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In this paper, we propose a fully pipelined multishift QR algorithm to com-
pute all the eigenvalues of a symmetric tridiagonal matrix on parallel machines.
Existing approaches for parallelizing the tridiagonal QR algorithm, such as the
conventional multishift QR algorithm and the deferred shift QR algorithm, have
suffered from either inefficiency of processor utilization or deterioration of con-
vergence properties. In contrast, our algorithm realizes both efficient processor
utilization and improved convergence properties at the same time by adopting
a new shifting strategy. Numerical experiments on a shared memory parallel
machine (Fujitsu PrimePower HPC2500) with 32 processors show that our al-
gorithm is up to 1.9 times faster than the conventional multishift algorithm and
up to 1.7 times faster than the deferred shift algorithm.

1. Introduction

In numerical linear algebra and its applications, computing the eigenvalues of
a real symmetric matrix is one of the most important problems. Recently, eigen-
values of matrices of the order of more than 100,000 need to be computed in
the analysis of protein structures 8),12). To solve such large problems, parallel
computing is one of the most promising approaches. In particular, the use of
shared memory parallel machines has become increasingly popular with the ad-
vent of multicore processors. To attain high performance on such machines, we
need an efficient parallel algorithm that can fully utilize all the processors, while
requiring small parallelization cost, that is, a small number of inter-processor
synchronizations 19).

In the standard procedure to solve a dense symmetric eigenproblem, we first
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reduce the matrix to tridiagonal form by the Householder algorithm and then
compute the eigenvalues of the tridiagonal matrix. There are several approaches
for the second step, such as the bisection algorithm 20), the single-shift QR algo-
rithm 7),15), and the divide & conquer algorithm 4),10). Among them, the single-
shift QR algorithm has a long history and is widely used as an efficient and
reliable algorithm. When the matrix order is n, the first step needs about 4n3/3
floating point operations, while the second step needs about O(n2) operations.
However, the first step can be parallelized efficiently using a large number of
processors 3),6),13). As a result, the relative computational time of the second step
increases with the number of processors. We therefore focus on the second step.
The purpose of this paper is to speed up the single-shift QR algorithm for the
tridiagonal matrix by parallel computing.

The single-shift QR algorithm computes the eigenvalues by applying a series
of orthogonal transformations to the input tridiagonal matrix. It introduces an
origin shift to speed up the convergence. As a generalization of this, Bai et al.
proposed the multishift QR (M-QR) algorithm 2), which introduces m shifts and
performs m steps of the single-shift QR algorithm at once. The operations in
one step of the single-shift QR algorithm, known as bulge-chasing, is inherently
sequential and is difficult to parallelize. On the other hand, in the M-QR algo-
rithm, m bulge chasing operations can be done in a pipelined fashion and we can
parallelize the algorithm by allocating one processor to each bulge.

To accelerate the convergence of the single-shift QR algorithm, we need to set
the shift as close to an eigenvalue as possible. To this end, we update the shift
after each QR step because the shift computed from a newer iteration gives better
approximation to the eigenvalue. In the M-QR algorithm we update m shifts at
the end of each multishift QR step, that is, after m bulge-chasings have finished.
However, in the M-QR algorithm, the m bulge-chasing operations are introduced
one by one, so m iterations don’t finish all at once. Consequently, the processor
that finishes the bulge-chasing first idles until the last processor finishes the work.
Thus, the M-QR algorithm cannot make all processors busy.

To fully utilize the processors, it is necessary for a processor that has finished
the bulge-chasing to start the next iteration without waiting for the completion
of other processors’ work. This is possible if we use older shifts, for example,
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15 Fully Pipelined Multishift QR Algorithm for Symmetric Tridiagonal Eigenproblems

shifts computed at the end of the multishift QR step that is two steps before
the current one. This is known as the deferred shift QR (D-QR) algorithm 16)

and allows us to make processors busy all the time. However, this algorithm
shows slower convergence than the M-QR algorithm because the shifts in this
algorithm are computed from an older iteration and therefore do not approximate
the eigenvalues so well as the shifts in the M-QR algorithm.

In this paper, we propose a fully pipelined multishift QR (FPM-QR) algorithm
to improve the convergence property of the the D-QR algorithm while keeping
the level of processor utilization. To attain this, we reorganize the algorithm so
that all the processors, not only the m-th processor as in the existing algorithms,
update a shift after each bulge-chasing and start the next step with the new shift
as soon as possible. In this way, we can make all the processors fully operative. In
addition, the FPM-QR algorithm is expected to show better convergence than the
D-QR algorithm since the shifts used in the FPM-QR algorithm contain newer
information. Although the work for shift computation increases by m times, we
can hide the increase by rebalancing the load among the processors. A brief
summary of the FPM-QR algorithm is given in a survey 22), although without
any numerical or performance results.

This paper is structured as follows: in Section 2, we give a brief explanation
about the single-shift QR algorithm, the M-QR algorithm, and the D-QR algo-
rithm. Section 3 gives the details of our new algorithm: the FPM-QR algorithm.
Experimental results on a shared memory parallel machine are presented in Sec-
tion 4. Finally, Section 5 gives some concluding remarks.

