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Self-Organized Criticality in Some Dance Motion
Using Hidden Markov Model
Hui Zhou* DongSheng Cait?
* Graduate School for Engineering, University of Tsukuba
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Abstract: Although people recorded the motion using Labanotation, the difference between the
specialist of a dance and of a beginner cannot be expressed. If we can find the feature of a human body
dance motion well, we can recognize the specialist of a dance, and a beginner's dance analytically, can
save the culture of a dance, and then reconstruct it. Recently, much effort has addressed the problem of
editing and reuse of existing animation, including dance. A common approach is using Hidden Markov
Models (HMMs) to recognize and analyze motion from video sequence. We are studying a new method,
which is extracting some characteristics or features of human motion, to analyze and reconstruct
human motions. That is a self-organized criticality (SOC) in dance motion using the developing
complexity theory. Firstly, using Labanotation, we classify every one movement toward a dance
exactly, and classify severely motion in the different state, and structure the HMM:s to carry out for our
classification of motion having been right for a check. At the end, classified motion is ranked with
frequency of appearance, and it verify whether it is conformity to the power's law in quest of the
logarithm of the order of a rank, and the logarithm of the number of frequency of appearance.
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(HMMs), complex systems advance to minimally stable state ' .

Labanotation, self-organized criticality (SOC). Some systems consisting of many interacting

I INTRODUCTION
In the past few years, complex system attract more
and more people’s attentions in the most exciting and

ambitious fields in physics. It is realized that many

constituent may exhibit some general characteristic
behaviors. The seductive claim is that, under very
general conditions, dynamical systems organize

themselves into a minimally stable state, which is
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called self-organized criticality (SOC), with a

complex  but  rather  general  structure. A
self-organized criticality is the term generically
applied to the system that are driven to a critical state
that is robust to perturbations and whose macroscopic
behavior is predictable to the extent that it follows
power laws with exponents depending on geometry
and spatial structure 2,

It has been suggested that biological populations are
typically in a self-organized state. They are
evidenced for example by a power law distribution of
extinction events.

While this is a very appealing idea, especially, in
view of the robustness of living systems, it has
suffered from being somewhat vague, mainly because
of the difficulty involved in modeling living system.
Specifically, there is as yet neither a clear
identification of the self-organized criticality state of
life or the agent that caused self-organization, nor a
definition of a critical or threshold variable whose
disturbance causes the ubiquitous avalanches giving
rise to power-law distributions **.

Human, as the highest living thing of the nature,
keeps the natural order. Does the moving from the
correlative motion of a human body, and the
movement toward a dance, that is to say, the
movement toward the present dance to the next dance,
protect the rule of a nature? We debate in this paper.

We use Labanotation to classify every one
movement toward a dance exactly, and classify
severely motion in the different state at first,
then, use the model of Hidden Markov to estimate the
classified state of the dance pattern from the motion
capture data. HMMs is the usual estimation of
dynamical models from examples, and style and
content separation. Finally, we rank emergencies of
classified dance motion patterns. We examine the
logarithm of the order of rank and emergencies,

check if it fits the power law or Zipf’s law that is the

necessary condition for the self-organized criticality

(SOC) state.

I RELATED WORK

In the field of computer graphics, many people
address the problem of editing and reuse of existing
animation. Brand et al.’® propose the problem of
stylistic motion synthesis by learning motion patterns
from a highly varied set of motion capture sequences
5. Gleicher ° provides a low-level interactive motion
editing tool that searches for a new motion that meets
some new constraints while minimizing the distance
to the old motion. Howe et al. 7 analyze motion from
video using a mixture of Gaussians model. With
regard to styles, Wilson and Bobick ®use parametric
HMMs, in which motion recognition models are
learned from user-labeled styles. These models
provide a method for classifying and estimating
animation; we use HMMs to analyze and estimate the
classified human  motion capture data by
Labanotation, and then extract the characteristics of
human motion like multi-fractality or SOC to survey
the power law of dance motion.

