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The MD5 (Message Digest 5) hash algorithm is useful for verifying the cor-
rectness and integrity of an arbitrary message, but the data dependency in the
critical path in its iterations causes a huge computational delay and reduces the
system’s throughput. This paper describes three-stage and four-stage pipeline
MD5 implementations (3SMD5 and 4SMD5) on FPGA, which removes the
data dependency in the iteration by the data forwarding method, and breaks
that single step computation into 3 or 4 pipeline stages. The four-stage pipeline
with both the keys and the constant table located in the BRAM could oper-
ate at the highest frequency, because its critical paths are shortened to one
adder and some data movements at all stages. The processing of two mes-
sages in the alternative form enabled the four-stage pipeline architecture to
achieve a higher frequency and throughput than related fine-grained pipelining
architectures. Thus, the implementations achieve a good trade-off between the
hardware size and the throughput.

1. Introduction

The MD5 algorithm, which is used to verify the integrity of a message, con-
tains many iterations with data dependency inside. The huge computation delay
generated in those iterations limits the entire throughput of the system.

MD5 was implemented on FPGA in commercial products 10)–14) or re-
searches 2)–5). They use coarse-grained-pipelining (dealing with multiple mes-
sages) 2),3) or fine-grained (dealing with multiple iterations in one message) ar-
chitectures 11)–14). The coarse-grained-pipelining increases the throughput by du-
plicating the hardware for simultaneous messages processes, and hence, the hard-
ware size increases significantly. The fine-grained approach of commercial prod-
ucts gives a high throughput with an acceptable hardware size, and achieves a
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high rate of throughput/hardware size, especially in Helion 13). However, the data
dependency in the critical path limits the number of pipeline stages (or generates
pipeline stalls), therefore it limits the maximum frequency and throughput.

Our aim is to develop a finer-grained-pipeline architecture for hash algorithms
implementations by dividing a single algorithm step into 3 or 4 subcomputations
and mounting into pipeline stages, which increases the system’s throughput for
a corresponding small hardware size. The data dependency among operands
in continuous steps, which limits the number of pipeline stages in fine-grained
architecture, is removed by forwarding the required data from one step to another
and by simultaneously processing two messages in an alternative manner. The
algorithm contains 64 iterations, 3 or 4 stages each. The higher number of pipeline
stages in a four-stage pipeline architecture helps reduce the critical path in each
stage to as small as one adder with some data movements, and increases the final
frequency, thus increases the throughput in comparison with the fine-grained
related work. The hardware size is kept small due to no hardware duplication in
comparison with coarse-grained architecture. It gives a good trade-off between
the hardware size and the throughput (a high rate of throughput/hardware size).

This paper describes three-stage and four-stage pipeline MD5 implementations
on FPGA, called 3SMD5 6),7) and 4SMD5 8),9) with different patterns, in which
keys and constants are located in registers or Xilinx Block RAM (BRAM). Then,
we show the effectiveness of our method by evaluating the implementations results
in terms of hardware size, frequency, max throughput, and trade-off.

2. The MD5 Algorithm

2.1 Algorithm
The MD5 algorithm calculates a 128 bit digest from an arbitrary message

through 4 steps of appending padding bits (Padding), appending length (Length),
initialization (Init), and message compression (HMD5) 1) as shown in Fig. 1.

(1) Appending padding bits is used to guarantee that the total length of the
appended message after adding a 64-bit length can be divided into 512-bit blocks
by adding a single 1-bit and multiple 0 s to the original message.

(2) The 64-bit showing the length of the original message is added to the above
result to make the final length become a multiple of 512.
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Fig. 1 MD5 algorithm.

(3) The initialization step starts the 128-bit message digest as 4 words of 32-bit,
called A, B, C, D which are constants.

(4) Message compression (HMD5) is the heart of the MD5 algorithm, which
processes all 512-bit blocks (Y0 to YL-1) of the padded message in sequence from
the first one, and compresses them into a 128 bit message digest. The HMD5

handles the 512-bit input data as 16 keys (X0 .. X15), 32-bit each.
The compression algorithm consists of 4 rounds, and comprises 16 steps each

as shown in Fig. 2. Each round uses a special function called F, G, H, and I,
respectively.

