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Illumination Recovery and Appearance Sampling

for Photorealistic Rendering

Imari Sato† and Katsushi Ikeuchi††

This paper addresses two issues of image-based modeling for synthesizing photorealistic
appearances of real objects under natural illumination conditions: capturing real-world illu-
mination and modeling complex appearances of real objects for variable illumination. The
appearance of an object changes significantly depending on its surface reflectance properties
and the lighting condition of the scene in which it is placed. It is thus important to provide
not only appropriate surface reflectance properties of an object in a scene but also natural
illumination conditions of that scene so that a realistic appearance of the object can be syn-
thesized under the provided natural illumination conditions. We first discuss an image-based
approach and an inverse lighting approach for capturing and modeling real-world illumina-
tion. Then we shift our attention to how to model and synthesize complex appearances of
real objects seen under natural illumination conditions.

1. Introduction

Surface reflectance properties greatly influ-
ence the appearance of an object: the appear-
ance of a metallic surface is completely differ-
ent from that of a matted surface even under
the same lighting conditions. Its appearance
also changes significantly under different light-
ing conditions. For instance, the appearance
change of a person’s face is often much larger
than the difference between two different faces
under the same lighting. For the task of object
recognition and image synthesis, it is thus im-
portant to be able to predict the variation of an
object’s appearance under varying illumination
conditions.

In order to synthesize photorealistic appear-
ances of real objects under natural illumination
conditions, we address issues for modeling the
appearance of the object for arbitrary illumina-
tion as well as modeling real-world illumination.
Regarding the issue of capturing and model-
ing real-world illumination, we study both an
image-based approach and an inverse lighting
approach.

A technique for measuring real-world light-
ing from photographically acquired images of
the scene is called image-based lighting. As
one of the efficient methods in image-based
lighting, we measure the illumination distribu-
tion of a real scene automatically from a pair
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of omni-directional images based on the pro-
posed omni-directional stereo algorithm in Sec-
tion 2. The proposed method especially shows
solutions to the difficulties that are left behind
in the previously proposed image-based light-
ing approaches: how to construct a geometric
model of a scene, and how to capture a wide
field of view of a scene. We also attempt real-
time image synthesis of virtual objects with
natural shading and cast shadows onto a real
scene whose illumination condition is dynami-
cally changing.

The second approach, inverse lighting, as-
sumes the knowledge of 3D shapes and re-
flectance properties of objects in a scene and in-
versely recovers incident light distribution from
a photograph of the scene. One of the main
advantages of inverse lighting over the image-
based lighting is that it does not require ad-
ditional images for capturing illumination of a
scene, but instead uses the appearance of ob-
jects located in a scene for recovering illumina-
tion of the scene.

We specifically investigated the effectiveness
of using occluding information of incoming light
in estimating an illumination distribution of a
scene; we present a novel method for recovering
an illumination distribution of a scene from im-
age brightness inside shadows cast by an object
of known shape in the scene in Section 3.

After describing the two approaches for re-
covering real-world illumination from images
of a scene, we will shift our attention to how
to model and synthesize complex appearances
of real objects for variable illumination. As
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has been noted, the appearance of an object
changes significantly under different illumina-
tion conditions; even so, it was shown through
the frequency-space analysis of reflection that
the appearance of an object can be well approx-
imated with a linear subspace spanned by basis
images of the object defined in the frequency
domain.

We carefully studied the issue of sampling of
objects’ appearances for variable illumination,
and we present a novel method for analytically
obtaining a set of basis images of an object from
input images of the object taken under a point
light source in Section 4.

Once methods for modeling the appearances
of real objects for arbitrary illumination and
modeling real-world illumination are estab-
lished, we will be able to synthesize photore-
alistic appearances of real objects under nat-
ural illumination conditions. Their synthesized
appearances may be used for many different ap-
plications, such as object recognition, archives
of digital museums, and seamless integration of
synthetic objects into real photographs or video
images.

2. Image-based Lighting for Measur-
ing Real-world Illumination

Image-based lighting techniques have been
developed successfully with practical applica-
tions 3),8),11),25). Pioneering work in this field
was proposed by Fournier et al. 11). Fournier
et al.’s method takes into account not only di-
rect illumination but also indirect illumination
by using the radiosity algorithm, which is com-
monly used for rendering diffuse interreflection.
This method is effective for modeling subtle in-
direct illumination from nearby objects. How-
ever, this method requires the user to specify
the 3D shapes of all objects in the scene. This
object selection process could be tedious and
difficult if a scene were full of objects. Also,
since this method computes global illumination
using pixel values of an input image, it is re-
quired that the image have a reasonably wide
field of view. Even so, this method cannot cor-
rectly model direct illumination from outside of
the input image unless a user specifies the po-
sitions of all lights.

