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Abstract: In the last few years learning management systems have been widely introduced in many educational
institutions with the primary objectives of supporting students with more flexible learning environments and also im-
portantly acquiring learning pattern data from students and extracting meaningful contents from the data to be used
to improve the learning quality. However, often due to the complexity and the multidimensionality of the data, the
extraction of meaningful information from them is difficult. So far many methods for mining useful information from
complex data have been proposed, and one of the most powerful is visualization that allows intuitive understanding
on the underlying properties of the data. In this paper, visualization of E-learning data using a newly introduced
context-oriented self-organizing map is introduced and compared against some traditional visualization methods.
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1. Introduction

Over the last two decades, many educational institutions have
been adopting Learning Management Systems (LMSs) with
mainly two primaries objectives. The first one is to support their
students’ flexibilities in learning by allowing them to learn out-
side their class rooms using information technologies [1], [2], [3],
[4]. The second one is to automatically accumulate vast amount
of data from students’ learning activities and utilize the data to
improve students’ learning experience and quality. Because of
the advances in network, sensor, and storage technologies, it is
becoming easier to acquire and store massive amount of data,
but analyzing the data is increasingly becoming an overwhelm-
ing challenge. In many situations, instead of becoming analytical
tools for providing new insights from the data, many LMS are
becoming expensive data dumps. The difficulty in discovering
useful information from the data is primarily due to the volume,
multidimensionality, and complexity of the data, as well as the
lack of clear objective in the data analysis method itself. While,
in recent years, many methods for discovering knowledge from
data have been proposed, one of the most efficient means to dis-
cover underlying information from raw data is through visualiza-
tion [5], [6], [7], [8]. Visual analysis of complex data combines
algorithms to transfer complex data into a visualizable format,
usually in 2-D or 3-D, and the insights of the human analyst to
interpret the visualization results. Here, the flexibility, experi-
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ence, intelligence and clear objective of the human analyst are
crucial in discovering interesting hidden structure from the com-
plex data. The human factor is also important in filtering noise
included in the visualization results due to the imperfection in the
data themselves or the algorithms to visualize them.

There are rich collections of algorithms to visualize complex
data, but this paper focuses on dimensionality reduction. As
meaningful data are likely to be multidimensional, naturally, one
of the most logical choices is to utilize dimensionality reduc-
tion algorithms to visualize them. The challenge in reducing
the dimension of high dimension data is to preserve the under-
lying structure or inherently embedded information of the data,
as well as possible, in their low dimensional representations so
that the structure and information can to some extent be visual-
ized and intuitively understood. So far, dimensionality reduction
is one of the most actively studied fields in data analysis. One of
the most traditional dimensionality reduction techniques is Prin-
ciple Component Analysis (PCA) [9], [10]. PCA is an elegant or-
thogonal transformation procedure to transfer multidimensional
variables into linearly uncorrelated variables called the Principal
Components (PCs). Expressing each data point using the first
two or three PCs allows the visualization of the whole data set.
However, the linearity of PCA often prevents it from disclosing
the nonlinear nature of the data. PCA also does not access the
categorical information embedded in the data, and so the con-
text of the data does not have any role in their low dimensional
representation. Another conventional dimensionality reduction
method, Linear Discriminant Analysis (LDA) [11], is also an or-
thogonal transformation of high dimensional variables into low
dimensional space, but unlike PCA it accesses the categorical in-
formation of the data, so that the data points belonging to same
categories are mapped into close clusters while the distances be-
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tween centroids of different categorical groups are maximized.
Here, while the context or categories of the data play an impor-
tant role in forming the low dimensional representation, similar to
PCA, it is linearly constrained. At the same time, Self-Organizing
Map (SOM) [12], [13], which is one of the most widely used visu-
alization techniques, is unconstrained by the linearity of the data.
SOM transfers high dimensional data into low dimensional repre-
sentations while preserving their topological characteristics, such
that data points that are located close to each other in their original
high dimensional space are also collocated in their low dimension
representation, and originally dissimilar data are mapped far from
each other in the low dimensional representation space. How-
ever, similar to PCA, it does not access the categorical informa-
tion of the data. More recently, new collections of dimensional
reduction methods [14] have been proposed, such as Locally Lin-
ear Embedding (LLE) [15], Stochastic Neighborhood Embedding
(SNE) [16] and its variant t-SNE [17], Neighborhood Component
Analysis (NCA) [18], ISOMAP [19] and S-Isomap [20]. While
these dimensionality reduction methods are built upon elegant
mathematical foundations, some of them are difficult to imple-
ment, and the resulting low dimensional spaces are not easy to
interpret.