F (B, C, D) = (B ∧ C) ∨ (¬B ∧D) (1a)
G(B, C, D) = (B ∧D) ∨ (C ∧ ¬D) (1b)
H(B, C, D) = B ⊕ C ⊕D (1c)
I(B, C, D) = C ⊕ (B ∨ ¬D) (1d)

T is a 64-element constant table and is used by 64 steps. X is the 16 keys
memory (X0..X15). The key’s location relies on the round (k0, k1, k2, and k3) and
the internal step (i) 3).

k0(i) = i (2a)
k1(i) = (1 + 5i) mod 16 (2b)
k2(i) = (5 + 3i) mod 16 (2c)
k3(i) = 7i mod 16 (2d)

The main computation is represented by the equations (3)
A = B + ((A + Func + X[k] + T [i])� s) (3a)
A← D; B ← A; C ← B; D ← C (3b)

Fig. 2 Compression algorithm.

in which, � represents a rotation shift left operation where s relies on the step
number, and Func means functions F, G, H, and I in equations (1), based on
the round number.

The final values A, B, C, D of the HMD5 are generated at the finalization stage
by adding the results of 64 internal loops to the input values (AA, BB, CC, and
DD, respectively) as shown in Fig. 2.

2.2 Pipelining Method
The main computation of the Hash algorithm contains several rounds, which

use the same equations for computation. In each round many internal loops are
included. So, two pipelining methods have been investigated.

The coarse-grained pipelining method mounts several steps to one stage. The
hardware size will increase significantly together with the number of stages as
shown in SIG-MD5 2).

The fine-grained pipelining divides a single step into small stages, and helps
increase the frequency, and consequently the throughput of the main module.
We apply this method in our MD5 implementations with two novelties of data
forwarding, and two messages processing in an alternative manner. The data
forwarding technique is used to break the critical path in the iterations into 3
stages in the three-stage pipeline design. The data forwarding technique together
with the two messages processing in the alternative manner are used to divide
the critical path into 4 stages in a four-stage pipeline design. The latter guaran-
tees shorter critical paths to one adder and some data movements at all stages.
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Consequently, the architecture achieves a higher operation frequency compared
with related work.

3. Related Work

There is some related work on MD5 implementations. In this paper, we focus
on hardware implementation in terms of hardware size, throughput, and trade-off
of available commercial and research products.

3.1 Keywords definition
The bits/cycle rate is obtained by dividing the size of the data block by the

number of clocks needed to process that data. It shows the efficiency of the
computation cycle. Without pipelining, this number is 8 (512 bits divided by 64
cycles). In a fine-grained pipeline, some extra clocks are required, consequently
there is a reduction of the bits/cycle rate. In the two-stage pipeline for 1 message
architecture, this bits/cycle rate is 7.75 (512 bits divided by 66 cycles). In general,
the higher the bits/cycle is, the smaller the number of pipeline stages the design
has, so the longer the critical paths in the stages are. Thus, in no pipeline
architectures such as Yiak 4), Wang 5), and Deep 3), OL 11), and Bisq 10), it is hard
to increase the maximum frequency.

The throughput of the design is calculated by ((frequency*block size) / clocks
per block).

The trade-off of the design is calculated by dividing maximum throughput by
the occupied hardware slices. It expresses the efficiency of hardware used by the
design.

3.2 Iterative and Full Loop Unrolling Architecture
The work of Deep 3) represents the iterative and full loop unrolling architec-

tures, which the architectures are implemented based on the original algorithm.
The original computations (3) are calculated exactly 64 times to generate the final
result, so the architecture achieves a high bits/cycle rate of 8 (512 bits/64cycles).
However, the huge computation makes it hard to increase the throughput over
354 Mbps on a Virtex device.