Drettakis, et al. 8) extended Fourier, et al.’s
work. Drettakis, et al.’s method made the cre-
ation of the 3D model much easier using com-
puter vision techniques. They also introduced
the use of a panoramic image built by image

mosaicing to enlarge the field-of-view of the in-
put image, and the use of hierarchical radios-
ity for efficient computation of global illumina-
tion. However, this method still requires the
user to define the vertices and topology of all
objects in the scene, and it is often the case that
the achieved field-of-view is not wide enough
to cover all of the surfaces in the scene. This
causes the same limitation on direct illumina-
tion outside the input image as in Fournier, et
al.’s method.

Later, Debevec introduced a framework of
constructing a light-based model of a real scene
and using it for superimposing virtual objects
into the scene with consistent shadings 3). A
light-based model is a radiometric representa-
tion of a scene that is constructed by mapping
reflections on a spherical mirror placed in the
scene onto a geometric model of the scene. ☆ Al-
though this method succeeded in superimpos-
ing virtual objects onto an image of a real scene
with convincing shadings, it still requires the
user’s efforts to construct a light-based model:
the user must specify a geometric model of the
distant scene and select viewing points for ob-
serving the mirror so that the reflections on the
mirror can cover the entire geometric model of
the scene.

In summary, two difficulties in image-based
lighting still remain to be solved: how to con-
struct a geometric model of the scene, and how
to capture a wide field of view of the scene.

2.1 Acquiring Illumination Based
on Omni-directional Stereo
Algorithm

We confronted these two difficulties and pro-
posed an efficient method for automatically
measuring illumination distribution of a real
scene by using a set of omni-directional images
of the scene taken by a CCD camera with a
fisheye lens 41).

There are three reasons why we use omni-
directional images rather than images taken by
a camera with an ordinary lens. First, because
of fisheye lens’ wide field of view, e.g., 180 de-
grees, we can easily capture illumination from
all directions from a far fewer number of omni-
directional images than we could with images
taken by a conventional camera. Second, since
a fisheye lens is designed so that an incom-

☆ It is worth noting that State et al. previously intro-
duced the use of a steel ball to capture the reflections
at a single point 55).
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ing ray from a particular direction is projected
onto a particular point on an imaging plane, we
do not have to concern ourselves with comput-
ing directions of incoming rays and considering
the sampling frequency of the incoming rays.
Third, we are also able to use the directions of
the incoming rays for automatically construct-
ing a geometric model of the scene with the
fisheye lens’ wide field of view.

In our method, the geometric model of a
scene is first constructed from a pair of omni-
directional images taken from two different lo-
cations as follows:
( 1 ) Feature points with high contrast are

extracted in the two omni-directional
images by using the feature extrac-
tion algorithm proposed by Tomasi and
Kanade 57). ☆

( 2 ) 3D coordinates of points in the real scene
corresponding to the extracted feature
points are determined by using our pro-
posed stereo algorithm.

( 3 ) 3D coordinates for the remaining parts of
the real scene are approximated by gen-
erating a 3D triangular mesh based on
the 3D coordinates of the distinct feature
points.

Then, radiance of the scene is computed from
a sequence of omni-directional images taken
with different shutter speeds and mapped onto
the constructed geometric model. We refer to
this geometric model with the radiance as a ra-
diance map.

A radiance map must be constructed in order
to compute a radiance distribution seen from
any point in the scene. In other words, with-
out constructing a radiance map, we can deter-
mine only the radiance distribution seen from
the particular point where the omni-directional
image was captured.

Since our method measures the radiance dis-
tribution of the scene as a triangular mesh, an
appropriate radiance distribution can be used
for rendering a virtual object and for generat-
ing shadows cast by the virtual object onto the
real scene wherever the virtual object is placed
in the scene.

Figure 1 shows the obtained triangular mesh
representing the radiance distribution as its
color texture and synthesized images under the

☆ An image pixel with high gradient values in two or-
thogonal directions, e.g., a corner point, is extracted
as a feature point.

Fig. 1 Measured illumination distribution based on
the proposed omni-directional stereo algorithm
and synthesized images under the captured il-
lumination distribution.

captured illumination distribution. In the im-
ages synthesized by our method, shading of the
virtual object blends well into the scene. Also,
the virtual object casts a shadow with a soft
edge on the tabletop in the same way as do the
other objects in the scene.

