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Recently, the phenomenon which quantifies the agricultural and water man-
agement practices from remote sensing (RS) imagery, has been adapted to help
the policy makers and farm/water managers to make better operational deci-
sions. SWAP-GA is a combined model of the SWAP (Soil Water Atmosphere
and Plant) crop model and the Remote Sensing (RS) data assimilation tech-
nique, which is optimized by Genetic Algorithm (GA). However, to run the
SWAP-GA model on a single PC requires a massive amount of processing time.
Based on the above observation, distributed or parallel computing can be a pre-
eminent and convincing solution. At present, Multi-cluster Grids have emerged
as the most popular type of distributed computing system. However, the per-
formances of different parallelization methodologies on the Grid have not been
discussed thoroughly. This paper presents the implementation of the SWAP-
GA application and discusses its impact on the performance of parallelization
methods.

1. Introduction

The demand for efficient and effective agricultural products monitoring systems
is increasing. Agricultural researchers try to analyze various pieces of information
about crops in order to take measures when they have problems. In particular,
when an on-going experiment covers a large area such as a country, Remote
Sensing (RS) plays a vital role by providing useful information over large areas.
However, some information, or crop parameters, is not visible through RS images
such as sowing dates, cropping intensity, growth, stress, etc. Crop models can
help to solve this problem. The Crop models calculate missing information by
analyzing crop information with real fields’ experimental data.
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Ines and Honda 1) developed an assimilation scheme of the SWAP (Soil, Water,
Atmosphere, Plant) crop model with RS data using Genetic Algorithm (GA).
Similar works by Ines 2) and Srinuandee 3) used some remotely sensed informa-
tion combined with a binary GA 4) and SWAP model for optimizing soil hydraulic
parameters. Later, a real coded GA 5) was applied by Chemin, et al. 6). Further-
more, Chemin worked with the SWAP-MultiGA model (Modified SWAP-GA) 7)

and that was successfully implemented with a new hypothesis to assimilate RS
evapotranspiration (ETa) data for satellite images observed by ASTER 8) and
MODIS 9). However, these researches have a problem in their practicality, that
is, they require a huge amount of processing time.

Grid computing receives much attention as a powerful scheme to solve large
scale problems with remote sensing data, and there are several works to de-
velop applications on the Grid 17)–19). These works use a simple parallelization
method, e.g. distribution of computations for pixels, and the impact on perfor-
mance by the parallelization method has not been discussed thoroughly. The
performance improvement of SWAP is discussed in Refs. 12), 13), and the work
includes parallelization methods of SWAP-GA. However, the discussion is lim-
ited to parallelization approaches only, and their performance analysis is still
missing.

This paper presents the implementation of the SWAP-GA application on the
Grid and discusses the impact on the performance of parallelization methods. We
implemented three parallelization methods, pixel distribution, population distri-
bution, and hierarchical distribution, and compared the performances through
the experiments on the Grid testbed. These methods use GridRPC 14) as the
programming framework but ways of task distribution are different. The results
show that the Pixel Distribution model exhibits the lowest communication over-
head and shows the best performance on some settings of the Grid. However,
the Hierarchical Distribution model is also a preferable model to employ more
parallelism in the SWAP-GA application. We also present an analytical model to
estimate the running time of the application. The model helps users to choose a
parallelization method that is suited to the Grid environment. The experimental
results show the accuracy of the analytical model. Our application runs with
GRASS, which is an analysis tool for geographic resources commonly used in RS
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community 15). It can be easily extended to other applications that analyze RS
data processed by GRASS.

The rest of the paper is organized as follows: Section 2 gives the background of
the work. Section 3 presents three parallelization methods and their implemen-
tation. Section 4 shows the experimental results and discusses the performance.
Finally, Section 5 concludes the work of this paper and outlines the future work.

2. Background

This section outlines the related work and our target application, or SWAP-GA.
The programming tool used for the implementation is also introduced.

2.1 Related Work
Distributed or parallel computing combined with remote sensing is now a

prominent and promising field for geosciences, environmental sciences, agricul-
tural sciences and others. There are many on going projects 10),11) to process
remote sensing data with distributed computing and to create databases from
them 16). Distributed approaches have also been applied in some remote sens-
ing image processing applications, such as terrain feature extraction 17), image
classification 18), radiometric and geometric correction 19) over different parallel
computing platforms. The overall implementation strategies of remotely sensed
image processing on the grid environment have been discussed in Ref. 20).