3.3 Coarse-grained Architecture
The coarse grained pipeline architecture 2) groups several steps together to form

a pipeline stage. The common procedure is grouping by round, in which the same

function, constant, and key’s location function are used. Thus, the architectures
duplicate the number of adders but keep the number of other function units
as small as 1, 2, 4, 8, or 16. The whole algorithm computation for one mes-
sage is finished after several stages (up to 64 when one repetition is mounted
to one stage), and several messages (up to 64) fulfill all the stages to make the
computation power. The hardware is duplicated to meet the demand. A high
throughput of 5.8 Gbps is recorded for a SIG-MD5 system but the hardware use
is also over 10 times higher than others (11,498 hardware slices on Virtex-2).
This architecture can be used in extremely high speed security systems, which
require a high throughput without any restriction on the hardware size and the
power consumption.

3.4 Available Commercial Products
The commercial products 10)–14) come in form of IPs from some companies such

as ALMA 12), Bisq 10), Helion 13). The work carried out by Bisq 10) and OL 11)

seems to utilize a normal MD5 architecture (no pipeline at all), which requires
64 and 65 cycles to finish one block, and get the bits/cycle rate of 8. Hence,
it uses a small hardware size but the throughput is also low. Other commercial
products 12)–14) seem to utilize a two-stage pipelining for a single step approach
(the algorithm computation contains 64 steps, two pipeline stages in each step)
to implement high throughput MD5 cores. They utilize 66 cycles to process a
512-bit data block, which means they can process 7.75 bits/cycle. The pipeline
architecture helps them increase the maximum frequency, thus, the maximum
throughput with a slight increase in hardware size. The best one, Helion 13),
seems to contain two adder-levels in each stage, with a high trade-off of 1.48.

3.5 Integrated Architecture
The work of Yiak 4) and Wang 5) show the integrated architecture for both

SHA-1 and MD5. They also achieve the bits/cycle rate of 8 due to no pipeline
design. The complexity in the controller, the multiplicity of functions make the
work large in hardware size with a low throughput, but it can be used in multi
security environments.
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4. Data Dependency, Forwarding, and Dependency Removal

4.1 Data Dependency
Data dependency in equations (3) can be easily seen if we rewrite it as follows:

tempB = B (4a)
B = B + ((A + T + X + Func)� s) (4b)
A← D; C ← tempB; D ← C (4c)

Equations (4) show that the values of A, C, D rely on previous values of D, B,
C, respectively. The graph in Fig. 3 shows the data dependency in computing
the new value of B between the two continuous steps. The new value of B, which
is calculated by equation (4b) relies on previous values of A, B on current, values
of T, X, s and Func. X itself relies on its location denoted by k, which must be
calculated from the step number i. Func depends on the previous values of B, C,
D and the current step i. Figure 3 also shows that the new value of B (new B)
completely depends on the step number and current values of A, B, C, and D.
However, the internal values of T, k, X can be pre-computed because they rely
on the step number i only. Therefore, we can make a pipeline by pre-computing
k, and if we can pre-compute the value of A, the left half of Fig. 3 can also be
pre-computed.

4.2 Data Forwarding and Dependency Removal
The locations of operands A, B, C, and D at each step are required for the

forwarding operations. Figure 4 shows the data movement of A, B, C, and D
using equations (4) within 4 steps, in which n shows the values that change at
each step. In order to compute the new value B (n3) using equation (4b), the
current value A is required. Assume the values of operands A, B, C, and D at

Fig. 3 Data dependency in a single step.

two steps before are a, b, c, and d, respectively. The values for A at the current
and the preceding steps are transferred from operands D, and C respectively,
which means the values of current A for the n3 computation are located in D, or
C depending on the step number where we want to use it. In short, the values of
A used in equation (4b) can be taken as values of the operand D at the preceding
step or C at the step before the preceding one.

In this 3SMD5 and 4SMD5 implementations, we manage to implement a
single step of MD5 into a pipeline based on the data dependency in equations
(4). As can be seen in Fig. 3, the computation of B requires a huge sequenced
computation of k, X, Func and four 32-bit adders. This generates an enormous
latency. However, if we pay attention to the trace of A in Fig. 4, that latency can
be divided into smaller stages. The address of the key of the current step can be
pre-computed several steps before, because it relies mainly on the step number
i. The trace of A in Fig. 4 allows us to define the value of A at the current step
as D at the preceding step or C at the step before the preceding one. All that
makes it possible to pre-compute A+T+X up to 3 steps before. In other words,
the data dependency of the computation of B in the operand A is removed. The
new value of B now relies on the value of C at the step before the preceding one.
The pre-computation of A+T+X in some pipeline stages by forwarding the value
of C or D to A helps ease the delay in the critical path of (4b).