2. The Tridiagonal QR Algorithm and Its Parallelization: Existing
Algorithms

We treat the following standard eigenvalue problem:
Tx = λx, (1)

where T is an n×n real symmetric tridiagonal matrix. Our aim is to get all eigen-
values {λi}ni=1 of T quickly. In this section, we give a brief review of eigenvalue
computation by the single-shift QR algorithm and its parallelization.

2.1 The Single-shift QR Algorithm
Given a real tridiagonal matrix T , the single-shift QR algorithm produces a

series of matrices that is orthogonally similar to T using the orthogonal matrix
Q given by the QR decomposition of the matrix. The algorithm is shown in
Algorithm 1. Iterations of this algorithm make T converge to a diagonal matrix
under suitable assumptions 9). By introducing the origin shift si, which is an
approximation of an eigenvalue of T , the convergence can be accelerated. Let
Shift (m, Ti+1) be the set of the eigenvalues of the m×m trailing submatrix of
Ti+1. The Wilkinson shift is the one which is closer to the (n, n) element of Ti+1

in Shift (2, Ti+1). With this shift, the single-shift QR algorithm has the property
of global convergence and the asymptotic convergence rate is usually cubic 21).

Algorithm 1 The single-shift QR algorithm
T1 = T

Computation of Shift (2, T1)
s1 ← the shift which is closer to the (n, n) element of T1

for i = 1, 2, . . . do
Ti − siI → QiRi

Ti+1 ← RiQi + siI
(
= QT

i Ti Qi

)
if any subdiagonal element e is close to zero then � Convergence check

set e = 0 to obtain Ti+1 =

(
TA 0
0 TB

)
apply the single-shift QR algorithm to TB and Ti+1 ← TA

end if
Computation of Shift (2, Ti+1)
si+1 ← the shift which is closer to the (n, n) element of Ti+1 � Update of

shift
end for

In a practical implementation, the effect of the shift is introduced implicitly 9),
and one step of the single-shift QR algorithm is composed of n − 1 times of
similarity transformations. This operation is called bulge-chasing. A bulge is set
at the upper left corner of the matrix at the first transformation and successive
transformations chase the bulge down by one row at a time until the tridiagonal
form is finally recovered. The k + 1 th transformation cannot be done until the
k-th one finishes, so the bulge-chasing is a sequential procedure. After the i-th
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16 Fully Pipelined Multishift QR Algorithm for Symmetric Tridiagonal Eigenproblems

Fig. 1 Pipelined bulge-chasing in the M-QR algorithm (m = 2, M = 2).

QR step, the shift is updated to speed up the convergence. The new shift si+1 is
used in the next i + 1 th step, so this algorithm cannot start the step i + 1 until
the new shift is prepared at the end of the step i. Such a sequential procedure
makes it difficult to parallelize the single-shift QR algorithm.

2.2 The M-QR Algorithm
2.2.1 The Algorithm and Its Parallelization
We can generalize the single-shift QR algorithm to perform m steps at once

using m shifts. This is called the M-QR algorithm 2) and is shown in Algorithm 2.
Here, Ti,j denotes the tridiagonal matrix in the i-th multishift QR step right
before the j-th shift is applied, si,j is the j-th shift in the i-th multishift step.
The m shifts introduced in the step i + 1 are the m eigenvalues of the m × m

trailing submatrix of Ti,m+1, that is {si+1,j}mj=1 = Shift (m, Ti,m+1). For the
computation of Shift (m, Ti,m+1), the single-shift QR algorithm can be used.

As the iteration proceeds, the subdiagonal elements become smaller, and finally
one of them can be regarded as zero. At this point, this element is set to zero
and the matrix is split into two submatrices TA and TB . If the size of TB is less
than or equal to m, the eigenvalues of TB are computed with the single-shift QR
algorithm and the M-QR algorithm proceeds with TA as a new input matrix.
This deflation procedure is used also by the D-QR and FPM-QR algorithms to
be explained later.

The multishift scheme enables us to parallelize the original algorithm by chasing
more than one bulge at once. Let the number of processors equal that of the shifts
and assume that each processor chases one bulge. Then we can parallelize one
step of the M-QR algorithm as follows. Assume that the matrix is divided into
M regions horizontally. Here, M ≥ m. The simple case of m = 2 and M = 2 is
shown in Fig. 1. The first bulge is introduced at the top left corner and chased

by processor 1. When it passes through the first region, the second bulge is
introduced and chased by processor 2. Each chasing of bulge is independent and
can be executed in a pipelined fashion 17), but the bulges have to be kept at
least three rows apart to avoid conflict. By making sure that there is only one
bulge in one region, no conflict occurs. This can be guaranteed by inserting an
inter-processor synchronization when a bulge passes the boundary of the regions.

In this paper, we assume the number of processors equals that of the shifts.
Namely, one processor moves one bulge.

Algorithm 2 The M-QR algorithm
T1,1 = T

Computation of Shift (m, T1,1)
for j = 1, 2, . . . , m do

s1,j ← the j-th smallest shift
end for
for i = 1, 2, . . . do

for j = 1, 2, . . . , m do
Ti,j − si,jI → Qi,jRi,j

Ti,j+1 ← Ri,jQi,j + si,jI
(
= QT

i,j Ti,j Qi,j

)
if any subdiagonal element e is close to zero then � Convergence check

set e = 0 to obtain Ti,j+1 =

(
TA 0
0 TB

)
if the order of TB is less than or equal to m then

apply the single-shift QR algorithm to TB and Ti,j+1 ← TA

end if
end if

end for
Computation of Shift (m, Ti,m+1)
for j = 1, 2, . . . , m do � Update of m shifts

si+1,j ← the j-th smallest shift
end for
Ti+1,1 = Ti,m+1

end for
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17 Fully Pipelined Multishift QR Algorithm for Symmetric Tridiagonal Eigenproblems

Fig. 2 Computational sequence of the M-QR algorithm (m = 2). Upper: M = 2. Lower:
M = 4.