2.2 Image Synthesis under Dynami-
cally Changing Illumination

We also pursued the possibility of real-time
rendering of synthetic objects with natural
shading and cast shadows superimposed onto
a real scene whose illumination condition was
dynamically changing in Ref. 49).

In general, high computational cost for ren-
dering virtual objects with convincing shad-
ing and shadows, such as interreflections or
soft shadows under area light sources, prohibits
real-time synthesis of composite images with su-
perimposed virtual objects. From this limita-
tion, simple rendering algorithms supported by
commonly available graphics hardware need to
be used for the applications that require real-
time image synthesis. Computationally expen-
sive rendering algorithms are not usually sup-
ported by such graphics hardware, and this
leads to some restrictions on achievable image
qualities.

Alternative approaches have been proposed
for re-rendering a scene as a linear combina-
tion of a set of pre-rendered basis images of
the scene 5),6),31). These approaches are based
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on the linearity of scene radiance with respect
to illumination intensities. Since this linear-
ity holds for scenes with complex geometry and
complex photometric properties such as inter-
reflections between objects and cast shadows,
a photo-realistic appearance of a scene can be
synthesized based on this simple linear combi-
nation framework.

Most of the previously proposed methods,
however, have been developed for the task of
interactive lighting design. Therefore, basis
lights under which a set of basis images are
rendered are intentionally positioned at the de-
sired locations, so that a scene under desired
lighting configurations can be efficiently synthe-
sized. Recently, Debevec, et al. introduced a
method for re-rendering a human face based on
a linear combination of face images taken un-
der densely sampled incident illumination direc-
tions in Ref. 4). This method further included
a model of skin reflectance to estimate the ap-
pearance of the face seen from novel viewing
directions and under arbitrary illumination.

We generalized the approach based on the
linearity of scene radiance with respect to il-
lumination radiance and presented an efficient
technique for superimposing synthetic objects
with natural shadings and cast shadows onto a
real scene whose illumination was dynamically
changing. ☆ The main advantage of the pro-
posed method was that image quality was not
affected by the requirement for real-time pro-
cessing, since reference images were rendered
off-line. This enabled us to employ computa-
tionally expensive algorithms for providing ref-
erence images, and this resulted in achieving
high quality in the final composite images of
the scene.

Taking advantage of the linear relationship
between brightness observed on an object sur-
face and radiance values of light sources in a
scene, our proposed method synthesizes a new
image for novel lighting conditions as described
in the following steps.
Step 1: The entire illumination of a scene is
approximated as a collection of area sources
Li(i = 1, 2, · · · , n), which are equally distributed
in the scene (Fig. 2-1).
Step 2: Two images that are referred to as
reference images are rendered under each area
☆ A scene was assumed to consist of both real objects

and synthetic objects with fixed scene geometry and
the scene was viewed from a fixed viewing point un-
der dynamically changing illumination.

Fig. 2 Basic steps of the proposed method.

light source: One with a virtual object superim-
posed onto the scene Oi, and the other without
the object Si (Fig. 2-2).
Step 3: Scaling factors of the light source ra-
diance values ri (i = 1, 2, · · · , n) are measured
by using an omni-directional image of the scene
taken by a camera with a fisheye lens (Fig. 2-3).
Step 4: New images Io

′ and Is
′, which should

be observed under the current illumination con-
dition, are obtained as a linear combination of
Oi’s and Si’s, respectively, with the measured
scaling factors ri’s (Fig. 2-4).
Step 5: Using Io

′ and Is
′, the virtual object is

superimposed onto the image of the scene along
with natural shading and shadows that are con-
sistent with those of real objects (Fig. 2-5). The
ray casting algorithm 61) is imposed here; if an
image pixel corresponds to the virtual object
surface, the color of the corresponding pixels in
Io

′ is assigned as the value of the pixel. Other-
wise, the effects on the real objects caused by
the virtual object, i.e., shadows and secondary
reflection, are added by multiplying the pixel
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Fig. 3 Image acquisition system and images synthe-
sized by our method: a color camera with a
fish-eye lens is used for capturing illumination
of the scene. The bus shown in the top image
is replaced with the house in the bottom image
for this experimental set-up.

value by the ratio of Io
′ to Is

′ (Fig. 2-5).
Our image acquisition system and several

examples of synthesized composite images are
shown in Fig. 3. In this experiment, SGI
Onyx2 with 6 CPUs was used for capturing a
sequence of input images and for synthesizing
final composite images. For efficient genera-
tion of the composite images, the following two
strategies were used.
( 1 ) As described above, each pixel in the

composite image requires a different type
of operation, depending on which object
surface the pixel corresponds to. The
computational cost of synthesizing each
image pixel in the composite image is
taken into account for distributing com-
putation evenly among all of the 6 CPUs.