In this study, a newly proposed neural network called Re-
stricted Radial Basis Function (rRBF) Network [21] is applied as
a visual analytical tool against real world e-learning data. The
significant differences between rRBF and other dimension reduc-
tion methods are that rRBF produces not only 2-D representation
of high dimensional data but also classifies the data. Hence, it
is not only a dimension reduction method but also a classifier.
Further, although the rRBF produces a kind of 2-D topographi-
cal maps, it significantly differs from SOM, in that the maps re-
flect the underlying topological structure of the high dimensional
data in relevance to the context of the data. Hence, the map is
called Context-Relevance Self-Organizing Maps (CRSOM). This
is an interesting property of the dimension reduction function of
rRBF that offers more flexibility for visual analysis. This prop-
erty allows CRSOM to generate maps with different appearances
for identical data with different contexts. For example, same e-
learning data can be interpreted in different contexts, such that,
graded differently. Unlike the conventional SOM, CRSOM is
able to display the data with different contexts in different ways,
opening the possibility for more flexible analysis. In this study,
the rRBF was applied to some e-learning data with the objective
of producing a 2-D representation of the data that can be visu-
ally analyzed to acquire intuitive information about the intrinsic
properties of the data. The efficiency of the low dimensional rep-
resentation produced by the rRBF, CRSOM, is compared against
some traditional dimension reduction methods. This study is a
significant improvement over the previous study [22] with new
comparison experiments, classification experiments and explana-
tion on the visual analysis from the resulting CRSOM.

The rest of this paper is structured as follows. In Section 2,
an overview of rRBF and the resulting CRSOM are explained.
Section 3 explains the experiments in producing 2-D maps from
multidimensional data and their visual analysis. The classifica-
tion performances of rRBF are also explained in this chapter. The

final chapter provides the conclusion and future works.

2. Overview on Radial Basis Function Net-
works

The structure of the rRBF Network is illustrated in Fig. 1. The
rRBF is a multilayered neural network inspired by the conven-
tional Radial Basis Function (RBF) Networks [23]. The main
difference between rRBF and RBF is that the activation function
in rRBF is topologically restricted, which in effect generates an
internal representation in the hidden layer that reflects not only
the high dimensional inputs’ topological structure but also their
context. Hence, the resulting internal layer is called the Context-
Relevant Self-Organizing Map (CRSOM). Since the CRSOM is
two dimensional, it can be considered as a low dimensional rep-
resentation of high dimensional data, hence rRBF is a dimension
reduction algorithm. Furthermore, the rRBF is a supervised neu-
ral network that is trained to transfer high dimensional input into
its category or label, hence it is also a classifier. As rRBF inherits
the activation characteristics of the conventional RBF, for a given
input only a part of the neurons that represent similar reference
vectors with the input are intensely activated as illustrated with
red neurons in Fig. 1. This activation characteristic is responsible
for the topological-preservation nature of the rRBF.

The mathematical properties of the learning behavior of the
rRBF have been explained in details in Ref. [21] but will be
briefly outlined as follows.

At time t, observing high input, X(t) ∈ Rd, the rRBF selects a
winning neuron, win among the hidden neuron in its two dimen-
sional hidden layer as follows. Here, d is the dimension of the
input vector.

win = argmin
j

∥∥∥X(t) −W j(t)
∥∥∥2

(1)

In Eq. (1), W j(t) ∈ Rd is the reference vector associated with
the j-th neuron in the internal layer at time t. The output of the
i-th neuron in internal layer, Oi(t), is a function of the difference
between its reference vector Wi(t) and the input X(t) and also be-
tween the geometric distance of its position in the internal layer
and the position of the winning neuron, win, as follows.