2.2.2 The Trade-off between Processor Idle Time and Synchroniza-
tion Cost

The processor j which has completed one sweep of the j-th bulge becomes idle
until other m− j bulge-chasing is finished since only then can the shifts used in
the next step be computed. In addition, the processor j is forced to wait to start
the next step until the foregoing j − 1 bulges pass through the first region of the
matrix. These idle times occur at every step in the M-QR algorithm.

The idle time of processors can be decreased by shortening the distance between
the bulges. To attain this, we need to divide the matrix into more and more
regions, see Fig. 2. But this also increases the number of synchronizations, so
there is a trade-off between the efficiency of processor utilization and the cost
of synchronization. Under computational environments with low or no cost of
synchronization, such as the vector processors or SIMD machines, the idle time of

Fig. 3 Effect of the division number of the matrix on the execution time of the M-QR algo-
rithm (m = 4). Details of the testing matrix (Type 1, n = 50000) and the computa-
tional environment are described in Section 4.

processors can be minimized by choosing the largest possible division number 14).
So the M-QR algorithm with this choice of parameter can achieve the optimal
performance on vector processors or SIMD machines. But this is not the case for
most environments which have considerable synchronization costs.

2.2.3 The Optimal Division Number
To maximize the performance of the M-QR algorithm, it is necessary to choose

the division number appropriately for each computational environment. By mod-
eling the execution time of the M-QR algorithm, we have derived the optimal
division number Mopt as follows:

Mopt =

√
n (m− 1)

4

(
tbulge

tsync

)
, (2)

where n is the order of the matrix, m is the number of shifts, tbulge is the time of
moving a bulge down by one row, and tsync is the time for one synchronization.
The last two parameters are dependent on the computational environment. The
derivation of Eq. (2) is given in Section A.1. Eq. (2) shows that an environment
with low cost of synchronization relative to the computational cost allows us to
divide the matrix into more regions than standard m areas.

Figure 3 shows an experimental result that illustrates the effect of the divi-
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18 Fully Pipelined Multishift QR Algorithm for Symmetric Tridiagonal Eigenproblems

Fig. 4 Computational sequence of the D-QR algorithm (m = 2).

sion number M on the parallel performance. The optimal division number Mopt

predicted by Eq. (2) is 40 in this situation. As the number of regions increases,
the execution time decreases rapidly due to the reduction in the idle time, but
dividing into too many regions increases the execution time due to large synchro-
nization costs. As shown in the graph, the optimal division number obtained
from our model actually achieves near-optimal performance. However, note that
the performance in Fig. 3 is a compromise between reducing the idle time and
reducing the synchronization cost. If we can eliminate the idle time, it may be
possible to further improve the performance. We will pursue this possibility in
the following sections.

2.3 The D-QR Algorithm
The D-QR algorithm, or the M-QR algorithm with deferred shifts 16), has an

advantage over the basic M-QR algorithm in terms of efficiency of the use of
processors. This algorithm is given by Algorithm 3. In the M-QR algorithm, the
shifts {si,j}mj=1 used in the i-th step are updated after finishing all bulge-chasings
at the step i− 1, so the idle time of processors emerges at each step. In contrast,
the step i of the D-QR algorithm uses shifts {si−1,j}mj=1, which are updated after
all bulge-chasings at the step i−2 have finished. This algorithm therefore makes
it possible to start the step i before finishing all the sweeps of bulges at the step
i− 1, because the shifts are already available, see Fig. 4.

It has been observed that the use of older shifts in the D-QR algorithm increases
the number of iterations before convergence. This is because these shifts do not
contain the effects of the i−1 th multishift QR step and are therefore not such a
good approximation to the eigenvalues as the shifts used in the M-QR algorithm.

The local convergence rate of the D-QR algorithm is shown to be quadratic 16),
while that of the M-QR algorithm is shown to be cubic 18). It may be possible
to improve the performance of the parallel QR algorithm if we modify the D-QR
algorithm to use the shifts that contain new information as much as possible,
while keeping the pipeline fully operative.

Algorithm 3 The D-QR algorithm
T1,1 = T

Computation of Shift (m, T1,1)
for j = 1, 2, . . . , m do

s0,j = s1,j ← the j-th smallest shift
end for
for i = 1, 2, . . . do

for j = 1, 2, . . . , m do
Ti,j − si−1,j I → Qi,jRi,j

Ti,j+1 ← Ri,jQi,j+ si−1,j I
(
= QT

i,j Ti,j Qi,j

)
if any subdiagonal element e is close to zero then � Convergence check

set e = 0 to obtain Ti,j+1 =

(
TA 0
0 TB

)
if the order of TB is less than or equal to m then

apply the single-shift QR algorithm to TB and Ti,j+1 ← TA

end if
end if

end for
Computation of Shift (m, Ti,m+1)
for j = 1, 2, . . . , m do � Update of m shifts

si+1,j ← the j-th smallest shift
end for
Ti+1,1 = Ti,m+1

end for

The optimal division number of the matrix for the D-QR algorithm is equal to
the number of shifts (Mopt = m) because the idle time of the processors arises

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 3 14–27 (Dec. 2008) c© 2008 Information Processing Society of Japan



19 Fully Pipelined Multishift QR Algorithm for Symmetric Tridiagonal Eigenproblems

only at the first multishift QR step when m bulges are introduced step by step,
and this time is negligible. So there is no benefit in dividing the matrix into more
than standard m regions.