On the other hand, agriculture researches are also developing rapidly. They
require both remote sensing and distributed computing 21),22). Ninomiya 23) pro-
posed a distributed decision support system to store agricultural data and provide
agriculture related information over the grid distributed platform. IWMI 24) has
the vision to improve water and land resource management all over the world.

SWAP-GA is an application that merges the agriculture, and remote sensing
issues together. SWAP-GA is an assimilation scheme of the SWAP model with
RS image data using GA. Another model, SWAP-PEST, provides the same
functionality as SWAP-GA, and is successfully implemented in Refs. 25) and 26).
While these works present approaches to run their applications on the Grid,
discussions are limited to those of simple parallelization hypotheses. Also, some
work focuses on methodologies to create a distributed database 23).

The work presented in Ref. 12) discusses multiple parallelization methods for

the SWAP-GA application; however, the discussion is limited to the performance
on a single cluster with MPI 31) implementation. The work used synthetic data
only and has not yet been tested in real field experimental conditions.

Thus, the performance impact of parallelization methods on the Grid is still
unknown. In particular, the performance is significantly affected by task distri-
bution methods on the Grid, and developers of RS applications need to solve the
problem of task distribution, or how to distribute tasks among multiple clusters
on the Grid. This paper gives experimental results with its analytical model to
solve this problem.

For the issue of practicality, experiments with real RS data are necessary to
see the performance in the real world. The experiments in this paper run the
SWAP-GA application with the real data collected in Thailand on the real Grid
testbed. Moreover, interoperability between the application and existing RS soft-
ware is also necessary to improve practicality. Although users need to manually
extract RS data from some databases in the existing work in Refs. 3) and 7),
the application presented in this paper is implemented with the interface for the
GRASS tool 15).

2.2 SWAP-GA Framework
The goal of the SWAP-GA method is to calculate missing information about

the target crop in remote sensing data using Genetic Algorithm. In this scheme,
actual evapotanspiration (ETa), the water use of a particular crop at a given time,
is computed both by directly analyzing remote sensing data (satellite image data)
and by the indirect method, or the SWAP model.

ETa computed from remote sensing data, SatETa, can be obtained by an open
source software for Geographical Information System, GRASS GIS 15). ETa com-
puted from the SWAP model, SwapETa, is derived by solving the Pernman-
Monteith equation 27). Initially, SatETa and SwapETa do not match, because
some required parameters for the SWAP model, e.g., a ground water level, a
cropping season time extent, a date for the emergence of crops, and irrigation
scheduling, are missing. Genetic Algorithm is used to find the missing parameters
in the SWAP-GA.

Figure 1 shows an overview of the SWAP-GA. Inside GA, every unknown
parameter is treated as an individual gene and a population is constructed with
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Fig. 1 SWAP-GA model structure diagram.

a set of genes. Each population provides a cost value ( |SatETa − SwapETa| )
and transforms that to a fitness value as 1/cost. Higher Fitness for a population
indicates good assimilation and has a better chance of surviving for the next
generation. The next generation’s parameters will be set according to mutation
and crossover rules. One pixel’s assimilation requires one to several hundred
population evaluations. The populations set will be evaluated by the predefined
number of iterations, called the maximum generation (Max-Generation).

The real Remote Sensing images used in this paper are collected from MODIS
(Moderate Resolution Imaging Spectroradiometer) and the images are processed
from January 1st 2002 to May 1st 2002. MODIS is a radiometer developed by
NASA and it is installed on the satellite. Each image has 2,401 (row) x 3,608
(column) pixels, each of which has 500 m spatial resolution and covers 250,000 m2

area.
In this study, the performance of the SWAP-GA application is investigated

with the real data of two crops per year in a large continuous rice field in the
Suphanburi province, which is located in the Central Plain of Thailand. The
total area of this province is 5,358 square kilometers that maps around 21,432
pixels of a 500 meter resolution image.

We used the RS data of 15 pixels extracted from the MODIS image of the
Suphanburi province. Due to the limitation of available input parameters in a

Fig. 2 RS image processing through GRASS.

large area, e.g., data of two crops per year and soil properties for rice, we leave
the experiment with larger data for our future work.

Figure 2, presents the GRASS working monitor, which consists of the full
RS image, image of 15 pixels, zooming and tracing the appropriate co-ordinate
values extracted from the specific longitude and latitude value (up to down and
left to right manner).

