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1 Introduction
For auditory scene analysis, which requires obtaining

the 6W information (What, Who, Where, When, Why,
hoW) [1], knowing the sound source location is essential.
In many studies contributed to sound source localization,
only azimuth and/or elevation in the microphone-array co-
ordinates have been considered. In applications such as
bird song analysis, obtaining the estimated position is the
most desirable. Several studies reported such position esti-
mation based on triangulation using multiple microphone
arrays [2] [3]. However, the main problem in this approach
is the appearance of outliers, which are crossing points
of unmatched sound source localization results and noise.
This paper presents an iterative outlier removal method
which tackles this problem. The presented method suc-
cessfully localized the desired sound source, labelled it as
an inlier and outperformed the other tested method.
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2 Proposed method
2.1 Initial sound processing

In order to obtain the estimated locations of the sound
sources, vector triangulation is performed. We con-
sider M microphone arrays (MA1,MA2, · · · ,MAM) which
are distributed in a natural environment. Let dm =

[dm(1), dm(2), · · · , dm(Dm)]T be the directions estimated by
MAm every 10 ms, where m = 1, 2, · · · ,M. The pro-
posed method uses the open source software for robot
audition, HARK (Honda Research Institute Japan Au-
dition for Robots with Kyoto University) [4], to obtain
these sound source directions. Specifically, a beamform-
ing based method called SEVD-MUSIC (Multiple Sig-
nal Classification based on Standard Eigenvalue Decom-
position) [5] was used. Next, a triplet, defined as d̄ =
[d̄m1 (α), d̄m2 (β), d̄m3 (γ)]T is created by selecting three es-
timated vectorised directions obtained from different mi-
crophone arrays. For each pair of directions in a triplet,
triangulation is performed to obtain three crossing points
P1 = p(m1, α,m2, β), P2 = p(m2, β,m3, γ) and P3 =

p(m1, α,m3, γ). Then, the Euclidean distances between
these crossing points are calculated, denoted by L12, L23,
L13. Finally, the sound source position x on a 2D plane is
estimated by:

x =
{

1
3
∑3

i Pi, (L12, L23, L13 ≤ θ1)
∅, otherwise

where θ1 is a threshold which determines if a triangulation
result is valid to be considered a cross point. After all
possible combinations of triplets have been processed, all
valid sound source positions throughout the recorded data
are held in a matrix x of size N × 2.

HARK was also used in sound separation process. For
each microphone array m, GHDSS (Geometric High-order
Decorrelation-based Source Separation) [6] was used to
obtain the separated sounds Sm consisting of sm elements.

2.2 Iterative outlier removal

This section introduces an outlier removal algo-
rithm using separated sounds. For clustering sepa-
rated sounds, the 128 point STFT (Short Time Fourier
Transform) of Sm is performed to form Fm =

[Fm,1, Fm,2, · · · , Fm,sm ]T . Then, F is defined by F =

[F1,1,· · ·,F1,s1 ,F2,1,· · ·,F2,s2 ,· · ·,FM,1,· · ·,FM,sM ]T . Iterative
outlier removal is then performed with R iterations.
The score e(n, r) for every sound source position n =
1, 2, · · · ,N in every iteration r = 1, 2, · · · ,R − 1 is initial-
ized with values 0. First, F is used in k-means clustering:

c = kmeans(F,K)

where K is the number of clusters and c is a set of cluster
indices to which each element of F has been assigned. It
has been observed that when clustering with the spectra of
the separated sounds and using relatively few clusters in
comparison to the size of the dataset, noise data becomes
assigned to clusters with different data in every iteration.

Next, sound source position indexing is performed.
Since we know which separated sound corresponds to
which cross point x, F is connected with x by holding
mapping data, which also allows reshaping c into c∗ in
order to assign a value cm,xn to each sound source position
xn for every microphone array m :

c∗ =


c1,x1 · · · c1,xN
.
.
.

. . .
.
.
.

cM,x1 · · · cM,xN


M×N

A cross point xn is considered valid, if all of the cluster
indices (c1,xn , · · · , cM,xn ) are the same. This allows us to
reduce the c∗ matrix into a vector ĉ = [cx1 , cx2 , · · · , cxN ]T .

Finally, the cluster evaluation is performed. Let v̂k and
vk be the variance of the k-th cluster from the previous and
current iteration, respectively. The e(n, r) is incremented if
vk ≤ v̂k and cxn = k. After all iterations, a comparison in-
dex set is introduced In = {n′ | xn = xn′ , n′ = 1, 2, · · · ,N},
which holds the indices of sound source positions x which
have the same coordinates. Next, the following mean op-
eration is performed:
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Fig. 1 Index assign comparison of the two methods

µn =
1

R |In|
∑
i∈In

∑
r

e(i, r)

The decision if a cross point is an inlier or an outlier is
conducted by :

ix =

{ 1, µn ≥ θ2
0, otherwise

where θ2 is a threshold and ix indicates an inlier when has
the value 1, and an outlier when has the value 0.

3 Evaluation
3.1 Experimental setting

The dataset tested in this experiment contains of about
a 10 minute recording of actual bird songs made in Inabu
field, Nagoya University. Three 7-chanel microphone ar-
rays were placed at pecks of a equilateral triangle with an
edge length of 10 m. The data was taken in a noisy envi-
ronment, with a river on the south-east of the microphone
arrays. The performance of the proposed method was
compared with a well-known outlier detection method,
RANSAC (Random Sample Consensus) [7].

3.2 Results

The visual comparison of inlier/outlier index assigning
results are shown in Fig. 1. The green circle indicates the
correct position from which the birds were singing. In this
experiment, the more blue circles (inliers) are in the the
green circle area, the better the algorithm’s performance.
On the other hand, blue circles anywhere except the green
area as well as red crosses inside the green area are not
desired. These figures were made with the best param-
eter values for each algorithm. The results for different
parameter values were evaluated with the ROC (Receiver
operating characteristic) method, which are presented in
Fig. 2.

As shown in both figures, the proposed method is over-
whelmingly better than the RANSAC method. This is be-
cause, in this paper, we used separated sounds as inputs
to the RANSAC algorithm, which proved troublesome for
RANSAC to estimate the frequencies properly due to the
noisy environment. Also RANSAC requires an appropri-
ate model to perform data estimation, and for the proposed
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Fig. 2 ROC evaluation of the two methods

algorithm a model does not need to be chosen. This pro-
vides a major simplification in implementation of the al-
gorithm. Another problem with RANSAC in this appli-
cation is that very slight changes of the parameters, being
of 10−4th order, change the results by a very large factor.
On the other hand, the proposed algorithm proved to have
clear results, making the decision of the threshold very in-
tuitive.

4 Summary
In this paper an outlier detection algorithm for sound

source localization has been proposed. We have described
the main idea of the algorithm, shown the results of an
experiment and compared them with another vastly used
outlier method, RANSAC. We have proven that the pro-
posed method performs better than the other method and
that it is easier to apply it in sound source localization and
outlier extraction problems using microphone arrays.
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