3. The New FPM-QR Algorithm

3.1 The Algorithm
We propose the FPM-QR algorithm to improve the convergence property of the

D-QR algorithm while keeping the efficiency of using processors. This algorithm
is shown in Algorithm 4.

Algorithm 4 The FPM-QR algorithm
T1,1 = T

Computation of Shift (m, T1,1)
for j = 1, 2, . . . , m do

s1,j ← the j-th smallest shift
end for
for i = 1, 2, . . . do

for j = 1, 2, . . . , m do
Ti,j − si,jI → Qi,jRi,j

Ti,j+1 ← Ri,jQi,j + si,jI
(
= QT

i,j Ti,j Qi,j

)
if any subdiagonal element e is close to zero then � Convergence check

set e = 0 to obtain Ti,j+1 =

(
TA 0
0 TB

)
if the order of TB is less than or equal to m then

apply the single-shift QR algorithm to TB and Ti,j+1 ← TA

end if
end if
Computation of Shift (m, Ti,j+1)

si+1,j ← the j-th smallest shift � Update of only one shift
end for
Ti+1,1 = Ti,m+1

end for

Fig. 5 Relative time of shift computation (the ratio of shift computation time to total execu-
tion time) of the M-QR, D-QR, and FPM-QR algorithm. Details of the testing matrix
(Type 1, n = 50000) and the computational environment is described in Section 4.

In contrast to the M-QR and D-QR algorithms, which update the shifts after m

sweeps of bulges have finished, our algorithm updates the shifts after each sweep
of a bulge. To keep the pipeline fully operative and to introduce a new shift
as soon as possible, a processor finishing a bulge sweep updates a shift without
waiting for other bulges’ arrival. Then, using the shift, the processor starts the
next step.

In the FPM-QR algorithm, the processor j uses Ti,j+1 to compute the new
shift si+1,j , and chooses the j-th smallest shift within Shift (m, Ti,j+1) as si+1,j .
In contrast, the M-QR algorithm uses Ti,m+1, while the D-QR algorithm uses
Ti−1,m+1. Thus the FPM-QR algorithm uses better shifts than the D-QR algo-
rithm. The M-QR algorithm uses even better shifts, but the FPM-QR algorithm
has an advantage in terms of the efficiency of running processors.

3.2 Hiding the Cost of Shift Update
In the FPM-QR algorithm, each processor updates a shift after finishing its own

bulge-chasing. This means that the computation of shifts is needed m times per
each multishift QR step, while the existing algorithms need this only once. As a
result, as shown in Fig. 5, the shift computation time of the FPM-QR algorithm
with 32 shifts accounts for about 50% of the total execution time while that of
the existing algorithms is less than 10%. However, this overhead can be reduced
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20 Fully Pipelined Multishift QR Algorithm for Symmetric Tridiagonal Eigenproblems

Fig. 6 Computational sequence of the FPM-QR algorithm (m = 2). Upper: the processor
idle time emerges if the region sizes are equal. Lower: all the processors become fully
operative after load-rebalancing.

as follows.
In the FPM-QR algorithm, the processor working in the undermost region

updates a shift after finishing bulge-chasing, while other processors do only bulge-
chasing work. As a result, the former processor has an extra task and other
processors are forced to wait until the processor completes shift computation. To
reduce this overhead, we reduce the size of the undermost region and make the
load-balance equal among the processors.

We show the computational sequence of the FPM-QR algorithm in Fig. 6. If
the sizes of the regions are equal (the upper figure), the processor 2 idles while the
processor 1 updates a shift and the processor 1 idles while the processor 2 updates
a shift. Thus the time of shift computation is two times per each multishift QR
step. After the load-rebalance (the lower figure), the shift computation by one
processor can be overlapped with the bulge-chasing by other processors. In this

Fig. 7 Parallel speedup of the FPM-QR algorithm: T1/Tm, where T1 and Tm are the execution
times with single processor and m processors, respectively. Details of the testing matrix
(Type 1, n = 50000) and the computational environment are described in Section 4.

way, the effective shift computation is one time per each multishift QR step like
existing algorithms. In general, to hide m − 1 times of shift computation, the
region size is assigned as follows. Let the time of computing m shifts be tshift,m,
the time of moving a bulge down by one row be tbulge, and tshift,m = Δ · tbulge,
which means that the computation of shifts is equivalent to bulge sweeps by
Δ rows. The number of rows in the i-th region from the top, li, is given as
follows: l1 = l2 = · · · = lm−1 = (n + Δ)/m and for the undermost region
lm = (n− (m− 1) ·Δ)) /m.

In a practical implementation, the row length Δ is determined before running
the program from the measured values of tbulge and tshift,m on the target com-
putational environment. To measure these values, we use the Type 1 matrix
described in Section 4. The measured values of tbulge and tshift,m for the compu-
tational environment used in Section 4 are shown in Table 3 in Section A.1.