2.3 GridRPC and Ninf-G
The GridRPC is one of the familiar programming models for a Grid applica-

tion based on the Remote Procedure Call (RPC) mechanism. It is middleware
that provides remote library access and task parallel programming over the Grid
environment. An application program using the GridRPC consists of a client
program and server programs. When the client program invokes an RPC, the
corresponding server program runs on a remote machine. GridRPC has now been
supported by many well known grid programming systems such as Ninf-G 28)

and Netsolve 29). Ninf-G is implemented on the top of the Globus Toolkit 30).
Nowadays, it is one of the most popular programming platforms for developing
master-worker (client-server) applications on the Grid. From the user’s point of
view, this is just an ordinary software library, where all Grid functionalities will
be achieved by C type function calling methods. The SWAP-GA application is
designed to run on parallel computing platforms in the master-worker manner.
Thus, Ninf-G is chosen by on account of the above benefits.
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3. Design and Implementation of Distributed SWAP-GA

Figure 3 shows the mechanism of SWAP-GA. The full SWAP-GA executable
module is made with RSImageAccess, GASWAP, and Evaluation sub-modules.
The RSImageAccess module is the main module, where the program starts. This
module extracts the pixel value (SatETa) and the date for each image from the
GRASS environment, and it calls this GASWAP module. The GASWAP module
is able to run GA and completes the assimilation process. The Evaluation module
runs the SWAP executable for each population and sends the SwapETa values to
the GASWAP module. An example with 15 pixels image, 60 populations and 10
generations gives a clear view of calling procedures inside the SWAP-GA model.
Particularly, in this case, the RSImageAccess module will call the GASWAP
module 15 times (one for each pixel). For each pixel, the GASWAP module first
internally executes the SWAP executable 60 times to initialize the ETa value for
every population and then calls the Evaluation module 10 times (one for each
generation). For each generation, the Evaluation module executes the SWAP
executable 60 times and produces SwapETa values for 60 populations. A high
demand of parallel computing is called for inside the whole SWAP-GA module.
Three different strategies are applied to work SWAP-GA in a parallel manner.

Fig. 3 SWAP-GA working modules.

The strategies are presented by the following models: i) the Pixel Distribution
model, ii) the Population Distribution model, iii) the Hierarchical Distribution
model.

3.1 The Pixel Distribution Model
A “pixel” is the smallest dimension of an RS image which indicates the im-

age resolution as DN (Digital Number) value. The RSImageAccess module ex-
tracts the pixel values and sends them to the GASWAP module for processing.
Computations for pixels are independent, thus they are distributed to multiple
computers. This approach is called the Pixel Distribution model. In this paper’s
experiment, the Pixel Distribution model is implemented on the Grid using Ninf-
G. The Master-worker paradigm is used for parallelization in the distributed
SWAP-GA model. Inside the master node, the RSImageAccess module works,
whereas in the worker nodes assimilation procedures (GASWAP and Evaluation
modules) run. Figure 4 illustrates a mechanism to run SWAP-GA with the
Pixel Distribution model. The RSImageAccess module, running as an Ninf-G
client, dispatches a set of pixels to the remote PC cluster. In the remote PC
cluster, the GASWAP module and the Evaluation module, running as a Ninf-
G server, perform a computation for each pixel, where the computations inside
the PC cluster are distributed among computing nodes through the local batch
scheduler in FCFS manner.

The Pixel Distribution model has the smallest overhead of the three models,

Fig. 4 The pixel distribution model.
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Fig. 5 The population distribution model.

and we expect an efficient parallel execution. However, parallelism exploited by
this model is limited to the number of pixels in the input image.

3.2 The Population Distribution Model
The second approach is the Population Distribution model. An evaluation

procedure is called for each population to execute the SWAP executable. Thus,
the Evaluation module (to evaluate population) can be distributed through Ninf-
G. Here, the master node runs both the RSImageAccess and the GASWAP
module, and worker nodes only run the Evaluation module. Figure 5 shows
a mechanism to run SWAP-GA with the Population Distribution model. The
GASWAP module, running as a Ninf-G client, dispatches a set of populations to
the remote PC cluster. In the remote PC cluster, the Evaluation module, running
as a Ninf-G server, performs an evaluation for each population. The computation
inside the PC clusters is distributed among computing nodes through the local
batch scheduler.