( 2 ) Because effects due to the light sources
with low radiance values are negligible
in the final composite image, the refer-
ence images rendered under light sources
whose radiance values are lower than a
predefined threshold value are omitted
when a linear combination of the refer-
ence images is computed. In this way,
we can reduce the number of reference

Table 1 Processing time due to the number of
reference images.

No. of reference images Processing time (sec)
6 0.08
25 0.2
90 0.33
190 0.55
400 1.2

images used for synthesizing final com-
posite images, and achieve the required
processing time by adjusting the thresh-
old value.

In the synthesized composite images shown in
Fig. 3, the virtual cow casts a realistic shadow
on the grass in the same way as the surround-
ing real trees in the scene do. Table 1 shows
changes in processing time due to the number
of reference images. Here, the number of ref-
erence images is equal to the number of area
light sources that approximate the entire illu-
mination distribution of the scene.

In these examples, we approximated the real
illumination distribution by using 400 light
sources and selected those light sources accord-
ing to a threshold value. In this case, in spite
of the highly realistic shading and shadows
achieved in the composite image, the virtual ob-
ject was able to be superimposed onto the scene
at the frame rate of approximately 3 to 4 frames
per second by using the proposed method.

2.2.1 Discussion
The approaches based on the linearity of

scene radiance have one limitation with respect
to illumination radiance: an image of the scene
under novel illumination conditions cannot be
synthesized accurately unless the illumination
condition lies in the linear subspace spanned by
the basis lights under which basis images are
rendered. Therefore, it is essential to provide
basis lights and their associated weights prop-
erly so that images under desirable illumination
conditions can be synthesized.

Previous studies investigated how to choose
a set of basis lights so that these lights could
efficiently represent specific lighting configura-
tions. For instance, Nimeoff, et al. introduced a
set of steerable area light sources as basis lights
to approximate the illumination effect of day-
light 31). Dobashi, et al. defined a set of basis
lights to represent directionality of spotlights
based on spherical harmonics 5). Later, Teo et
al. introduced a hybrid method for synthesizing
illumination effects from both area sources and
directional spotlight sources 56). This method
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also included a strategy for reducing the num-
ber of basis images based on principal com-
ponents analysis. In terms of generating cast
shadows with distinct boundaries, Naemura et
al. introduced a way of adjusting interpolated
weights of predefined basis point sources 30).

Recently, the effect of defining a set of basis
lights in the frequency domain based on spher-
ical harmonics was demonstrated in Refs. 2),
37), 38). In Section 4, we will reconsider
this issue of efficiently synthesizing images of
a scene under arbitrary illumination conditions
and present a novel method for obtaining a set
of basis images of real objects.

3. Inverse Lighting for Estimating
Real-world Illumination

Methods that deal with an inverse problem of
traditional model-based rendering ☆ are called
inverse rendering. The image brightness of an
object can be computed as the function of the
shape of the object, its surface reflectance prop-
erties, and the illumination condition where the
object is located 16),17). The relationship among
these provides three research areas in inverse
rendering:
• Shape-from-brightness for recovering the

shape of the object from its reflectance
properties and the known illumination con-
dition.

• Reflectance-from-brightness for recovering
the surface reflectance properties of the ob-
ject from its shape and the known illumi-
nation condition.

• Illumination-from-brightness for recovering
unknown illumination conditions of the
scene based on the knowledge of the shape
and the surface reflectance properties of the
object.

In inverse rendering, the first two kinds of
analyses, shape-from-brightness and reflectance-
from-brightness, have been intensively studied
using the shape from shading method 18)∼20),36),
as well as through reflectance analysis re-
search 1),15),21),23),26),32),50),59).