We show the effect of this modification for a matrix of the order of n = 50, 000
in Fig. 7. The effect is not prominent when the number of shifts m is small.
However, when m is increased to 16 and 32, the modified FPM-QR algorithm
achieves 10% and 40% greater parallel speedup than the original algorithm, re-
spectively. This is because the ratio of the shift computation time to the total
computation time increases as more shifts are used, as shown in Fig. 5. Note that
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to take full advantage of the hiding of shift computation, we need the matrix size
to be greater than mΔ for most of the computation time. Considering the effect
of deflation, this condition amounts to n ≥ cmΔ, where c is a small constant,
say, 2. However, even if this condition is not satisfied, we can hide part of the
shift computation and obtain some performance gains. In fact, in the above ex-
ample, when m = 32, we have Δ = tbulge/tshift,m = 1310 from Table 3. Thus
mΔ = 32 × 1310 = 41920 in this case and n = 50000 is not sufficiently large.
Still, we succeeded in obtaining considerable performance gains as shown above.

Like the D-QR algorithm, the FPM-QR algorithm allows us to fully utilize
the processors. This means that the optimal division number for the FPM-QR
algorithm equals the number of shifts; Mopt = m.

A simplified pseudocode of the FPM-QR algorithm is shown in Section A.2.

4. Numerical Results

In this section, we compare the proposed algorithm with the existing algorithms
by numerical experiments in terms of (1) accuracy of the computed eigenvalues,
(2) execution time, (3) parallel speedup, and (4) convergence property. We com-
puted all eigenvalues {λi}ni=1 of eight kinds of eigenproblems:
Type 1 A tridiagonal matrix whose diagonal elements are all equal to a,

subdiagonal elements are all equal to b. The exact eigenvalues are λi =
a + 2b cos(iπ/(n + 1)) (i = 1, . . . , n). (We set a = 2 and b = −1.)

Type 2 A symmetric matrix whose elements are random numbers in (-0.5, 0.5).
Type 3 A coefficient matrix of the Laplace equation in two dimensions.
Type 4 A symmetric matrix ”PARSEC/CO” obtained from University of

Florida Sparse Matrix Collection 5).
Type 5 A tridiagonal matrix with eigenvalues λi = sinh(10i/n) (i = 1, . . . , n).
Type 6 A tridiagonal matrix with eigenvalues λi = sinh(−5 + 10i/n) (i =

1, . . . , n).
Type 7 A tridiagonal matrix with eigenvalues λi = sinh(−10 + 10i/n) (i =

1, . . . , n).
Type 8 A tridiagonal matrix with eigenvalues λi = tanh(−5 + 10i/n) (i =

1, . . . , n).
The tridiagonal matrices of Types 5-8 were generated to have the specified eigen-

values by DLATMS in LAPACK 1). The symmetric matrices of Type 2-4 are
transformed to tridiagonal matrices by Householder transformations. The order
of the matrices is n = 50000 and 200000 for Type 1, 2, and 5-8, n = 99856 and
200704 for Type 3, and n = 221119 for Type 4.

Our computational environment is Fujitsu PRIMEPOWER HPC2500 (CPU:
SPARC 64V 8 Gflops × 32 processors, Memory: 512 GB). We wrote three codes
with C and OpenMP 11) for shared memory parallel machines: (1) The M-QR
algorithm (with Mopt, see Section 2.2.3), (2) The D-QR algorithm, (3) The FPM-
QR algorithm, and these codes were compiled by Fujitsu C Compiler with options
-Kfast_GP2=2 -KOMP. To check the convergence, we compare the subdiagonal
element ek (1 ≤ k ≤ n− 1) with the neighbor diagonal elements and set it to
zero when |ek| ≤ ε (|dk|+ |dk+1|) (1 ≤ k ≤ n− 1), where ε is the round-off unit.
We can check the convergence every time we finish one of the bulge sweeps. We
therefore check the convergence m times in one multishift QR step with m shifts
to catch the opportunity of deflation as soon as possible. Such a vigilant deflation
strategy 17) is used in all the three algorithms.

4.1 Accuracy of Computed Eigenvalues
We evaluate the accuracy of eigenvalues computed by the three eigensolvers.

The metric is the error relative to the spectral radius: maxi

∣∣∣λi − λ̂i

∣∣∣ / maxj

∣∣∣λ̂j

∣∣∣,
where λi is the eigenvalue computed by the multishift algorithm (M-QR, D-QR,
or FPM-QR) and λ̂i is the exact eigenvalue (for the Type 1, 5-8 matrices) or
eigenvalue computed by DSTEQR in LAPACK (for other matrices).

We obtained similar results for all the problems, so we show the results for
random matrices (Type2) in Table 1. From Table 1, we can observe that every
algorithm shows similar accuracy within the relative error of 10−11.