The advantage of the Population Distribution model is that it exploits maxi-
mum parallelism, which is defined by the population number. The drawback of
this model is its large communication overhead. The drawback might significantly
degrade performance on the Grid with a low network performance. However, we
include the evaluation of this model in this paper, because it is worth showing

Fig. 6 The hierarchical distribution model.

the performance comparison with other models.
3.3 The Hierarchical Distribution Model
So far, the above two approaches are running with Ninf-G, whereas this third

approach is implemented with combined Ninf-G and MPI and called the Hier-
archical Distribution model. The idea of the Hierarchical Distribution model is
to distribute the computation of pixels and populations in a hierarchical way.
Figure 6 presents a mechanism to run SWAP-GA with the Hierarchical Dis-
tribution model. Here, the master node runs the RSImageAccess module and
distributes a pixel to the gateway node, or the master node of the remote PC
clusters with Ninf-G to invoke the GASWAP module. After getting the pixel
value, the master node (GASWAP) dispatches the populations to worker nodes
(inside cluster) using MPI to run the Evaluation modules.

One of the insights behind the Hierarchical Distribution model is that we obtain
the advantages of the Pixel Distribution model and the Population Distribution
model. We expect that the Hierarchical Distribution model efficiently dispatches
pixels to multiple PC clusters with a low communication overhead and employs
more parallelism among populations in each PC cluster.

4. Experiments

The proposed distributed SWAP-GA models are implemented on the Grid
testbed composed of the computer resources presented in Table 1. In the table,
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Table 1 The Real Grid testbed.

Machine Specification

GK, Titech Pentium III 1GHz (Single CPU, Not SMP),
Red Hat Linux 7.1, RAM 256MB, Globus
4.0.5, Ninf-G 4.2.1, MPICH 1.2.6, GRASS
6.0.2

Blade cluster, Titech, (Yokohama) 32 Nodes, each Node has dual Pentium III,
1.4GHz, Red Hat Linux 7.1, RAM: 512MB,
Globus 4.0.5, Ninf-G 4.2.1, MPICH 1.2.4, Lo-
cal scheduler: SGE, Throughput from GK:
about10MB/sec (measured)

F32 cluster,AIST, (Tsukuba) 260 Nodes (divided into 4 parts), each Node
has dual Xeon 3.06GHz, Red Hat Linux 8.0,
RAM: 4GB, Gigabit Ethernet, Globus 4.0.3,
Ninf-G 4.2.0, MPICH 1.2.6, Local scheduler:
SGE, Throughput from GK:about 6.7MB/sec
(measured)

Kuruwa cluster, NII, (Tokyo) 9 nodes (1 node is server and 8 nodes are
workers), All nodes have dual AMD dual
core Opteron 2.4GHz, Cent OS 5 Linux 2.6,
RAM: 4GB (2GB x2),Globus 4.0.5, Ninf-
G 4.2.1, Gigabit Ether net, MPICH: 1.2.7,
Local scheduler:SGE, Throughput from GK:
about10MB/sec (measured)

GK is used as the client node, or the requesting node, throughout the experi-
ments. It is also used as the gateway node, or the master node, of the Blade
cluster when a job is submitted to the Blade cluster. The Blade cluster is dedi-
cated for this research experiment, while the Kuruwa and F32 clusters are shared
with the external workload. In this section, we first present the experimental re-
sults to run SWAP-GA on a single site and analyze the results. Then, we show
the results on multiple sites. All single site experiments with distributed SWAP-
GA models were conducted with the data of 15 pixels, 60 populations and 10
generations.

4.1 Results in a Single Site
Figure 7 shows the running time of the SWAP-GA application using a single

PC cluster, or the Blade cluster. Here, Computing Nodes in the x axis indicate
the number of computing nodes in the Blade cluster. The number does not
include the client node. The Population Distribution model exhibits the worst

Fig. 7 The running time curves on the blade cluster.

performance of the three distribution models due to its overhead to frequently
invoke Ninf-G calls for populations. Typically, the client PC performs slower
than the server PC. GK is also used as a client machine and it performs a
slower SWAP evaluation time (2.73 sec) than any Blade cluster computing nodes
(1.8 sec). In particular, with the Population Distribution model, it is one of
the reasons for creating a degrading impact on the performance. However, the
Hierarchical Distribution model makes the SWAP-GA evaluation environment
more generic and server oriented. Whereas, all SWAP evaluation will be executed
in the cluster nodes.

Additionally, the Hierarchical Distribution model reduces the number of Ninf-G
calls and increases the performance compared with the Population Distribution
model. In this model, pixels are dispatched to master nodes in the cluster sites
by Ninf-G and the populations are distributed among computing nodes in the PC
cluster through MPI. To execute this model, the number of required computing
nodes in a PC cluster is at least two, one master node for dispatching jobs and
the other for the computing node for executing jobs. The time curve going down
highlights that the parallel version works well and the total running time performs
better than the Population Distribution model.