In contrast, relatively limited amounts of re-
search have been conducted in the third area,
inverse lighting. In general, real scenes in-
clude both direct and indirect illumination dis-
tributed in a complex way, and this makes it

☆ Model-based rendering techniques synthesize the
appearance of objects based on empirically or an-
alytically given reflection models.

difficult to analyze characteristics of the illu-
mination distribution of the scene from im-
age brightness in inverse lighting. As a con-
sequence, most of the previously proposed ap-
proaches were conducted under very specific il-
lumination conditions, for example, there were
several point light sources in the scene; those
approaches were difficult to extend to more
natural illumination conditions 19),21),50),58),63).
Alternatively, multiple input images taken from
different viewing angles were necessary 24),34).

Pioneering work in the field of inverse lighting
for recovering natural illumination conditions
of real scenes was proposed by Marschner and
Greenberg 28). This work proposed to approxi-
mate the entire illumination with a set of basis
lights located in a scene and estimated their ra-
diance values from shadings of objects observed
in that scene. Although this method had an ad-
vantage over the previous methods, as it did not
require knowledge about the light locations of
the scene, the estimation relied on the changes
in appearance observed on an object surface as-
sumed to be Lambertian, and therefore some re-
strictions were imposed on the shape of the ob-
ject, for example, the object must have a large
amount of curvature.

Later, Ramamoorthi and Hanrahan defined
the conditions under which condition inverse
rendering could be done robustly, based on their
proposed signal-processing framework that de-
scribed the reflected light field as a convolution
of the lighting and the bidirectional reflectance
distribution function (BRDF) 37). Their analy-
sis showed that changes in appearance observed
on Lambertian surfaces were not necessarily
suitable for estimating high frequency compo-
nents of illumination distribution of a scene.

As one solution in the field of inverse light-
ing, we demonstrated the effectiveness of using
occluding information of incoming light in esti-
mating an illumination distribution of a scene
in Refs. 42), 45). Shadows in a scene are caused
by the occlusion of incoming light, and thus
contain various pieces of information about the
illumination of the scene. Nevertheless, shad-
ows have been used for determining the 3D
shape and orientation of an object that casts
shadows onto the scene 7),22),27),51), while very
few studies have focused on the illuminant in-
formation that shadows could provide. In our
proposed method, image brightness inside shad-
ows was effectively used for providing distinct
clues to estimate an illumination distribution
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Fig. 4 An inverse lighting approach for recovering an illumination distribu-
tion of a scene from image brightness inside shadows cast by an object
of known shape in the scene.

(Fig. 4). We briefly explain our approach based
on shadows in the next section.

In the following, we refer to the image with
shadows as the shadow image, to the object that
casts shadows onto the scene as the occluding
object, and to the surface onto which the occlud-
ing object casts shadows as the shadow surface.

3.1 Illumination Recovery from Shad-
ows

We first derive a formula that represents a
relationship between the illumination distribu-
tion of a real scene and the irradiance at a sur-
face point in the scene. Let L(θ, φ) be the illu-
mination radiance per unit solid angle coming
from the direction (θ, φ) defined by the polar
coordinate system θ, (0 ≤ θ ≤ π) in elevation
and φ, (0 ≤ φ < 2π) in azimuth; then the to-
tal irradiance of a surface point on the shadow
surface is 16)

E=
∫ 2π

0

∫ π
2

0

L(θ, φ)S(θ, φ) cos θ sin θdθdφ,

(1)

where S(θ, φ) are occlusion coefficients; S(θ, φ)
= 0 if L(θ, φ) is occluded by the occluding ob-
ject, and otherwise S(θ, φ) = 1. The surface
normal of the shadow surface is set to the di-
rection (θ = 0, φ = 0).

Some of the incoming light at this surface
point is reflected toward the image plane as
a secondary light source with the scene ra-
diance of this point. The bidirectional re-
flectance distribution function (BRDF) denoted
as f(θ, φ; θo, φo) characterizes the reflectance
property of an object: (θ, φ) and (θo, φo) are
incident and reflection directions with respect
to the surface normal of the object surface.

Thus, by integrating the product of the
BRDF and the illumination radiance over the
entire hemisphere, the scene radiance I(θo, φo)
viewed from the direction (θo, φo) is computed

as

I(θo, φo) =
∫ 2π

0

∫ π
2

0

f(θ, φ; θo, φo)L(θ, φ)

S(θ, φ) cos θ sin θdθdφ. (2)

In order to solve for the unknown radiance
L(θ, φ), which is continuously distributed on
the unit sphere from the recorded pixel values
of the shadow surface, the illumination distri-
bution is first approximated by discrete sam-
pling of radiance over the entire surface of the
extended light source. As a result, the double
integral in Eq. (2) is approximated as