Fig. 4 Trace of A within 4 steps.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 3 108–119 (Dec. 2008) c© 2008 Information Processing Society of Japan



112 Multi-stage Pipelining MD5 Implementations on FPGA with Data Forwarding

5. Three-stage Pipelining Implementation

5.1 Three-stage Pipelining
In order to divide the MD5 algorithm into a three-stage pipeline, equations (4)

are re-written into
tempB = B (5a)
AT = A + T [i] (5b)
ATX = AT + X[k] (5c)
B = B + ((ATX + Func)� s) (5d)
A← D; C ← tempB; D ← C (5e)

in which, the current value of A, used for computing the new value of B (n3 in
Fig. 4) is forwarded from the step before the preceding one from C. This data
forwarding allows (5b) and (5c) to be computed one step earlier and two steps
earlier, respectively.

The method to divide the computations of equations (5) into 3 pipeline stages
of AT, ATX and Fold requires data forwarding for operand A as shown in Fig. 5.
The AT stage computes the value of A+T ((5b)) and the address of the key.
Then, the ATX stage computes A+T+X[k] value ((5c)). Finally, all values are
gathered to form B in the Fold stage ((5d)). At the same time, the data movement
among A, C, D occurs ((5a) and (5e)) as shown in Fig. 4. The biggest latency
occurs at the Fold stage with the Func, shift and add operations.

Figure 6 shows the operations of those pipeline stages inside 64 steps of the
HMD5 algorithm. When a compression of a key is computed, it first goes to
the AT stage for the preparation of A plus a constant. At the ATX stage, the

Fig. 5 Data forwarding and pipelining for main computation.

data provided by the AT is added to the required key. At this time, the AT
module is used for the next data preparation. The same operation occurs when
data move into the Fold stage, and the final result of the required step is given,
while the ATX and AT modules are used to prepare values for the compression
computations of the next step and two steps later, respectively. In order to
complete the compression of one block of data, 66 clocks are required from the
starting time.

5.2 Data and Pipeline Stage Implementation
There are 4 different data with different lengths involved in the design of the

MD5 algorithm. They include the keys, constant values, shift values, and the
message digest data. In the implementations, the digest data is designed as
matrices of registers that contain 4 elements, while the keys and 64-element
constant table can be located in a BRAM or the registers. The rotation values
(shown by s), used for the rotation operations, are specified as a 16-case rotation
unit. Other intermediate data are specified as 32-bit registers. The pipeline
stages are implemented with two pipeline registers called AT and ATX. Figure 7
shows the data movement and operations among A, B, C, and D with pipeline
registers. The register AT is computed at the AT stage by (5b), in which A is
replaced by C (forwarded from C in other words). ATX value is computed at
the ATX stage by (5c). So, at the current step, the values of A, B, C, D, and
A+T+X are available for the equation (5d).

5.3 The Compression Function Implementation
The three-stage pipeline implementation of the compression module HMD5

(3SMD5) contains 3 stages: AT, ATX, and Fold as shown in Fig. 8. Those
stages communicate with each other using registers AT, k and ATX. The regis-
ter AT is used to store the value of C+T value, which means A+T at the Fold
stage due to data movements from C to D in AT, then D to A in ATX. The

Fig. 6 Three-stage pipeline operations.
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location of the key is stored in the register k, which means k(i+2) at the AT
stage. ATX register represents the addition of those 3 data for the current step.
The registers AT and k are used to connect the AT and ATX stages, while the
register ATX is used to connect the ATX and Fold stages.

The AT stage contains two computation units of 32-bit adder and k(i). The
adder simply adds two 32-bit data of A and a constant T[i] in equation (5b). The
k(i) module is used to generate the key’s location in a register or the correspond-

Fig. 7 Data movement with pipeline registers.