Although, the Hierarchical Distribution model decreases the total running time
more than the Population Distribution model, the parallel performance is not in
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Table 2 Running time of SWAP-GA on the blade cluster.

Strategy GK Node
Serial 27,026(sec)

Strategy # of Computing Nodes in
Blade Cluster

1 2 15
The Population 19,745 10,941 4,031

Distribution Model (sec) (sec) (sec)
The Hierarchical - 18,216 3,152

Distribution Model (sec) (sec)
The Pixel 17,382 9,276 1,218

Distribution Model (sec) (sec) (sec)

such a desirable state. To improve the parallel performance more, it is necessary
to decrease the communication overhead and increase the workload in computing
nodes. To fulfill these purposes, the Pixel Distribution model performs best.

The total running time of the Pixel Distribution model at Computing Nodes
5, 6, and 7 is approximately the same because they took the same amount of
time to complete the whole jobs. For five nodes, 15 pixels are distributed among
five nodes and each node has a balanced workload (three pixels per process).
However, for Computing Nodes 7, the 15 pixels are distributed among seven
nodes and except one node (which processes three pixels), other six nodes process
two pixels. In both cases the master node needs to wait for approximately the
same amount of time to complete three pixels serially.

4.2 Discussion of the Results in a Single Site
Table 2 presents the running time comparison of the SWAP-GA serial model

(running on the GK node) with the parallel SWAP-GA models with Comput-
ing Nodes 1, 2 and 15 on the Blade cluster. With 15 nodes, the performance
of parallel models is improved. According to the distribution models, the Pixel
Distribution model performs better than others. In the Pixel Distribution model,
the dispatched workload (one whole pixel evaluation) is bigger and the commu-
nication overhead is hidden through the computing workload. Whereas, in the
Population Distribution model, Ninf-G calls happen frequently (once to evalu-
ate the assigned populations set for each generation) and the workload to the
computing nodes is not sufficient to gain the efficient parallelism.

Additionally, Ninf-G takes some time for each RPC to establish and to close

Table 3 Estimated serial running time.

Measured Running Time Estimated Running Time
(sec) (sec)

27,026 27,027

the session with computing nodes. On the other hand, to reduce the Ninf-G
session establishment cost, the Hierarchical Distribution model is presented where
(inside the cluster) MPI reduces the session establishment cost (that was taken
by Ninf-G) and the performance is improved. However, the performance of the
Hierarchical model is not superior to the Pixel Distribution model. The same
number of Ninf-G calls are conducted in both the Pixel Distribution and the
Hierarchical Distribution models. However, the Hierarchical model takes some
time for MPI communication.

4.3 Running Time Estimation for Single Site
In order to estimate the running time of the parallel SWAP-GA models on

different settings, we created the preliminary analytical models to estimate the
running time in a single site. Those models will help users to trace the parallel
behavior, e.g., speed up and system accuracy, of the application and compare it
with a real situation. In addition, the analytical model will help users to choose
the most suitable strategy according to the available dataset.

4.3.1 Estimation of Serial Running Time
The serial running time of SWAP-GA is derived by the formula (1). The

number of pixels (NPixel), the number of populations (NPop), the number of
generations (NGen) and one SWAP evaluation time (SWAPt) are the major
components. We conducted a preliminary experiment to see the major compo-
nents.

NPixel · NPop · SWAPt · (NGen + 1) [sec] (1)
The Total Workload used in the experiment is composed of 15 pixels, 60 popu-

lations and 10 generations. GK takes 2.73 sec to evaluate each SWAP evaluation.
Table 3 shows the comparison between the estimated running time by the for-
mula (1) and measured running time on the Blade cluster for serial SWAP-GA.
According to Table 3, the accuracy of the equation is highly acceptable.

Increasing unknown parameters (number of genes) of SWAP-GA will append
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Table 4 Parameters for running time estimation.

Term

Npixel number of pixels
NPop number of populations
NGen number of generations
SWAPt one SWAP evaluation time
NSlave number of slaves
TTime total running time
TExe total computation time
TCom total communication time
TPixele total time to extract pixel

information from image
MPIc time for a single MPI communication
NGc time for a single Ninf-G communication
Gt GRAM invoke time

a large multi-dimensional search space and obtain a larger time to assimilate.
Additional population and generation numbers may require the solving of such
problems. However, it will also have an additional effect on the SWAP running
time. As SWAPt holds a single SWAP evaluation time, the number of genes is
not considered as components to form the analytical model.

