ai → R+
denotes the multiplicity (or frequency) function*3. For example,

mi(s) denotes the multiplicity of feature s in the ith sample.

4.1 The Model Architecture

Figure 1 illustrates the overall architecture of an RKM-Net for

classification. The input to be RKM-Net is a multiset of features

associated with the ith sample xi = (Ai,mi).

In an RKM-Net, each feature s ∈ V is represented as a latent

vector vs ∈ RDemb . Then, each sample is represented as a multiset

of the latent vectors of the features associated with the sample.

We consider this multiset of the latent vectors as samples from

an unknown distribution. To capture the characteristics of the dis-

tribution from the multiset effectively and nonparametrically, we

employ kernel mean embeddings technique, as described in Sec-

tion 3.2. However, we do not use the kernel mean (5) directly,

because the kernel mean cannot be obtained explicitly. Instead,

we calculate an approximated kernel mean by using the RFF algo-

rithm described in Section 3.1. In particular, for the latent vector

vs, we construct the random features zs ∈ RDrff by applying Al-

gorithm 1. Then, we calculate the weighted mean of the random

features associated with the ith sample as follows:

µ̃i = µ̃R,s(xi; V) =
1

#xi

∑

s∈Ai

mi(s) · z(vs; R, s), (6)

where, V = {vs}s∈V and #xi denotes the cardinality of multi-set xi,

that is, #xi =
∑

s∈Ai
mi(s). We refer to µ̃i as a randomized kernel

mean for the ith sample. The randomized kernel mean approx-

imately holds the moment information about the distribution of

the latent vectors. Because the randomized kernel mean is repre-

sented as a vector explicitly, it can be treated as input in existing

deep neural networks. In this study, we employ MLP, which is

one of the simplest deep neural networks. Here the MLP has a

hidden layer with Drff units. Finally, the MLP outputs the label

confidence yi = [yi1, yi2, · · · , yiC]⊤ as follows:

yi = MLP(µ̃i; W). (7)

4.2 Learning Procedure

In RKM-Net learning, we learns parameters Θ = {V,W},
where V = {vs}s∈V is a set of latent vectors, and W is the weight

parameters for MLP.

First, we define a loss function for RKM-Nets. In general, it

*3 Although a typical multiplicity function is defined as mi : Ai → N+, we

expand the definition to include the real-valued importance of features

such as TF-IDF.

c© 2017 Information Processing Society of Japan 3

Vol.2017-MPS-113 No.11
Vol.2017-BIO-50 No.11

2017/6/23

IPSJ SIG Technical Report

Fig. 1 Model architecture of a randomized kernel mean network for classification. The inputs are a set of

features associated with each sample and their multiplicity e.g., feature frequency or TF-IDF. Each

feature is converted to its corresponding Demb-dimensional latent vector. (a) For each latent vector,

a Drff-dimensional vector is obtained by applying a random Fourier feature algorithm, as described

in Section 3. (b) This computes the mean of the obtained vectors weighted by the multiplicity of

their features, which we call the randomized kernel mean. (c) The randomized kernel mean is used

as input in MLP. Finally, the MLP outputs label confidence with C units.

is possible to use any loss functions such as hinge loss and cross

entropy loss. In this study, we consider an ℓ1 hinge loss used for

one-of-many classification. The hinge loss of each sample i is

defined as

hi(Θ) =

C
∑

c=1

max {0, 1 − δ(ti = c)yic} , (8)

where, function δ is an indicator function that returns 1 if ti = c

and 0 otherwise, and yic is the RKM-Net output for label c of the

ith sample. Intuitively, the loss becomes small when the value of

yic with the correct label c is large and that of yic′ with the other

label c′ , c is small.

The parameters Θ can be learned by minimizing the loss (8)

via a standard backpropagation algorithm with stochastic gradi-

ent descent (SGD). With SGD, we iteratively continue to 1) com-

pute the gradient with respect to the parameters via backpropa-

gation in randomly selected samples without overlaps, i.e., mini-

batch, and to 2) update the parameters based on the gradient de-

scent method. In particular, we first define the loss for mini-batch

B ⊆ {1, 2, · · · ,Ntr} as follows:

LB(Θ) =
1

|B|
∑

i∈B
hi(Θ). (9)

Then, we compute the gradients of the loss with respect to the

parameters W,V. The gradient of W is as follows:

∂LB(Θ)

∂W
=

1

|B|
∑

i∈B

∂hi(Θ)

∂yi

∂yi

∂W
. (10)

Because the gradient of the hinge loss
∂hi(Θ)

∂yi
and the gradient of

MLP
∂yi

∂W
were already derived in previous studies, e.g. [23], we

do not describe it here in detail. For each feature s ∈ V, the

gradient with respect to vs can be obtained as follows:

∂LB(Θ)

∂vs

=
1

|B|
∑

i∈B

∂hi(Θ)

∂yi

∂yi

∂µ̃i

∂µ̃i

∂zs

∂zs

∂vs

. (11)

Here, the newly derived gradients for RKM-Net are
∂µ̃i

∂zs
and

∂zs

∂vs
,

which are formed as Drff × Drff and Drff × Demb matrices, respec-

tively. These gradients are given by

∂µ̃i

∂zs

=
mi(s)

#xi

IDrff
,

(

∂zs

∂vs

)

lk

= −
√

2 sin
(

r⊤l vs + sl

)

rlk. (12)

Table 1 Dataset specifications. Here, Ntr, Nte and C are the number of train-

ing samples, the number of test samples and the number of classes,

respectively. Note that the vocabulary size |V| of 20Ng and Cade12

is limited to 10,000 by trimming the low-frequency features.

Ntr Nte |V| C

R8 5,485 2,189 14,575 8

R52 6,532 2,568 16,145 52

20Ng 11,239 7,528 10,000 20

Cade12 27,322 13,661 10,000 12

WebKb 2,803 1,396 7,287 4

Table 2 Accuracy of BoW document classification.

R8 R52 20Ng Cade12 WebKb

Naive Bayes 0.960 0.869 0.810 0.573 0.835

Linear SVM 0.970 0.938 0.828 0.528 0.858

Poly SVM 0.972 0.917 0.815 0.577 0.913

DNN 0.974 0.942 0.818 0.572 0.897

Mean Pooling 0.963 0.912 0.690 0.504 0.908

RKM-Net 0.978 0.949 0.817 0.579 0.897

5. Experiments

We experiment on BoW document classification with five pub-

licly open datasets [2], namely, R8, R52, 20Ng, Cade12, and We-

bKb. Each dataset comprises documents with single labels, and

their training/test splitting was already performed. The datasets’

details are available on the author’s webpage*4. Their specifica-

tions are shown in Table 1.

RKM-Net is implemented in Chainer [24]*5, a deep neural

network framework written in Python. For the implementation

of RKM-Net, we use a MLP with a hidden layer. For the hid-

den layer, we use a rectified linear unit (ReLU) as an activa-

tion function and Dropout for regularization. The hyperparam-

eters of the RKM-Net include the band-width parameter γ for

the RFF algorithm, the dimensionality of the latent vector Demb,

the dimensionality of the random features Drff and the Dropout

rate r. We search the optimal hyperparameters by grid search

using the ranges γ ∈ {2−3, 2−1, · · · , 25}, Demb ∈ {100, 200, 300},
Drff ∈ {500, 1000, 1500} and r ∈ {0.1, 0.3, 0.5}. We initialize the

latent vectors for features and weights for MLP by samples gen-

erated from Gaussian N(0, 1), and determine the learning rate of

*4 http://ana.cachopo.org/datasets-for-single-label-text-categorization
*5 http://chainer.org/

c© 2017 Information Processing Society of Japan 4

Vol.2017-MPS-113 No.11
Vol.2017-BIO-50 No.11

2017/6/23

IPSJ SIG Technical Report

SGD using Adam [9].

We compare the RKM-Net with Naive Bayes, Linear SVM,

Poly(nomial) SVM, DNN and mean pooling. For Naive Bayes

and Linear SVM, we simply use the results described in [2]. As

for Poly SVM, we use the SVM implementation in scikit-learn*6.

The hyperparameters for Poly SVM are the degree d of the poly-

nomial kernels and the cost parameter C of the SVM. We search

the optimal hyper-parameters by grid search using the ranges

d ∈ {2, 3, 4, 5} and C ∈ {10−5, 10−4, · · · , 104}. With DNN, we

use a MLP with two hidden layers; the ReLU activation function

is used for both hidden layers and Dropout is adopted only for

the second layer. The hyperparameters for DNN are the number

of units for the hidden layers U and the Dropout rate r, which

are grid-searched within the ranges U ∈ {200, 400, · · · , 1000} and

r ∈ {0.1, 0.3, 0.5}. Mean pooling is a neural network that passes

the mean of latent vectors for features associated with each sam-

ple to a MLP with a hidden layer. Thus, we can determine the

optimum representation by comparing the mean vector in mean

pooling with the randomized kernel mean in the RKM-Net. The

hyperparameters for mean pooling are the number of units in the

hidden layers U and the Dropout rate r, which are searched as

with DNN. We initialize all the parameters in DNN and mean

pooling by samples generated from Gaussian N(0, 1), and deter-

mine the learning rate of SGD using Adam.