I HIDDEN MARKOV MODELS (HMMs)

An HMM is a probability distribution over
time-series. It is specified by 0 ={S, P;, Pj_;, pi(¥)},
where
1. S={sy, ..., sn} is the set of discrete states;

2. stochastic matrix P;.; gives the probability of
transitioning from state j to state i;

3. stochastic vector P; is the probability of a
sequence beginning in state i;

4. emission probability p;(X) is the probability of
observing x while in state i, typically a Gaussian
probability.

For some essentials, please see a more detailed

tutorial °.

IV  POWER’S LAW IN SELF-ORGANIZED

CRITICALITY (SOC)
Now let’s propose the definition of Power law

behavior in spectrum, which is a necessary, but not a

sufficient, condition for SOC, and is seen in many
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physical systems. First, we have the power spectral
density distribution (such as 1/f noise) :

p(1) ~ 1f® )
Another kind of power law appears in size
distribution *:

N(s) ~ 1s? @)
This kind of distribution is observed as the
Gutenberg-Richter * law in geophysics. Finally, we
distinguish a power law in the temporal distribution
of events :

N(z)~1/ 27 3)
Particularly, when t is the rank of the event r, we
call it Zipf’s law %

N(r)~1/r7 (4)
Power law reveals that no periodic dynamics in the
population, but does not rule out certain random
process that have a power law frequent spectrum but
show no signs of self-organized critical behavior 2.

V METHOD

Our learning data is shown in Fig. 1 that shows the

sequences of motion dance.

Fig.1: stick figure of motion
Samples are classified using Labanotation rule '°,
which is a standard system for analyzing and
recording human motion. In Labanotation, it is
possible to record every king of human motion. The
basis of the notation is some natural human motions.
Every deviation from this natural human motion has
to be specifically written down in the notation.
We write our Labanotation of motion capture data
referencing '°.
Using our motion data, lower case we calculate the

entropy and estimate the states of HMMs. Fig.4

shows HMMs estimated from our samples.

In figure 4, there is the sequence of observations,
and x axis means observation vector, y axis means
state vector; “x” means the sequence of observations,
and green is state 1; red is state 2; magenta is state 3;
the color is the label of the state attached to the
observation, the red plots are the given 2D Gaussian
on the current plot by parameters of the real ni and
lambda of HMM 9; the white plots are also the given
2D Gaussian by the estimated parameters of ni and
lambda of HMM 9; ni and lambda are estimated
parameters by HMMs using Baum-Welch Algorithm
% and the squares in fig.2 are the incorrectly
estimated states. If there are too many mistakes, the
relabeling procedure fails and the squares are no

meaningful any longer °.
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Figure 2: Labanotation of motion capture data
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Figure 3: Labanotation of motion capture data
Then we get the Richardson graph !' of movement
from the estimated states. From Fig.5, we compute
one regression line at the left of the break point as:
y-1.17=-0.602(x-0.26) (5)

where the slope of the line is 0.602. The regression
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line at the right of the break point can be expressed
as:

y-0.688=-3.56(x-0.639) (6)
where the slope of the line is 3.56. These values of

slope can be considered as the fractal dimensions of

this system as HMM "'

Figure 4: estimated states of HMM

VI OPEN QUESTIONS AND CONCLUSIONS

It’s still a new field to analyze the motion dance
from the viewpoint of self-organized criticality in
computer graphics. Our final goal is producing dance
motion pattern with regard of evolutionary dynamical
system by the interactive characteristic of dance
motion; and our framework is currently superficial to
analyze the characteristic of dance motion. In the
future, we want to use larger of data to analyze the
characteristic. The motion data will appear some
other important nature which we do not know now. It
should be very interesting and developmental in the
field of computer graphics, and recognize the art of
dance analytically, and can save the culture of
classical or realistic dance.
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