4.3.2 Estimation of Parallel Running Time
We applied the same mathematical formulation for the Hierarchical Distribu-

tion model (implemented in a single site). The estimated running time for the
Hierarchical Distribution model is derived by the formulae (2)–(4). Table 4
shows the meanings of variables in the formulae. The total running time is the
sum of the total computation time and the total communication time. The former
is calculated by summing the computation time of the sequential part, the time
of the parallel part, and the time to extract pixel information from the target im-
age. The latter is the sum of MPI communication time inside the PC cluster and
communication time to invoke Ninf-G calls. Our preliminary experiment on the
Blade cluster shows that SWAPt = 1.8 sec, MPIc = 0.1 sec and NGc = 0.6 sec.
Usually, in the Blade cluster the GRAM invoke time (Gt) is from 2 sec to 6 sec. In
our experiment we assumed Gt = 3 sec as a constant. TPixele, the total time to
extract pixel information from the image, is calculated by multiplying the total
number of pixels with one pixel extraction time (0.13334 sec).

The Hierarchical Distribution model is a combined model of the Pixel and Pop-

Fig. 8 Comparison between estimated and measured running time on the Blade cluster: the
pixel and the population distribution model.

ulation Distribution models. So, it is also possible to implement the same running
time equation for both the Population Distribution and the Pixel Distribution
models. In the case of the Population Distribution model, to calculate the total
time (TTime), TExe will be calculated by using the same equation as formula
(3) with gateway node SWAPt for the sequential part. The communication time
(TCom) will be calculated by using formula (5), which assumes that the client
node sends a set of all population at one Ninf-G invocation. The running time for
the Pixel Distribution model is derived by the following formulae (6) and (7). In
formula (6) one extra generation is added because of the population initialization
(sequential part in formula (3)).

Figure 8 presents the experimental results to show the good accuracy of
the running time estimation for both the Pixel and the Population Distribu-
tion model. Figure 9 compares the estimated running time with the measured
time on the Blade cluster for different settings presented in Table 5 and shows
that the results of the estimation model match the measured results.

TTime = TExe + TCom [sec] (2)

TExe = NPixel · NPop · SWAPt + NPixel ·
⌈

NPop
NSlave

⌉
· NGen · SWAPt

+TPixele [sec] (3)
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Fig. 9 The hierarchical distribution model equation time performance in the Blade cluster.

Table 5 Experimental setting for estimation of parallel running time: The hierarchical
distribution model.

InputSet NPixel NGen NPop Computing
Node

1 15 10 60 6
2 15 10 60 11
3 15 10 60 16
4 15 10 60 31
5 1 10 10 6
6 1 10 30 6
7 1 10 60 6
8 1 10 120 6
9 1 30 120 6
10 1 30 10 6

TCom = NPixel · NGen ·
⌈

NPop
NSlave

⌉
· MPIc + NPixel · NGc + Gt [sec] (4)

TCom = NPixel · NGen · NGc + Gt [sec] (5)

TExe =
⌈

NPixel
NSlave

⌉
· SWAPt · NPop · (1 + NGen) + TPixele [sec] (6)

TCom =
⌈

NPixel
NSlave

⌉
· NGc + Gt [sec] (7)

4.4 Experiments on Multiple Sites (Emulated Grid Testbed and
Real Grid Testbed)

The results in section 4.3 show that the Pixel stribution model and the Hierar-
chical Distribution model are effective. Firstly, we implemented both models on
the Emulated Grid testbed 32) with multiple gateway nodes (g1, g2, g3, g4). The
Blade cluster’s computing nodes (16 nodes) are partitioned into four and dedi-
cated to each gateway node. Another node g0 has been used as client to submit
Ninf-G job invocation to the gateway nodes. The gateway nodes are configured
similar to the GK node. Secondly, both models are implemented in the Real
Grid testbed with multiple PC clusters (Blade, F32 and Kuruwa clusters). For
both cases we compared the running times between the Pixel and Hierarchical
Distribution model.