I(θo, φo) =
n∑

i=1

f(θi, φi; θo, φo)L(θi, φi)

S(θi, φi) cos θiωi, (3)
where n is the number of sampling directions,
L(θi, φi) becomes the illumination radiance per
unit solid angle coming from the direction
(θi, φi), and ωi is a solid angle for the sampling
direction (θi, φi). ☆

In Eq. (3), the recorded pixel value I(θo, φo)
is computed as a function of the illumination ra-
diance L(θi, φi) and the BRDF f(θi, φi; θo, φo).
Accordingly, we take different approaches, de-
pending on whether BRDF of the surface is
given. For the sake of simplicity, we explain the
case where the shadow surface is a Lambertian
surface whose reflectance properties are given
in the following.

BRDF for a Lambertian surface is known to
be a constant. An equation for a Lambertian
surface is obtained from Eq. (3) as

I(θo, φo)=
n∑

i=1

KdL(θi, φi)S(θi, φi) cos θiωi

(4)

☆ Node directions of a geodesic dome can be used for
uniform sampling of the illumination distribution.
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where Kd is a diffuse reflection parameter of the
surface.
From Eq. (4), the recorded pixel value I for an
image pixel is given:

I =
n∑

i=1

aiLi, (5)

where Li (i = 1, 2, · · · ·, n) are n unknown illu-
mination radiance values specified by n node
directions of a geodesic dome. The coefficients
ai(i = 1, 2, · · · ·, n) represent KdS(θi, φi) cos θiωi

in Eq. (4). We can compute these coefficients
from the 3D geometry of a surface point, the
occluding object and the illuminant direction.
In our examples, we use a photo modeling tool
called the 3D Builder from 3D Construction
Company to recover the shape of an occluding
object and also the camera parameters from a
shadow image.

If we select a number of pixels, say m pix-
els, a set of linear equations is obtained: Ij =∑n

i=1 ajiLi(j = 1, 2, · · · ·, m). Therefore, by se-
lecting a sufficiently large number of image pix-
els, we are able to solve for a solution set of
unknown Li’s. We solve the problem by us-
ing the linear least square algorithm with non-
negativity constraints (using a standard MAT-
LAB function) to obtain an optimal solution
with no negative components.

3.2 Issues in Inverse Lighting
We further addressed the following two issues

in inverse lighting 43). First, the method com-
bined the illumination analysis with an estima-
tion of the reflectance properties of a shadow
surface. This made the method applicable to
the case in which reflectance properties of a sur-
face were not known a priori, broadening the
variety of images to which the method is appli-
cable.

Second, an adaptive sampling framework for
efficient estimation of illumination distribution
was introduced. Using this framework, we were
able to avoid unnecessarily dense sampling of
the illumination and could estimate the entire
illumination distribution more efficiently with
a smaller number of sampling directions of the
illumination distribution.

We also discussed the amount of informa-
tion obtainable from a given image of a scene
about the illumination distribution of the scene
in Ref. 44). In general, the amount of infor-
mation obtainable from an image is determined
depending on how much of the shadow surfaces
are blocked by objects in a scene and how much

Fig. 5 Synthesized appearance using the estimated
illumination distribution.

of the scene is captured by the field of view of
the camera taking the image of the scene. In
particular, two main factors that control the
stability of the illumination estimation from
shadows were analyzed: blocked view of shad-
ows and limited sampling resolution for radi-
ance distribution inside shadows.

Based on the analysis, a robust method was
presented. More specifically, for reliably esti-
mating the illumination distribution of a scene
by taking stability issues into consideration,
we proposed changing the sampling density
of the illumination distribution depending on
the amount of information obtainable from a
shadow image for a particular direction of the
illumination distribution. In order to use ra-
diance distribution inside a penumbra of shad-
ows correctly, we introduced a super-sampling
scheme for examining occlusion of incoming
light from each light source. We also explained
the optimal sampling of image pixels and the
selection of illumination distribution samplings
for more stable computation.

All of these extensions contributed to improv-
ing the stability and accuracy of illumination
estimation from shadows; illumination distri-
bution can be estimated in a reliable manner
with these proposed improvements regardless of
types of input images such as the shape of an
occluding object or a camera position.

In the bottom row of Fig. 5, several synthetic
objects were also superimposed onto the surface
using the illumination distribution estimated
from the input shadow image shown in this fig-
ure. It is worth noting that in this example,
a relatively large area of the shadow surface is
occluded by the occluding object, and it is of-
ten difficult to provide a correct estimate of the
illumination distribution in such cases.