Fig. 8 Three-stage pipeline design of HMD5.

ing key address in the BRAM using equations (2). However, this stage occurs
two steps (clocks) before the current Fold stage. Hence, the counter must be i+2
in the T[i] and k(i) module, while A is taken as C following the trace shown in
Fig. 4. The multiplexer with the input of A, C, D in Fig. 8 at this stage is used
to solve the problem of equation (5b) at the first 3 steps, when the values of A
are located in A at the first, D at the second, and C at the third steps. After this
stage, the value of A+T and the address of the corresponding key are stored and
transferred to the ATX stage. The adder in ATX adds the key at the address
shown by k with the value of AT, and stores the result into the ATX register.
The Fold stage completes the computation of equation (5d) using Func(B, C, D)
module, � s module that specifies the rotation shift for s bits by utilizing a
16-case multiplexer, and two 32-bit adders. The result of this is written back to
the digest value A, B, C, and D following equation (5e).

Two implementations are given. The 3SMD5 locates all keys and constants
inside the design in registers, while the 3SMD51 locates the keys in the BRAM.
In addition, the Func module are combined with the shift module using 4 parallel
adders and a direct wire selection in order to decrease the delay of the Fold stage
in the 3SMD51 version.

6. Four-stage Pipelining Implementation

As shown in Fig. 8, the hardware size as well as the number of computation
layers in the Fold stage is much larger in comparison with others. It generates
an extra delay to the system, and reduces the throughput. Therefore, this stage
should be broken into smaller ones to make balance in the computation time,
and to increase the throughput of the system.

6.1 Data Dependency in Four-stage Pipelining
In order to break the MD5 main computation into 4 stages, the equations (5)

are rewritten:
tempB = B (6a)
AT = A + T [i] (6b)
ATX = AT + X[k] (6c)
S = (ATX + Func)� s (6d)
B = B + S (6e)

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 3 108–119 (Dec. 2008) c© 2008 Information Processing Society of Japan



114 Multi-stage Pipelining MD5 Implementations on FPGA with Data Forwarding

Fig. 9 Data dependency among operands in equations (6).

Fig. 10 Four-stage pipelining with two alternate messages.

A← D; C ← tempB; D ← C (6f)
in which equation (5d) is broken into (6d) and (6e). As proved from equations
(5) and Fig. 4, equations (6b) and (6c) have very little data dependency on the
previous values of the operands A, B, C, and D because we can forward the values
of D, C, and B into A for advanced use at different time. However, equations (6d)
and (6e), which are used to compute a new value of the operand B, are heavily
dependent on the previous value of B. In other words, (6e) has data dependency
on (6d) and vice versa. Hence, no pre-computation can be done for these two
equations.

Figure 9 shows the data dependency among the operands in equations (6). It
clearly shows that AT and ATX can be pre-computed any time by forwarding
B, C, and D to A, but S and B ((6d) and (6e)) must be computed one after the
other.

6.2 Four-stage Pipelining with Two Alternative Messages
The four-stage pipelining with two messages contains 4 stages of AT, ATX, Shift

and Final as shown in Fig. 10. The two messages are computed alternatively for

each step, in which, X.z and Y.z show the message X and Y at the step number z.
The Y message process is added to utilize the spare time generated by the data
dependency of S into B. The two messages can be processed after 128 clocks (64
steps for each).

The value AT is calculated by equation (6b) before being transferred to the
ATX stage ((6c)). At that time, the AT module turns to compute value AT
for the next step. The same thing occurs when computing the value S at the
Shift stage ((6d)). However, the Final stage ((6e)) occurs in a different way. It
is caused by a mutual data dependency between S and B (equations (6d) and
(6e)) as shown in Fig. 9. The Shift and the Final stages for one message must
be executed like in the white blocks in Fig. 10. One more clock is required here
to complete the computation, consequently it generates a spare time (marked by
the dimmed blocks) of all stages in every two clocks. In order to increase the
throughput of the main computation module, the spare time generated by a data
dependency between S and B is used to calculate the message digest of another
message in an alternate form.