In our analytical model, we assume that Gt includes waiting time in a local
batch queue. This assumption works well in the discussion for the single site,
or the Blade cluster, because the Blade cluster is dedicated to our experiment
and waiting time in the local batch queue is negligible. The assumption has a
problem when we use clusters shared with the external workload, or the Kuruwa
and F32 clusters. However, accurate estimation of waiting time in a batch queue
is still an open issue; we will leave this issue for future work. In this section, we
defined Gt for both clusters as follows:

We determined that Gt in the F32 cluster is from 8 sec to 20 sec and in the
Kuruwa cluster is from 4 sec to 12 sec. In our case, we took Gt = 8 sec for
the F32 cluster and Gt = 6 sec for the Kuruwa cluster as the constant value.
SWAPt = 1.5 sec in the F32 cluster and SWAPt = 1.2 sec in the Kuruwa cluster.
MPIc and NGc are assumed the same as the Blade cluster. SWAPt in the F32
cluster is a bit slower compared with its speed ratio with the Blade cluster. One of
the reasons is that the F32 cluster CPUs are not always dedicated to a particular
job. CPUs are shared with other jobs too. That decreases the time performance
of SWAPt. In addition, SWAP evaluation requires many I/O operations as well
as Disk R/W operations and those take most of its time when processing. So the
processor’s clock speed will not always make desirable speed up in SWAPt.
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Table 6 Execution time on multiple sites: Emulated Grid.

Pixel Hierar-
Model chical
Total Model

NPixel # of Computing Nodes Time Total
Time

g1 g2 g3 g4 (sec) (sec)
1 0 0 0 1,169 -

1 2 0 0 0 - 1,188
4 0 0 0 - 472

4 4 0 0 0 1,226 -
4 4 4 4 - 512

8 4 4 0 0 1,206 -
4 4 4 4 - 975

16 4 4 4 4 1,218 1,809
32 4 4 4 4 2,448 3,569
64 4 4 4 4 4,870 7,037

4.4.1 Discussion of the Results on Multiple Sites
The experimental results on the Emulated Grid testbed were conducted with

20 generations and 30 populations (presented in Table 6). The pixel number
(NPixel) is taken from the same RS images (section 2.2) with Synthetic field data.
From Table 6, when the pixel number is one then the Pixel Distribution model
can only run with one computing node. Whereas, the Hierarchical Distribution
model performs better with four computing nodes. However, with two computing
nodes (one master and one slave) the Hierarchical Distribution model does not
perform better than the Pixel Distribution model because of the additional MPI
communication overhead. It is clear from the table that the Hierarchical model
performs well, when the pixel number is less than the computing nodes number.

Table 7 presents the experimental results on the real Grid testbed with the
Hierarchical Distribution and the Pixel Distribution model with 15 pixels, 10
generations and 60 populations. The best performance for the Pixel Distribution
model was achieved in the single site experiment (1,378 sec). However, the Grid
with more CPU power makes the Hierarchical model performance (922 sec) better
than the best performance of the Pixel Distribution model.

The results in Table 6 and Table 7 highlight the major drawback of the Pixel
Distribution model, when the pixel amount is diminutive compared to the com-

Table 7 Execution time on multiple sites: Real Grid.

Execution # of Computing Nodes Total
Strategy Blade F32 Kuruwa Time

Cluster Cluster Cluster (sec)
10 5 - 3,189

The 5 10 - 3,329
Hierarchical 21 31 - 1,193
Distribution 16 16 8 1,004

Model 16 21 8 922
0 15 - 3,519

The Pixel 5 10 - 2,986
Distribution 10 5 - 2,750

Model 15 0 - 1,378

puting nodes number. For this particular workload (with 15 pixels, 10 generations
and 60 populations) more than 15 nodes will not create any advanced effects on
the Pixel Distribution model whereas the door is open for the Hierarchical model
to use more than 15 computing nodes (at most 60 nodes in each cluster).

However, the Hierarchical Distribution model performance greatly depends on
the number of clusters as well as the number of computing nodes in each cluster.
So, when the cluster number is equal to the pixel number and the computing node
number inside each cluster is equal to the population number, it may provide the
best performance for the Hierarchical Distribution model.⌈

NPixel
N Cluster

⌉
·
⌈

NPop
Avg NSlave

⌉
<

⌈
NPixel

T NSlave

⌉
· NPop (8)

In our rough estimate, the Hierarchical Distribution model performs better
than the Pixel Distribution model when formula (8) is satisfied. In formula (8),
N Cluster is the number of available clusters, Avg NSlave is the average number
of available worker nodes in each cluster and T Nslave is the total number of
available worker nodes.