Even in this challenging case, our proposed
approach was able to reliably estimate the il-
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lumination distribution of the scene by tak-
ing stability issues into consideration. Shad-
ows cast by those synthetic objects greatly re-
semble those cast by the real objects, and this
shows that the estimated illumination distribu-
tion gives a good presentation of that of the real
scene.

3.3 Discussion
Recently, based on the signal-processing

framework proposed by Ramamoorthi and Han-
rahan, it was shown that high frequency com-
ponents of the appearance of an object surface
could retain significant energy by taking the oc-
clusion of incoming light as well as its BRDF
into account in Ref. 35). This indicates that
the use of shadows for the illumination estima-
tion has the significant advantage of providing
more clues to the high frequency components
of illumination distribution of a scene. Later,
Ramamoorthi, et al. provided more detailed
frequency analysis of cast shadows using convo-
lution and Fourier basis functions and showed
a similar implication for inverse lighting from
cast shadows in Ref. 40).

3.4 Acquiring Shading Model for
Artistic Rendering

As an application for the proposed inverse
lighting approach, we also presented a new tech-
nique for superimposing synthetic objects onto
oil paintings with artistic shadings that were
consistent with those originally painted by the
artists in Ref. 48). In a colored medium such as
oil painting, artists often use color shift tech-
niques add artistic tones to their paintings as
well as to enlarge their dynamic ranges.

We determined the mechanisms for color
shifts performed by artists and automated their
processes so that we could superimpose onto
paintings synthetic objects that had shadings
consistent with those in the paintings. In this
work, we first studied characteristics of shad-
ows observed both in real scenes and in paint-
ings to discover how intrinsic color shifts had
been performed by artists. In particular, we an-
alyzed brightness distributions inside shadows
observed in a painting. Then, we adapted the
acquired mechanisms so that we could superim-
pose synthetic objects with consistent shadings
onto oil paintings.

Synthesized results are shown in Fig. 6. Es-
pecially in the top-right image synthesized by
our method, the synthetic object casts artistic
shadows on the wooden table that are similar to
those of the other objects originally painted by

Fig. 6 Superimposing synthetic objects into the paint-
ings: “Still Life: Drawing Board, Pipe, Onions
and Sealing-wax” by Vincent van Gogh and
“Artist in Studio” by Rembrandt.

the artist, and this shows that the color mod-
ifications made by the artist are well approxi-
mated by the color modification functions ob-
tained by our method.

4. Image-based Rendering under
Novel Lighting Conditions

Inverse rendering carries out the opposite
procedures of model-based rendering to provide
object and illumination models of a real scene
from photographically available information of
the scene. Once models of a scene are acquired,
new images of the scene under novel lighting
and/or viewing conditions can be synthesized
by using conventional model-based rendering
techniques.

In contrast, the approach called image-based
rendering directly uses the original set of in-
put images of a scene to produce new images of
the scene under novel conditions 53). Depend-
ing on which scene conditions should be modi-
fied, image-based rendering techniques are clas-
sified into three categories: image-based ren-
dering under novel viewing conditions, image-
based rendering under novel lighting conditions,
and image-based rendering under novel viewing
and novel lighting conditions. We examine the
second category, image-based rendering under
novel lighting conditions.

In contrast with model-based rendering tech-
niques, image-based rendering techniques do
not require full radiometric computation to syn-
thesize the photo-realistic appearance of ob-
jects in a scene. This means that the cost
to produce new images of the scene is inde-
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pendent of the scene complexity. Also, image-
based rendering techniques normally do not re-
quire geometric and photometric models of a
scene. ☆ Image-based rendering, however, has
a tendency to require many input images of a
scene to synthesize a reasonably realistic ap-
pearance of the scene. This results in the re-
quirement of a large amount of both computer
memory and data storage.

While a large variety of possible appearances
may seem to exist for a given object, previous
research has demonstrated that the changes in
appearance of an object for varying illumina-
tion can be represented with a linear subspace
spanned by a set of basis images of the object.
For instance, in the case of a convex Lamber-
tian object, its appearance seen under distant
illumination without attached and cast shad-
ows can be described with a 3D linear subspace
spanned from three input images of the object
taken under linearly independent lighting con-
ditions 29),52),62). Even taking into account at-
tached shadows, most of the image variation
of a human face or other object under varying
illumination was shown to be adequately rep-
resented by a low-dimensional linear subspace
slightly higher than 3D 10),14),60). A similar ob-
servation was utilized for object recognition in
Refs. 12), 13).