Fig. 1 Outline of rRBF and CRSOM.
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Oi(t) = e−‖X(t)−Wi(t)‖2σ(win, i, t) (2)

Here, σ(win, i, t) is the neighborhood function defined as fol-
lows.

σ(win, i, t) = e−
dist(win,i,t)

S (t)

S (t) = S start

(
S end

S start

) t
T

(3)

In Eq. (3), dist(win, i, t) indicates the Euclidean distance be-
tween the i-th neuron and the winning neuron in the 2-D internal
layer, while S start > S end are positive constants and T is the maxi-
mum number of iterations. Hence, S (t) is a constantly decreasing
annealing function.

The output of the k-th neuron, yk(t), in the output layer can then
be calculated as follows.

yk(t) = f

⎛⎜⎜⎜⎜⎜⎝
∑

i

vik(t)Oi(t) + θk(t)

⎞⎟⎟⎟⎟⎟⎠ (4)

In Eq. (4) vik(t) indicates the connection weight leading from
the i-th internal neuron into the k-th output neuron at time t, θk(t)
is the bias of the k-th output neuron while f (x) = 1

1+e−x is a sig-
moid function.

Here, the output of the network indicates the predicted context,
for example grade of a student, given input X(t). The prediction
error, E(t) can be defined as follows.

E(t) =
Nout∑
k=1

(yk(t) − Tk(t))2 (5)

Where Tk is the k-th teacher signal, the ideal answer that should
be produced by the k-th output neuron while Nout is the number
of the output neurons. In the same nature as Backpropagation
in Multilayered Perceptron [24], [25], the prediction of the rRBF
can be improved by modifying the connection weights between
the internal and output layers and in this case the reference vec-
tors associated with each internal neurons, as follows.

vik(t + 1) = vik(t) − η ∂E(t)
∂vik(t)

Wi(t + 1) =Wi(t) − η ∂E(t)
∂Wi(t)

(6)

In Eq. (6), η is a positive learning rate.
The details of the derivation are elaborated in Ref. [21], and so

here it is sufficient to explain that the modification of the reference
vector associated with the i-th internal neuron can be expressed
as follows.

Wi(t + 1) =Wi(t) + ηδi(t)σ(win, i, t)(X(t) −Wi(t)) (7)

Here δi(t) is a kind of regulatory signal from the output layer
that transfers the output error into the modification of the ref-
erence vector. This internal layer generates a kind of reflection
of high dimensional input into 2-D map, hence it can be readily
visualized. Further, the regulatory signal δi(t) significantly distin-
guishes this 2-D internal layer from the conventional SOM, as it
transfers the context of the inputs into the self-organizing process
in the map, hence the name CRSOM.

The topographical preservation of SOM into 2-D maps allows
users to visualize the underlying characteristics of the multidi-
mensional data that are otherwise difficult to understand. How-
ever, the CRSOM differs from SOM in one important aspect.
Whereas SOM only organizes a low dimensional map according
to the topographical similarity of the input features, CRSOM also
embeds the context of the data into the 2-D maps. The context-
embedding in the 2-D allows users to visualize data in relevance
with their context. This is an important property for visualization
that is not sufficiently studied. For example consider data contain-
ing some features of students’ learning patterns, where each data
point is a multidimensional vector with the same dimension as
the number of features. The multidimensionality naturally pre-
vents us from visualizing the data, and thus it is difficult to un-
derstand the overall structures of the students’ learning patterns.
SOM maps those data while preserving their topological struc-
tures, in that data points that are similar in their original high di-
mension will be mapped close to each other in a low dimensional
map, while dissimilar data points will be mapped far from each
other. Now consider that those data points are associated with
some contexts, for example the grades of the students. The intro-
duction of the grades will not change the appearance of the SOM,
because only the data’s similarities are preserved. CRSOM pro-
vides novel visualization in that it also embeds the context of the
data, in that it maps students with similar learning patterns that
are associated to similar grades close to each other and generates
more complex configuration for other cases. Further, CRSOM
also generates different maps’ appearances for the same data but
different contexts. For example, the same students’ learning data
can be associated with different grades, like two steps pass-fail,
or more detailed A-B-C grades. For these two different contexts,
SOM will generate exactly the same 2-D maps, while CRSOM
will generate two different maps. The context-relevance charac-
teristic of CRSOM provides a new visual analytical tool, giving
the users more information to intuitively understand the under-
lying structure of contextual data. Some examples of real-world
e-learning data visualization will be explained in the next section.