6.3 Pipeline Registers and Data Movement
In order to realize the design into hardware, locations of operands, data move-

ment, and operations of pipeline registers are required. Figure 11 shows the
data movement in a four-stage pipeline with two messages, X and Y. In order
to process two alternate message digests, the message digest operands A, B, C,
and D are extended into 64 bits each. In general, the high 32 bits are used for
the message X, while the remaining low bits are used for the message Y.

Since it supports for the computation of equation (6e) at the first step, the
computation of (6b) must start 3 steps before by adding a0 (message digest A of
message X) with the constant. The computation starts from 0, counts up and
ends at 127 (128 clocks). When the final A (A63) appears at B, the finalization
(A+AA in Fig. 2) starts together with the next generation of final B, C, and D.

In order to process the two messages X and Y in an alternative computation
manner given in Fig. 10, their operands in low and high parts must be swapped
during the normal data movements. Hence, two types of data movements are
combined in Fig. 11: the shift from high parts to low ones (to swap the target
messages) and the normal movements following equation (6f). The combination
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Fig. 11 Data movement in four-stage pipeline with two alternate messages.

makes data move from low parts of B, C, and D to high ones of C, D, and A,
respectively. It also defines that the final result of (6e) must be written into
the high part of B. The input operands for each pipeline stage are also selected
from the low/high parts of operands based on the stages and locations of the
corresponding data. Thus, all modules have input and output data at the same
locations (registers). It allows us to remove many multiplexers for an efficient
implementation.

6.4 Implementation
Figure 12 shows the hardware implementation of the four-stage pipelining

MD5 (4SMD5) with two messages computed alternatively.
In comparison with the 3SMD5 version, the message digest operands and

the key memory sizes are doubled from four 32-bit operands and sixteen 32-bit
keys to four 64-bit operands (A, B, C, and D in Fig. 11) and thirty-two 32-bit
keys. The capacity of the counter is doubled by adding one more low-bit for
message control which we denote MC-bit. The counter operates by incrementing
itself by one every clock (into MC-bit). Then, the MC-bit is extracted for key
control, while the remaining 6 bits are used in the same manner with the previous
implementation of 3SMD5.

Fig. 12 Four-stage pipeline design with two messages.

The BRAM, used to store the 32 keys, is divided into two parts; the 16-element
lower part is used for the first message, while the higher part is used for the second
one. The address generation module (address gen) combines the result of k(i)
with the MC-bit of the counter to generate the address for the corresponding key.

Besides, the Fold stage is divided into the Shift and Final stages. The Shift
stage is in charge of computing functions and the shift value in equation (6d),
and the Final stage is used to compute the final addition for B shown by equation
(6e). The data movements among the operands follow values given in Fig. 11.

The AT stage contains a 32-bit adder and the key address generation. The
key address generation module combines the result of k(i) with the MC-bit to
generate the physical address of the corresponding key and message. The adder
simply adds the high 32-bit of D, which represents the value of A (for that message
two clocks later) and constant T[i] in equation (6b) together. After this stage,
the value of A+T is stored and transferred to the ATX stage. The address of
the corresponding key is also given for the next stage preparation. The 32-bit
adder in ATX adds the value of the key from the external bus (Keys), which is
selected by address gen, to the value of AT register before storing the result into
the ATX register. The Shift stage completes the computation of equation (6d)
using 4 adders in combination with a multiplexer module and 4 logic functional
modules F, G, H, and I. The 4 functions work with the input data located in the
high half of the message digests registers B, C, and D. The result of the Shift
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Table 1 Hardware size and performance.

Name Devices Hardware No. of Max Freq MaxThroughput Bits/cycle Trade-off
slices BRAMs (MHz) (Gbps)

3SMD5 Virtex-2 1,010 0 88.0 0.68 7.64 0.67
3SMD51 Virtex-2 885 1 96.1 0.75 7.64 0.85
4SMD51 Virtex-2 1,064 1 137.6 1.04 7.75 0.98
4SMD52 Virtex-2 997 1 157.4 1.26 7.75 1.26
4SMD52 Virtex-4 1,008 1 182.8 1.44 7.75 1.43

1: keys are located in BRAM
2: keys and constant table are located in BRAM
Trade-off: Max throughput (Mbps) divided by hardware slices

stage is written into pipeline register S for the Final stage, which simply adds the
value in register S with the value of B (located at the low part of register B) in
equation (6e) to generate the intermediate message digests. The result is written
into the high part of register B for the swapping purpose as shown in Fig. 11.