4.4.2 Time Estimation of the Hierarchical Distribution Model on
Real Grid

The total running time of the Hierarchical Distribution model on the Grid, T
(sec), can be estimated by the maximum evaluation time required in the available
clusters.
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T = Max

⎡
⎢⎣nc

i=1CTi

⎛
⎜⎝

NPixeli,NGen,NPop,

NSlavesi,NGci,MPIci,

SWAPti,Gti,TPixele

⎞
⎟⎠

⎤
⎥⎦

Speedi =
1

CT1
i

[pixel/sec] (9)

NPixeli =
TotalPixel
n∑

k=1

Speedk

· Speedi [pixel] (10)

Here, nc is the total number of available clusters, NPixeli is the number of pixels
evaluated on ith cluster, NSlavesi is the available computing nodes in ith cluster,
SWAPti is one SWAP execution time. NGci, MPIci are the communication time
and Gti is the GRAM invoke time inside ith cluster. NGen, NPop and TPixele
will be the same for every cluster. CTi is the running time calculation function
for ith cluster and CTi value will be calculated by adding formulae (3) and (4).
For each individual cluster, all the above parameter values must be estimated
beforehand, as we did for the Hierarchical Distribution model single site (Blade
cluster) experiments. However, the challenging part of the CTi function is to
compute the NPixeli for the ith cluster. Formula (10) is formed to generate the
NPixeli. In formula (9), CTi

1 is evaluated from CTi function with NPixeli =
1 and other given parameters value. Table 8 presents the estimated running
time with NPixeli derived from formula (10) and the measured running time on
multiple sites (real Grid).

Because NPixeli derived from (10) is not an integer, we rounded the value as
shown in Table 8, where the fractional part of NPixeli, greater than 0.4 will be
rounded to the next integer or other wise discarded. However, the 7th row in
Table 8, is a slightly special situation, as each value is a candidate for rounding
to the next integer. However, the situation can be tackled by rounding NPixeli
to the next integer according to the priority basis from the highest Speedi to the
lowest Speedi cluster. The workload used in these experiments is 15 pixels, 60
populations and 10 generations.

For the most part, the results in Table 8 show that the accuracy of the esti-

Table 8 Comparison between the estimated and measured running time on multiple sites:
the hierarchical distribution model.

BN FN KN Actual RT ET Estimated
NPixeli NPixeli

B F K B F K
31 31 0 7 8 0 1,126 1,006 6.8 8.2 0
16 16 0 7 8 0 1,354 1,298 6.8 8.1 0
21 21 0 7 8 0 1,229 1,136 6.8 8.2 0
21 31 0 6 9 0 1,193 1,062 6.4 8.6 0
16 31 0 6 9 0 1,500 1,110 5.9 9.0 0
11 11 8 5 5 5 1,088 1,117 4.5 5.4 5.2
16 16 8 5 6 4 1,004 936 4.8 5.7 4.5
16 21 8 5 6 4 922 927 4.6 6.1 4.3

BN=#computing nodes on Blade cluster(B)
FN=#computing nodes on F32 cluster(F)

KN=#computing nodes on Kuruwa cluster(K)
RT=Real running time

ET=Estimated running time

mation model exhibits acceptable performance (90% accuracy) except on the 5th

row. The results on the 5th row exhibit the limitation of our analytical model.
Our model does not assume waiting time in a batch queue. However, the as-
sumption significantly degrades the accuracy where PC clusters are shared with
the external workload. So, the estimation of queue waiting time is still an open
question. We leave this issue for our future research.

5. Conclusion and Future Work

This paper presented the implementation of SWAP-GA on the Grid and dis-
cussed the impact of parallelization on the performance. Three different imple-
mentation strategies for the SWAP-GA model were successfully developed using
Ninf-G GridRPC framework on the Grid. Increasing the computing nodes num-
ber improves the performance of the parallel SWAP-GA models. The Pixel Dis-
tribution model and the Hierarchical Distribution model performances improve
by providing more computational power with respect to pixel and population
number. While the Pixel Distribution model exhibits the lowest communication
overhead and shows the best performance on some settings, the Hierarchical Dis-
tribution model is also a preferable model to implement SWAP-GA in Grid. The
situation, where the Hierarchical Distribution will perform better than the Pixel
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Distribution model can be traced by formula (8). Additionally, the Hierarchical
Distribution model is capable of utilizing all the available resources inside a Grid
testbed.

This paper also presented the analytical model to estimate the running time
of SWAP-GA, and the experimental results show the accuracy of the model.
The current model assumes that computing resources are dedicated or are lightly
loaded, i.e., the model does not assume waiting time in a batch queue. Estimation
of queuing time is an issue that should be solved, and we leave this issue for future
work.

The web based portal for SWAP-GA on a distributed platform is required and
it will be developed in the near future. Furthermore, GA can also be replaced by
any probabilistic calculative model such as MCMC (Markov Chain Monte Carlo).
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