Table 2 shows the BoW document classification accuracy for

the five datasets. RKM-Net achieves the best accuracy for the

three datasets: R8, R52, and Cade12. For 20Ng and WebKb, the

best accuracy is achieved by the linear kernel and the polynomial

kernel SVMs, respectively. Among deep learning models, RKM-

Net outperforms DNN and mean pooling except for 20Ng and

WebKb datasets. Note that the difference between RKM-Net and

mean pooling is that RKM-Net uses the randomized kernel mean

of the latent vectors for each sample while mean pooling uses the

mean of them. As a result, the difference is essential to improve

the accuracy for the four datasets.

In Figure 2, we illustrate the BoW count vectors and the RKM-

Net randomized kernel mean by applying Isomap, which is a

nonlinear dimension reduction method. With BoW count vec-

tors, samples with different classes are overlapped. Obviously,

the result implies that classifying the samples correctly without

representation learning is difficult. Conversely, with RKM-Net,

the samples with the same label are closer distributed, and sam-

ples with different labels are placed at greater distances from each

other as the RKM-Net training proceeds from epoch 1 to epoch 6.

This result indicates that RKM-Net can learn the representation

of samples valuable for classification.

In Figure 3, we show the densities of the learned latent vectors

for each class on the WebKb dataset. We can regard the density

of each class as the density of the latent vectors for a sample asso-

ciated with the class. As shown in this figure, each density has a

single or multiple peaks at different location. Because RKM-Net

classify the samples by capturing the shape of the density, the re-

sult indicates that the latent vector are learned so as to classify the

samples correctly.

*6 http://scikit-learn.org/stable/

6. Conclusion

Deep learning has attracted attention as it is useful for various

tasks with different types of data such as image recognition and

machine translation. However, there are no deep learning models

specific for BoW data, despite BoW data appears in wide vari-

ety of areas such as natural language processing, bioinformatics

and data mining. In this study, we have proposed a deep learn-

ing model for BoW data, which we call it Randomized Kernel

Mean Networks (RKM-Nets). To represent BoW data effectively,

RKM-Nets assume that each feature is associated with a latent

vector, and represent each sample as a distribution of latent vec-

tors of features contained in the sample. Then, the distribution

is represented as a randomized kernel mean vector that approx-

imately holds the moment information about the distribution by

combining the kernel mean embeddings and random Fourier fea-

ture algorithm. By using the randomized kernel mean vectors as

input of existing neural networks, we can employ deep learning

for various types of machine learning problems for BoW data.

In this study, we have performed BoW data classification by us-

ing a simple multi-layer perceptron in our framework. In future

works, we will further confirm the effectiveness of the framework

of RKM-Nets by applying this for some applications such as mul-

timodal learning.

References

[1] Baltrunas, L., Makcinskas, T. and Ricci, F.: Group Recommen-

dations with Rank Aggregation and Collaborative Filtering, Rec-

Sys (2010).

[2] Cardoso-Cachopo, A.: Improving Methods for Single-label Text

Categorization, PhD Thesis (2007).

[3] Dziugaite, G. K., Roy, D. M. and Ghahramani, Z.: Training

Generative Neural Networks via Maximum Mean Discrepancy

Optimization, arXiv:1505.03906 (2015).

[4] Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B. and

Smola, A.: A Kernel Statistical Test of Independence, Advances

in Neural Information Processing Systems (2008).

[5] Guo, X., Lee, H., Wang, X. and Lewis, R. L.: Deep Learning

for Real-time Atari Game Play Using Offline Monte Carlo Tree

Search Planning, Advances in Neural Information Processing

Systems (2014).

[6] He, K., Zhang, X., Ren, S. and Sun, J.: Deep Residual Learning

for Image Recognition, Arxiv.Org, Vol. 7, No. 3, pp. 171–180

(online), DOI: 10.3389/fpsyg.2013.00124 (2015).

[7] Johnson, R. and Zhang, T.: Effective Use of Word Order for Text

Categorization with Convolutional Neural Networks, NAACL

HLT (2015).

[8] Kim, Y.: Convolutional Neural Networks for Sentence Classifi-

cation, Proceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP 2014), pp. 1746–

1751 (2014).

[9] Kingma, D. and Ba, J.: Adam: A Method for Stochastic Opti-

mization, Proceedings of the 3rd International Conference for

Learning Representations (2015).

[10] Lai, S., Xu, L., Liu, K. and Zhao, J.: Recurrent Convolutional

Neural Networks for Text Classification, Twenty-Ninth AAAI

Conference on Artificial Intelligence, pp. 2267–2273 (2015).

[11] Li, Y., Swersky, K. and Zemel, R.: Generative Moment Match-

ing Networks, Proceedings of The 32nd International Confer-

ence on Machine Learning, pp. 1718–1727 (2015).