4.2 Convergence Property
We define the relative iteration number as a metric for the convergence prop-

erty: iavg,m

/
iavg,1, where iavg,m and iavg,1 are the weighted average iteration

number (see Eq. (4) in Section A.1) to get one eigenvalue by one of the multi-
shift algorithms (M-QR, D-QR, or FPM-QR) with m shifts and the single-shift
QR algorithm, respectively. The smaller value of this quantity means that the
algorithm shows faster convergence.
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Table 1 Accuracy of the computed eigenvalues: maxi

∣∣∣λi − λ̂i

∣∣∣ / maxj

∣∣∣λ̂j

∣∣∣.
Type 2 (n = 50000)

m M-QR D-QR FPM-QR
4 8.8E-13 1.1E-12 1.2E-12
8 9.0E-13 1.3E-12 1.3E-12

16 1.0E-12 1.2E-12 9.5E-13
32 1.1E-12 1.3E-12 8.4E-13

Type 2 (n = 200000)

m M-QR D-QR FPM-QR
4 3.8E-12 4.7E-12 4.3E-12
8 4.0E-12 5.6E-12 5.1E-12

16 5.0E-12 5.5E-12 4.4E-12
32 4.5E-12 5.7E-12 3.9E-12

We obtained similar results for the matrices of Type 2, 3, 4, and 6, and similar
results for the matrices of Type 5, 7, and 8. So we show the results for the
matrices of Type 2, 5, and 1 in Fig. 8. As shown in Fig. 8, the relative iteration
number of the FPM-QR algorithm is about 10% less than that of the D-QR
algorithm for the Type 2 matrix. For the Type 5 matrix, the relative iteration
number of the FPM-QR algorithm is about 20% less, and for the Type 1 matrix,
more than 20% less. Thus we can say that the FPM-QR algorithm improves the
convergence property of the D-QR algorithm for all the eight problems. However,
the degree of improvement is dependent on the problem. The improvement is
greater for matrices of Type 1, 5, 7, and 8.

To investigate the reason for this, we plotted the distribution of eigenvalues of
eight kinds of eigenproblems in Fig. 9. As shown in Fig. 9, the smaller eigenvalues
of the Type 5 matrix form a cluster. For the Type 7 matrix, the larger eigenvalues
form a cluster. For the Type 1 and 8 matrices, both smaller and larger eigenvalues
form a cluster. On the other hand, for the Type 2, 3, 4, and 6 matrices, there
is no cluster at either end of the spectrum. From these observations, it can be
said that the FPM-QR algorithm tends to show better convergence when either
the top or the bottom eigenvalues are clustered. The theoretical explanation of
this convergence behavior, as well as why the FPM-QR algorithm exhibits better
convergence than the M-QR algorithm for the Type 1 matrix, is the subject of
further research.

Fig. 8 Relative iteration number of the M-QR, D-QR, and FPM-QR algorithm.

4.3 Performance Results
We show the execution time and the parallel performance of the three eigen-

solvers. As a metric to measure the parallel performance, we used parallel
speedup T1/Tm, where Tm and T1 are the execution times of the multishift algo-
rithm with m processors and of the single-shift QR algorithm with one processor,
respectively.

Like the results of the convergence property, we obtained similar results for the
matrices of Type 2, 3, 4, and 6, and similar results for the matrices of Type 5, 7,
and 8. So we show the execution time and the parallel speedup for the matrices
of Type 2, 5, and 1 in Table 2 and Fig. 10.

As shown in Fig. 10, the FPM-QR algorithm shows parallel speedup similar to
that of the existing algorithms for the Type 2 matrix. For the Type 5 matrix, the
FPM-QR algorithm shows about 1.2 times higher parallel speedup over the D-
QR algorithm, which shows the second greatest parallel speedup. For the Type
1 matrix, the FPM-QR algorithm shows more than 1.4 times higher parallel
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Fig. 9 Distribution of eigenvalues of eight kinds of eigenproblems. The eigenvalues are
indexed in ascending order: λ1 < λ2 < · · · < λn.

speedup.
• Comparison of the FPM-QR algorithm with the M-QR algorithm

As shown in subsection 4.2, the average iteration number of the FPM-QR
algorithm tends to be larger than that of the M-QR algorithm. But the
FPM-QR algorithm shows greater parallel speedup than the M-QR algorithm
because the FPM-QR algorithm allows us to use processors more efficiently.
From Fig. 10, the FPM-QR algorithm with 32 shifts attains about 1.9 times
greater parallel speedup for the Type 1 matrix (n = 50000) compared with
the M-QR algorithm.

• Comparison of the FPM-QR algorithm with the D-QR algorithm
The FPM-QR algorithm showed better convergence than the D-QR algorithm
while keeping all the processors fully operative, so the FPM-QR algorithm
shows greater parallel speedup than the D-QR algorithm for the sufficiently

Table 2 Execution time (sec.) of the M-QR, D-QR, and FPM-QR algorithm.

n = 50000

Type 2 Type 5 Type 1
m M-QR D-QR FPM-QR M-QR D-QR FPM-QR M-QR D-QR FPM-QR
4 57.2 61.2 55.4 51.1 53.5 46.3 59.6 63.6 51.4
8 33.0 32.1 29.8 30.2 29.9 24.9 36.3 35.3 25.5

16 19.6 17.2 16.5 18.8 17.1 13.9 22.8 19.5 13.1
32 13.3 10.4 11.0 13.3 10.9 9.9 16.9 12.6 8.8

n = 200000

Type 2 Type 5 Type 1
m M-QR D-QR FPM-QR M-QR D-QR FPM-QR M-QR D-QR FPM-QR
4 815.8 916.0 836.8 727.7 792.6 701.0 853.1 982.8 774.1
8 439.1 468.5 442.2 401.4 427.1 361.6 484.1 515.4 378.3

16 242.3 241.3 229.4 229.4 231.5 189.2 275.1 280.1 184.4
32 144.3 129.4 123.1 138.9 129.3 104.1 169.5 159.7 96.3

Fig. 10 Parallel speedup of the M-QR, D-QR, and FPM-QR algorithm.
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large matrices (n = 200000). From Fig. 10, the FPM-QR algorithm with
32 shifts attains about 1.7 times greater parallel speedup for the Type 1
matrix (n = 200000) compared with the D-QR algorithm. For the small
matrix (Type 2, n = 50000), the FPM-QR algorithm shows a little lower
parallel speedup than the D-QR algorithm due to incomplete hiding of the
shift computation time (see Section 3.2).