Two implementations are given, 4SMD51 and 4SMD52. In 4SMD51 design,
the keys are located in the BRAM, while the constant table is located in the
registers. In 4SMD52 design, both the constant table and the keys are located
in the BRAM.

7. Implementation Results and Discussions

7.1 Implementation Results
The pipelined MD5 design was implemented on the Virtex-2 and Virtex-4 de-

vices and compiled by Xilinx ISE 8.1 version. Table 1 shows the implementa-
tions results in terms of hardware size, speed, throughput, rate of bits/cycle, and
trade-off.

(1) Hardware size and performance
In 3SMD5, all the keys and constants were stored in the registers inside the

hardware. Thus, the hardware size remained large with 1010 hardware slices in
use. It reduced significantly to 885 slices if the keys were located in the BRAM
in the 3SMD51. Besides, the improvement in the Func module, which utilizes
4 parallel adders and a multiplexer for the shifter, helped increase the speed of
the compression module, hence increased the throughput 10.3% up, and achieved
750 Mbps in 3SMD51.

Table 2 Hardware size and performance of related work.

Name Devices Hardware No. of Max Freq Max Thpt Bits/ Trade
slices BRAMs (MHz) (Gbps) cycle -off

SIG 2) Virtex-2 11,498 10 75.5 5.85 - 0.51

SIG 2) Virtex-2 5,732 0 80.7 2.40 - 0.42

Researchers’ Yiak 4) Virtex-2 797 - 96.0 0.77 8.00 0.97

work Wang 5) ASIC - - - 0.52 8.00 -

Deep 3) Virtex 4,763 0 71.4 0.35 8.00 0.07

Helion 13) Virtex-4 641 1 122.0 0.95 7.75 1.48

Alma 12) Virtex-4 683 1 118.0 0.92 7.75 1.35

Commercial OL 11) Virtex-2 614 1 62.0 0.49 8.00 0.80

products Bisq 10) Virtex - - 50.0 0.40 8.00 -

Media 14) - - - - - 7.75 -

Max Freq: Maximum frequency
Max Thpt: Maximum throughput

In terms of the efficiency of the computation cycle, the 3 extra clocks required
in our 3SMD5 make that rate be 7.64 (512 bits divided by 67 clocks). The 4
extra clocks required to process two messages in our 4SMD5 make the rate of
7.75 (1024 bits divided by 132 clocks).

(2) Three-stage and four-stage pipeline comparison
The four-stage pipeline with keys and a constant table located in the BRAM

achieves the best performance because it has more balanced computation time
among the stages. In 4SMD51, the throughput increased nearly 39% compared
with 3SMD51, and achieved 1.04 Gbps, while the hardware size increased only
20% due to the hardware complexity of the messages digest registers. The re-
duction in the number of registers used in 4SMD52 by utilizing the BRAM
also helped reduce 6.3% of the hardware size. Thus, the maximum throughput
increased 21% in comparison with the 4SMD51 in Virtex-2.

7.2 Comparison with Related Work
The effectiveness of our implementation can be seen by comparing with related

work. Table 2 shows other significant results in both commercial products and
researchers.

(1) Work of researchers
Among the system given by researchers, the SIG-MD5 2) has the best through-

put (2.40 and 5.85 Gbps), but requires a huge hardware size. Hence, the trade-off
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of this design (0.51) is not good in comparison with ours on the same device (1.26).
It can be used in an extremely high throughput system with no restriction on
the hardware size. The work of Yiak 4) achieves a high bits/cycle rate due to the
absence of any pipeline implementation. Architectures without any pipeline such
as those in Yiak 4), Wang 5), and Deep 3) make it hard to increase their maximum
frequency. Hence, our 4SMD5-designs and implementations achieved a better
throughput and trade-off than them.