3. Experiments with E-Learning Data

3.1 Visualization Experiments
In the first experiment, learning data were acquired from the

LMS run by Japan Women’s University in which 72 students par-
ticipated to study physics through a web-based application. Over
a semester, eight learning features (described in Table 1) were
recorded. At the end of the semester the data were associated
with the grades of the students. Hence, the grades become the
context of the data. Naturally, there are various ways to grade stu-
dents, for example, because each student either passed or failed
the course, each data point can be associated with pass-fail labels
in which 19 students passed while 53 students failed.

The challenge here is to transfer the eight dimensional data into
two dimensional map and visually discover underlying structures
of the data. Here, CRSOM is compared against widely used di-
mensional reduction and visualization methods, PCA, NCA and
SOM.

Figures 2 and 3 show the 2-D representations of these data
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Table 1 Features of Physics data.

Fig. 2 PCA: Physics (pass-fail).

Fig. 3 NCA: Physics (pass-fail).

Fig. 4 SOM: Physics (pass-fail).

using PCA and NCA. In these figures shows a student that
passed the exam and shows a student who failed the exam. Vi-
sual observations of these figures do not indicate that there are
distinctive underlying structures in these data.

Low dimensional projection of this data into a SOM is shown
in Fig. 4. Here, shows the projections of the 8 dimensional
learning patterns of one or more students that passed the course,

shows the projections of one or more students who failed while
× shows the projection point that represents two students or a
group of students having similar learning characteristics but with
opposing results. The size of the marker indicates the number of
data points that are projected into that marker. Although SOM, in
Fig. 4, generates a clearer structure than PCA and NCA it is still
difficult to use it for visual analysis. The CRSOM shown in Fig. 5

Fig. 5 CRSOM: Physics (pass-fail).

Fig. 6 Visual analysis.

Fig. 7 PCA: (Physics-ABC).

generates more distinctive patterns.
The topographical-preservation nature, in which the positional

proximity of two points in the 2-D map is related to their features
similarity, of the CRSOM can be utilized for intuitive visual anal-
ysis. Figure 6 is the enlargement of Fig. 5 shown with intuitive
clusters of students. The first cluster is a relatively small group of
students who failed, the second, in the middle is the group of stu-
dents who passed, the third one is a large group of students who
failed. Although the second group is rather large, there are two
large circles indicating many students who shared similar learn-
ing behavior. Hence, it can be roughly understood that successful
students have relatively distinctive learning patterns. The size of
group 3 is an indication that there are many different learning be-
haviors that result in failure to pass this course. This is further
clarified by the relatively large separation between groups 1 and
3, which is a strong indication that there are contrasting learning
patterns resulting in failure. The past study in Ref. [26] indicates
that many interesting insights can be discovered through this kind
of visual analysis. To show the context-relevant properties of CR-
SOM, in the next experiment, the same data are associated with
different contexts. Here, the data are associated not with pass-fail
categories but more detail A-B-C levels. Figures 7 and 8 show
the 2-D representations using PCA and NCA, which is exactly
the same as Figs. 2 and 3 aside from the color configurations and
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Table 2 Features of Bookkeeping data.

Fig. 8 NCA: (Physics-ABC).

Fig. 9 SOM: (Physics-ABC).