In summary, we have confirmed that the FPM-QR algorithm shows competitive
or greater performance for these eight kinds of eigenproblems.

5. Conclusion

In this paper, we proposed the fully pipelined multishift QR (FPM-QR) algo-
rithm and compared the parallel speedup and the convergence property of our
algorithm with that of the existing algorithms. To compare our algorithm with
the multishift QR (M-QR) algorithm in its best condition, we derived the opti-
mal division number for the M-QR algorithm by modeling the execution time.
The results of implementation on a shared memory parallel machine (Fujitsu
PRIMEPOWER HPC2500) were as follows:
( 1 ) Although the M-QR algorithm showed the best convergence property ex-

cept in one eigenproblem, the FPM-QR algorithm showed greater total
performance because of the efficiency of running processors. The attained
speedup of the FPM-QR algorithm compared with the M-QR algorithm
was up to 1.9.

( 2 ) The FPM-QR algorithm can improve the convergence property of the de-
ferred shift QR (D-QR) algorithm while keeping all the processors fully
operative. The attained speedup of the FPM-QR algorithm compared with
the D-QR algorithm was up to 1.7.

In summary, the FPM-QR algorithm showed greater performance, or was at least
competitive for eight kinds of eigenproblems.

Our future work includes the analysis of the convergence behavior of the FPM-
QR algorithm to know why the FPM-QR algorithm shows better convergence
than the M-QR algorithm for some problems. And the asymptotic convergence
rate of the FPM-QR algorithm is to be analyzed. We also plan to implement the
FPM-QR algorithm on distributed memory parallel machines.
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Appendix

A.1 The Optimal Division Number for the M-QR Algorithm
In this section, we derive the optimal division number of the existing M-QR

algorithm to achieve the shortest execution time. To this end, we model the
execution time Tmodel of the M-QR algorithm as follows:

Tmodel = Tbulge + Tidle + Tshift + Tsync, (3)
where Tbulge is the total time of bulge-chasing, Tidle is the total time of processor
idling, Tshift is the total time of shift computation, and Tsync is the total time of
processor synchronization. Thus our model ignores memory access conflicts and
cash effects.

The input parameters of this model are as follows:
• n: the order of the matrix,
• m: the number of shifts,
• iavg,m: the average iteration number to get one eigenvalue,
• tbulge: the time of moving a bulge down by one row,
• tshift,m: the time of computing m shifts,
• tsync: the time for one synchronization.

Among these, iavg,m is dependent on the input matrix, and tbulge, tshift,m, tsync are
dependent on the computational environments. We show the measured values
of tbulge, tshift,m, and tsync in Table 3. These quantities are experimentally

Table 3 Experimental results of the parameters. Details of the testing matrix (Type 1,
n = 20000) and the computational environment is described in Section 4.

m tbulge tshift,m tsync

4 8.4E-08 2.1E-06 1.9E-06
8 8.4E-08 7.9E-06 3.7E-06

16 8.4E-08 2.9E-05 4.9E-06
32 8.4E-08 1.1E-04 8.4E-06

determined only once for each computational environment. Then, tbulge and tsync

can be used to determine the optimal division number of the M-QR algorithm,
see Eq. (2). On the other hand, tbulge and tshift,m can be used to determine the
load rebalance in the FPM-QR algorithm to hide the cost of shift update, see
Section 3.2.

The other parameter, iavg,m, is the average iteration number to get one eigen-
value weighted by the length of bulge-chasing. Let Li,j denote the length of
bulge-chasing in the i-th multishift QR step with the j-th shift. Also, let Nstep

denote the number of multishift QR steps needed to compute all the eigenvalues.
Then the total length of bulge-chasing is

∑Nstep
i=1

∑m
j=1 Li,j . On the other hand,

if the single-shift QR algorithm is used and each eigenvalue is computed in only
one iteration, the total length of bulge-chasing is NL = (n−1)+(n−2)+· · ·+1 =
n(n− 1)/2. Using these quantities, iavg,m is defined as

iavg,m =
1

NL

Nstep∑
i=1

m∑
j=1

Li,j . (4)

To get all eigenvalues, the (single-shift) QR steps of about iavg,m(n − 1) times
are needed. One multishift QR step corresponds to m single-shift QR steps, so
the total multishift QR steps, Nstep, is approximately

Nstep =
iavg,m(n− 1)

m
. (5)

In the following, we focus on the processor m and derive the expressions for
Tbulge, Tidle, Tshift and Tsync.
• The total time of bulge-chasing

As shown in Fig. 2, the time of bulge-chasing in the i-th multishift QR step
is Li,mtbulge � (

∑m
j=1 Li,j tbulge)/m. Hence, the total time of bulge-chasing
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can be written as follows:

Tbulge =
1
m

Nstep∑
i=1

m∑
j=1

Li,j tbulge =
n

2
Nsteptbulge. (6)

• The total time of processor idling
In one multishift QR step of the M-QR algorithm with m shifts and M (≥ m)
division of a matrix, the processor idle time is (m−1)/M times of the bulge-
chasing time. As a result, the total time of processor idling can be written
as follows:

Tidle =
m− 1

M
Tbulge. (7)

By increasing M , Tidle can be decreased. But, the cost of processor synchro-
nization increases at the same time. As a result, there is a trade-off between
the processor idle time and the synchronization cost. The optimal division
number is derived later.