(2) Commercial products
In comparison with related commercial products, our 4SMD52 achieved better

results than almost related work, except the Helion 13). Helion 13) achieves a high
throughput (946Mbps) with a good trade-off (1.48) and an acceptable hardware
size. On the same device, our work of 4SMD52 achieved a higher throughput
(1.44Gbps) with nearly the same trade-off of 1.43. Hence, this design can be
used with embedded systems that require a high throughput with an acceptable
hardware size.

The trade-off in this research focuses on the hardware slices of the design but
not the BRAMs and supported modules such as ports and data bus for messages
transmission. Two Helion cores can simultaneously process two messages, and
achieve 32% higher in throughput than our four-stage pipeline with keys and
constant located in BRAM (4SMD52), while occupying 27% more in hardware
size. However, the number of BRAM and supported modules such as the bus,
ports are doubled. Based on our experiment, 65 slices are required for 64-element
constant table if the table is implemented in a hardware instead of a BRAM.
Hence, 1347 hardware slices and one BRAM are required to achieve 1.9 Gbps by
using two Helion cores. The total trade-off of using two Helion cores, together
with all supported modules, will be smaller than 1.41, so lower than our 4SMD52.

7.3 Mixing Fine-grained and Coarse-grained Pipeline Architecture
The improvement by mixing coarse-grained pipeline in the message level with

fine-grained pipeline at the iteration level can help the design achieve a through-
put close to that of SIG-MD5 2) with a reasonable hardware size. Four coarse-
grained pipeline stage respond for 4 rounds, 16 iterations each. Each itera-
tion in the coarse-grained stage contains 4 fine-grained pipeline stages as shown
above. Each round simultaneously deals with two messages in an alternative

Table 3 Delay time of each stage on Virtex-2.

Stage AT ATX Fold (ns) Total delay
(ns) (ns) Shift Final (ns)

3SMD51 2.6 2.6 10.76 11.35
4SMD51 2.6 2.6 1.63 5.85 7.90

Normal MD5 - 17.38

manner. The design allows the processing of 8 messages simultaneously. Thus,
the throughput is expected to be 4 times higher than that of the fine-grained
four-stage pipeline design, and gets 5.76 Gbps. The hardware needed for adders
and immediate message digests will be 4 times higher, and occupies about 4000
slices with 4 BRAMs. Thus, this approach can achieve a throughput close to
that of SIG-MD5 with a reasonable hardware size, although the design and the
verification are complicated.

7.4 Delay Time and Discussion
In order to compare the computation time among stages as well as the effec-

tiveness of the new pipeline architecture, other versions for the 3SMD51 and
4SMD51, in which stages were clearly separated by modules, were implemented.
Table 3 shows the delay of each module inside as well as the total delay of the
3SMD51 and 4SMD51 in comparison with the delay of a normal MD5 without
any pipeline technology. In the same implementation condition, breaking the
single step shown in Fig. 3 into 3 small stages helps decrease the delay of a nor-
mal MD5 35% down in the 3SMD51. Then, the big computation time module,
Fold, when broken into two in the 4SMD51 also helps decrease the delay a futher
30% down in comparison with the 3SMD51. However, the hardware size slightly
increases from 972 slices of the normal MD5 (without the BRAM) to 1,010 and
1,064 slices due to the overhead of pipelining in 3SMD51 and 4SMD51, respec-
tively.

In the 4SMD51, the delay in the Final stage, caused by the final data move-
ment, is much bigger than other delays. Thus, this stage should be improved to
achieve a higher throughput, and so, improves the rate of maximum throughput
per hardware slice.
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8. Conclusion

This paper has described the three and four-stage pipeline designs and imple-
mentations of the MD5 algorithm. The four-stage pipeline with both the keys
and the constant table located in the BRAM could operate at the highest fre-
quency. This is because its critical paths are shortened to one adder and some
data movements at all stages. Processing two messages in an alternative form
enabled the four-stage pipeline architecture to fulfill all its stages and achieve
a higher frequency and throughput than related fine-grained pipelining archi-
tectures. Thus, this fine-grained pipelining architecture helps achieve a good
trade-off between the hardware size and the throughput. Furthermore, the archi-
tecture allows an improvement in the mixing of coarse-grained and fine-grained
pipeline architectures.
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