Fig. 10 CROM: (Physics-ABC).

marker types. In this experiment, there are 6 students with A
grades, 30 students with B grades and 36 students with C-grades.
A, B, C are represented by , and , respectively, in the fol-
lowing 2-D maps. The PCA and NCA 2-D representations do not
offer any intuitive information about the data aside from the sizes
of the distributions of A, B, and C students. SOM in Fig. 9 is more
informative in explaining the structure of the data but still lacks
clarity. From CRSOM in Fig. 10, a few points about the under-
lying structure of the data can be learned. For example, the two
A-students have relatively different learning styles, which is clear
from their relatively large distance on the map. Some B students
on the top right of the map are likely to share similar learning pat-
terns with the C students in their surroundings. The closeness of
A-students to other students on the map indicates that the grade

Fig. 11 PCA: (Bookkeeping).

Fig. 12 NCA: (Bookkeeping).

Fig. 13 SOM: (Bookkeeping).

excellence was not due to distinctive learning behaviors.
The data for the next experiment were acquired from a book-

keeping course run by a company with 145 participants, in which
11 learning features described in Table 2 were recorded over sev-
eral months. After the completion of the course, each student was
graded and categorized as either above average (90 students) or
below average (55 students). Figures 11, 12, and 13 show the
PCA, NCA and SOM representations of these data, where indi-
cates an above-average student and indicates a below-average
student. For SOM in Fig. 13, × is a point in the 2-D map that is
associated with two or more students from different categories.
The PCA and NCA representations do not offer any clear pat-
tern to learn from. SOM in Fig. 13 displays some clusters, but
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Fig. 14 CRSOM: (Bookkeeping).

Table 3 Features of English data.

Fig. 15 PCA: (English).

Fig. 16 NCA: (English).

it is still difficult to learn any underlying structure of the data.
CRSOM in Fig. 14 clearly displays some interesting structures of
the data. The large indicates that the learning patterns of the
above-average-students are somehow similar and the large dis-
tance of this point from the other shows that the learning patterns
of these successful students are clearly distinguishable from other
students’ patterns. Some ×s indicate that there are some similar
learning patterns with opposing results that are also similar to the
learning patterns of the below-average students.

The data for the next experiment were acquired from an En-
glish course with 211 students, where the learning behavior of
each student is characterized by five features described in Table 3.
After the completion of the course, each student was graded and
categorized into two groups, either above average or below av-
erage, indicated by or in the following figures. Figures 15,
16, and 17 respectively show the PCA, NCA, SOM representa-
tions of these data where the two categories are coarsely sep-
arated although the borders are not obvious. Figure 18 shows

Fig. 17 SOM: (English).

Fig. 18 CRSOM: (English).

the CRSOM representations of the same data. From this figure,
it can be intuitively observed that there are a number of clusters
where above-average students share similar learning patterns with
below-average students and the ×s emphasize the borders. The
few s at bottom right and s at the top indicate that there are
distinctive learning patterns that lead to above-average as well as
below-average results.

The experiments show that by embedding the context into to-
pographic maps, CRSOM is able to visually present some under-
lying structures of the data that would otherwise be difficult to
obtain from the traditional visualization methods.

3.2 Classification Experiments
Although the primary focus of this paper is to argue about the

visualization properties of CRSOM, it should be noted that other
than generating a visualizable map, rRBF is a neural network that
can be readily utilized as a classifier. This can be a useful prop-
erty to complement visual analysis, for example for predicting a
student’s expected grade based on the student’s current learning
behavior while also visualizing the student’s relative position in
the overall context-relevant 2-D map.

Here, the rRBF was compared against PCA, NCA, and K-
Nearest Neighbors Classification [27] in the data’s original high
dimensional space and MLP. PCA and NCA are not classifiers
hence, in the experiments the K-Nearest Neighbors classification
was executed in the PCA and NCA representation spaces. K-
Nearest Neighbor and MLP are not dimension reduction methods,
and hence it is not possible to visualize their low dimensional
representation of high dimensional data, but their classification
performances can be used as relative benchmarks to evaluate the
performance of the rRBF. In the experiment, K-fold cross vali-
dation tests were run for against the problems, and the error rates
for all the classifiers were calculated. Figure 19 shows the ex-
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Fig. 19 Classification error comparison.

periment results, where it can be observed that rRBF performed
nicely. For the first three problems the rRBF outperformed all
other methods, even MLP and K-NN in the original high dimen-
sional spaces of the data. This is surprising considering that as
opposed to MLP and K-NN, which performed the original high
dimensional space, rRBF must perform the classification in re-
duced dimensional spaces. For the final problem, rRBF did not
outperform MLP, but it has the best performance among the three
methods that ran classification in reduced dimensional-space.