• The total time of shift computation
The M-QR algorithm updates the shifts at the end of each multishift QR
step, so the total time of shift computation can be written as follows:

Tshift = Nstep tshift,m. (8)
• The total time of processor synchronization

In each multishift QR step, synchronization is necessary whenever a bulge
passes through the boundary of the matrix regions. So there are M + m− 1
synchronization points and two synchronization (one for bulge arrival and
another for bulge departure) is needed at each synchronization point. Hence,
the total time of processor synchronization can be written as follows:

Tsync = 2Nstep(M + m− 1) tsync. (9)
The execution time of the M-QR algorithm can be written as the sum of the

four terms as follows:

Tmodel =
iavg,m(n− 1)

m

·
{

n

2

(
1 +

m− 1
M

)
tbulge + tshift,m + 2(M + m− 1) tsync

}
. (10)

The optimal division number Mopt for the M-QR algorithm, which minimizes

the execution time, is obtained from ∂Tmodel/∂M = 0, see Eq. (2).
A.2 Pseudocode of the FPM-QR Algorithm
We show a simplified pseudocode of the FPM-QR algorithm with OpenMP 11)

for shared memory parallel machines. In this code, Bulge-set(s) means setting a
bulge at the upper left corner of the matrix by the first similarity transformation
with shift s. Bulge-chasing(i, j) means moving a bulge from i-th row to j-th row.

In this algorithm, the processor myrank (myrank = 0, . . . , m−1) waits in an idle
state until the first myrank bulges go through the first region. Then it sets a bulge
at the upper left corner of the matrix and starts chasing the bulge. When the
bulge passes through the boundary of the regions, inter-processor synchronization
is inserted. After the bulge reaches the bottom right corner, the processor updates
a shift and start the next bulge-chasing immediately. When a processor in the
undermost region detects a sufficiently small subdiagonal element, it separates
a small matrix, computes its eigenvalues with a single-shift QR algorithm, and
updates the value of N . The update of N is done within a block between two
barriers for inter-processor synchronization. Using this new value of N , all the
processors determine the next region of bulge-chasing.

1: N ← n � n: order of the input matrix
2: Δ← tshift,m/tbulge � See Table 3
3: #pragma omp parallel private(myrank, smyrank, i, j, start, end)
4: Begin
5: myrank ← omp_get_thread_num()
6: Initialization of shift smyrank

7: for i = 0, 1, . . . , myrank− 1 do � Idle time only at the first step
8: #pragma omp barrier
9: #pragma omp barrier

10: end for
11: for i = 1, 2, . . . , do
12: Bulge-set(smyrank)
13: for j = 1, 2, . . . , m− 1 do
14: start ← 1 + (j − 1)(N + Δ)/m

15: end ← j(N + Δ)/m
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16: #pragma omp barrier
17: Bulge-chasing(start, end)
18: #pragma omp barrier
19: end for
20: start ← 1 + (m− 1)(N + Δ)/m

21: end ← N

22: #pragma omp barrier
23: Bulge-chasing(start, end)
24: if any subdiagonal element converges to zero then � Convergence

check
25: Update of N & Solution of small eigenproblem
26: end if
27: Update of shift smyrank

28: #pragma omp barrier
29: end for
30: End

(Received April 4, 2008)
(Accepted August 20, 2008)

Takafumi Miyata received his master’s degree in Engineering
from Nagoya University in 2007. His research interests include
numerical algorithm for eigenvalue problems and parallel comput-
ing.

Yusaku Yamamoto received his master’s degree in Material
Physics from the University of Tokyo in 1992. He worked in Cen-
tral Research Laboratory, Hitachi, Ltd. from 1992. He became a
visiting scholar at business school of Columbia University in 2001.
He became an assistant professor at Nagoya University in 2003. He
received his Ph.D. in Engineering from Nagoya University in 2003.
He became a lecturer at Nagoya University in 2004, associate pro-

fessor at Nagoya University in 2006. His research interests include numerical
algorithm for large-scale matrix computation and financial engineering.

Shao-Liang Zhang received his master’s degree in Computa-
tional Mathematics from Jilin University in 1983. He received his
Ph.D. in Engineering from University of Tsukuba in 1990. He
became a research at Institute of Computational Fluid Dynamics
in 1990. He became an assistant professor at Nagoya University
in 1993, a lecturer at University of Tsukuba in 1995, an associate
professor at the University of Tokyo in 1998, and a professor at

Nagoya University in 2005. His research interests include numerical iterative
algorithm for large-scale matrix computation and parallel computing.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 3 14–27 (Dec. 2008) c© 2008 Information Processing Society of Japan