[12] Muandet, K., Fukumizu, K., Dinuzzo, F. and Schölkopf, B.:

Learning from Distributions via Support Measure Machines, Ad-

vances in Neural Information Processing Systems (2012).

[13] Oliva, J. B., Sutherland, D. J. and Schneider, J.: Deep Mean

c© 2017 Information Processing Society of Japan 5

Vol.2017-MPS-113 No.11
Vol.2017-BIO-50 No.11

2017/6/23

IPSJ SIG Technical Report

R8

R52

BoW count vectors RKM-Net at epoch 1 RKM-Net at epoch 6

Fig. 2 Visualization of BoW count vectors and randomized kernel means of RKM-Nets. Each dot in-

dicates a sample (document), and its color denotes its corresponding label. The rows indicate

datasets: R8 and R52 datasets. The first column shows the results using BoW vectors directly.

The second and third columns show the results using random kernel means at epochs 1 and 6,

respectively.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Fig. 3 Visualization of the densities of the learned latent vectors in RKM-Net on the WebKb dataset.

Each figure corresponds to one class. After performing dimension reduction of the latent vectors

via Isomap, the density for each class is obtained by using the latent vectors of features character-

istically appearing in the samples with the class.

Maps, ArXiv (2015).

[14] Rahimi, A. and Recht, B.: Random Features for Large-Scale

Kernel Machines, Advances in Neural Information Processing

Systems (2008).

[15] Rudin, W.: Fourier Analysis on Groups (1962).

[16] Shivashankar, S., Srivathsan, S., Ravindran, B. and Tendulkar,

A. V.: Multi-view Methods for Protein Structure Compari-

son Using Latent Dirichlet Allocation, Bioinformatics, Vol. 27,

No. 13, pp. 61–68 (online), DOI: 10.1093/bioinformatics/btr249

(2011).

[17] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,

L., van den Driessche, G., Schrittwieser, J., Antonoglou, I.,

Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,

Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,

M., Kavukcuoglu, K., Graepel, T. and Hassabis, D.: Master-

ing The Game of Go with Deep Neural Networks and Tree

Search, Nature, Vol. 529, No. 7587, pp. 484–489 (online), DOI:

10.1038/nature16961 (2016).

[18] Smola, A., Gretton, A., Song, L. and Schölkopf, B.: A Hilbert

Space Embedding for Distributions, Algorithmic Learning The-

ory (2007).

[19] Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B.

and Lanckriet, G. R. G.: Hilbert Space Embeddings and Met-

rics on Probability Measures, The Journal of Machine Learning

Research, Vol. 11, pp. 1517–1561 (2010).

[20] Sun, A., Bhowmick, S. S., Nguyen, K. N. and Bai, G.:

Tag-Based Social Image Retrieval: An Empirical Evaluation,

Journal of the American Society for Information Science and

Technology, Vol. 62, No. 12, pp. 2364–2381 (online), DOI:

10.1002/asi (2011).

[21] Sutskever, I., Vinyals, O. and Le, Q. V.: Sequence to Sequence

Learning with Neural Networks, Advances in Neural Informa-

tion Processing Systems, pp. 3104–3112 (2014).

[22] Tang, D., Qin, B. and Liu, T.: Document Modeling with

Gated Recurrent Neural Network for Sentiment Classification,

Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, No. September, pp. 1422–

1432 (online), available from 〈http://aclweb.org/anthology/D15-

1167〉 (2015).

[23] Tang, Y.: Deep Learning using Linear Support Vector Machines,

International Conference on Machine Learning 2013: Chal-

lenges in Representation Learning Workshop (2013).

[24] Tokui, S., Oono, K., Hido, S. and Clayton, J.: Chainer:

a Next-Generation Open Source Framework for Deep Learn-

ing, Proceedings of Workshop on Machine Learning Sys-

tems(LearningSys) in The Twenty-ninth Annual Conference on

Neural Information Processing Systems (2015).

[25] Yoshikawa, Y., Iwata, T. and Sawada, H.: Latent Support Mea-

sure Machines for Bag-of-Words Data Classification, Advances

in Neural Information Processing Systems (2014).

[26] Yoshikawa, Y., Iwata, T. and Sawada, H.: Non-linear Regression

for Bag-of-Words Data via Gaussian Process Latent Variable Set

Model, Proceedings of the 29th AAAI Conference on Artificial

Intelligence (2015).

[27] Yoshikawa, Y., Iwata, T., Sawada, H. and Yamada, T.: Cross-

Domain Matching via Kernel Embeddings of Latent Distri-

butions, Advances in Neural Information Processing Systems

(2015).

c© 2017 Information Processing Society of Japan 6

Vol.2017-MPS-113 No.11
Vol.2017-BIO-50 No.11

2017/6/23