4. Conclusion and Future Works

In this paper, it is shown that the rRBF can be potentially use-
ful as an analytical tool for understanding learning data. Here,
the objective is not to extract logical rules that govern the data
but to intuitively discover the underlying structures of high di-
mensional data through visualization. Unlike many engineering
system-generated data which are naturally bounded by logical or
physical rules, learning data obtained from the learning behavior
of students are often less logical, and so attempts to mine crisp
logical rules from them often fail. In this light, this study at-
tempts to give a different perspective for data understanding, by
involving context-relevant visualization. The context-relevance
of CRSOM is interesting for analytical purposes as it gives free-
dom for multi-perspective analysis by attaching different contexts
to the same data.

This paper reports on preliminary attempts to use the rRBF
and the resulting CRSOM for analytical means. The exper-
iments show that intuitive understanding of high dimensional
data through context-relevant visualization is promising. Further,
rRBF does not only produce CRSOM for visualization but also
predicts the context (in many cases the categories) of unknown
inputs. The seamless combination of visualization and classifi-
cation is one of the strengths of the rRBF as an analytical tool.
In this paper, the rRBF was tested against small data. One of
the immediate future objectives is to implement the rRBF for big
data analysis. The overall objective is to build a user-friendly an-
alytical system using the rRBF as an analytical engine. This tool
will be seamlessly integrated into LMS, and will be opened to
students as well as teachers to improve learning efficiency. For
students, for example, the system will visualize a particular stu-
dent’s behavior relatively with the whole students group in some

given context, and it also will predict the student’s output based
on past students’ data. These functions hopefully help students to
design their learning behaviors. Further, these functions may also
improve the interface and reliability of the automatic recommen-
dation systems, as unlike many current study-recommendation
systems that often produce recommendations without any expla-
nation, the visualization can offer intuitive justification for the
contents of the recommendation. For teachers, multi-perspective
visualizations offers better flexibility in analyzing students’ learn-
ing data, which may help in designing better learning methods
and environments.

It should be noted that CRSOM inherits the characteristics of
the conventional SOM where the axes of the map cannot be eas-
ily interpreted. Unlike PCA or Factor Analysis, where the new
axes are the linear combinations of the original ones, in CRSOM
the dimensionality of the data are reduced in a non-linear man-
ner while preserving their original topological structures. The
linear transformation from a high dimensional feature space into
a low dimensional one prevents us from easily understanding the
meaning of the new axes. The interpretation of the axes of low di-
mensional representations is one of our future objectives. While
in this preliminary study, the main objective was to generate intu-
itively visual maps for further analyzing and thus discovering the
inherent information for the learning data, one of our immediate
future objectives is to develop an efficient analytical tool for ex-
tracting common factors from clusters visualized on the map. For
example, from a map like the one in Fig. 6, we can run variance
analysis to extract common features that appear on a particular
cluster. We believe that the idea to integrate the intuitive visual
information and statistical analysis will potentially be a contribu-
tion for generating strong learning analytical systems.
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Editor’s Recommendation
This paper applied the method called Restricted Radial Basis

Function (rRBF) Network to the data obtained from LMS. rRBF
produces the classification and 2D representation of high dimen-
sional data as 2D topographical maps called Context-Relevance
Self-Organizing Maps (CRSOM). Findings in this study show
that very simple log data of students’ behavior may correlate
the learning performance of the students from the generated CR-
SOM. This would be the first step in showing the potential of
rRBF applied to learning analytics and the efficiency of CRSOM.
However, CRSOM itself generally has the difficulty in interpreta-
tion of generated CRSOMs. The future issue of this study, the in-
terpretation of the axis of low dimensional representations, is also
expected to be a good instance contribute to improve the method
of rRBF and CRSOM.

(Michihiko Minoh, Academic Center for Computing and Me-
dia Studies, Kyoto University/An advisor of IPSJ Transactions on
Computers and Education)
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