A set of basis images spanning such a lin-
ear subspace is often provided by applying
principal-component analysis to the input im-
ages of an object taken under different lighting
conditions. Since little is known about how to
sample the appearance of an object in order to
obtain its basis images correctly, a large number
of input images taken by moving a point light
source along a sphere surrounding the object
are generally provided.

Recent investigations in frequency-space
analysis of reflection have shown that the ap-
pearance of an object under varying complex
illumination conditions can be well approxi-
mated with a linear subspace spanned by basis
images of the object, called harmonic images,
each of which corresponds to an image of the
object illuminated under harmonic lights whose
distributions are specified in terms of spherical
harmonics 2),37),38). ☆☆

Hence, if harmonic lights can be physically

☆ Some image-based rendering techniques make use of
geometric models of a scene for better compression
of its appearance.

constructed in a real setting, harmonic images
of a real object can be obtained simply as im-
ages of the object seen under these light sources.
However, harmonic lights are complex diffuse
light sources comprising both negative and pos-
itive radiance and are thus difficult to physically
construct in a real setting. Therefore, most
of the previously proposed techniques syntheti-
cally compute harmonic images from the knowl-
edge of an object’s 3D shape and reflectance
properties.

4.1 Appearance Sampling for Obtain-
ing a Set of Basis Images

This difficulty motivated us to develop a
method for analytically obtaining a set of basis
images of a convex object for arbitrary illumi-
nation from input images of the object taken
under a point light source in Ref. 46).

The main contribution of our work is that
we show that a set of lighting directions can
be determined for sampling images of an ob-
ject depending on the spectrum of the object’s
BRDF in the angular frequency domain such
that a set of harmonic images can be obtained
analytically based on the sampling theorem on
spherical harmonics 9).

Using those sampling directions determined
from the sampling theory, we are able to ob-
tain harmonic images of an object as finite
weighted sums of its appearance seen under
point light sources located at these directions.
Our proposed method thus requires a signif-
icantly smaller number of input images than
other techniques that do not take into account a
relationship between a spectrum of BRDFs and
a sampling density of illumination directions.

In addition, unlike other methods based on
spherical harmonics, our method does not re-
quire the shape and reflectance model of an ob-
ject used for rendering harmonic images of the
object synthetically. Thus, our method can be
easily applied to determine a set of basis images
for representing the appearance change of a real
object under varying illumination conditions.

An overview of our hardware set-up ☆☆☆ used
for obtaining the input images of the objects
is shown in Fig. 7; an array of light sources is
mounted on a turntable. These light sources
are equally spaced in elevation, and the set of

☆☆ Harmonic images have also been used for the pur-
pose of efficient rendering of an object under com-
plex illumination 39),54).

☆☆☆ Surface Reflectance Sampler, TechnoDream21 Cor-
poration.
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Fig. 7 Hardware set-up and synthesized images of objects under natural illu-
mination. The first row shows illumination maps. The second, third,
and fourth rows show the synthesized appearance of objects under the
corresponding illumination map.

light sources is rotated around the objects in
an azimuthal direction based on the sampling
theorem on spherical harmonics.

Figure 7 shows the appearance of those ob-
jects synthesized by our method under natural
illumination conditions. In this figure, the syn-
thesized appearance of the test objects changes
significantly depending on the characteristics of
the given illumination distributions, and this
shows that the complex appearance of its struc-
tural colors are well represented by the set of
basis images obtained by our method.

Furthermore, we carefully studied the issue
of aliasing and further extended the method
based on the sampling theorem for reducing
the artifacts due to aliasing, by substituting
extended light sources (ELS ) for a point light
source to sample the appearance of a real ob-
ject in Ref. 47). The use of ELS for modeling
the shape and reflectance of an object was origi-
nally introduced in Ref. 33). We extended their
analysis further in the angular frequency do-
main so that the harmonic images of an object
of arbitrary surface materials could be obtained
without suffering from aliasing caused by insuf-
ficient sampling of its appearance.

5. Conclusion

This paper addressed two issues of synthe-
sizing a photo-realistic appearance of an object
under natural illumination conditions: captur-
ing real-world illumination and modeling com-
plex appearances of real objects for variable il-
lumination. Regarding the first issue of cap-

turing and modeling real-world illumination,
we used both image-based lighting and inverse
lighting methods.

Concretely, we proposed an efficient image-
based lighting method for capturing the illumi-
nation distribution of a real scene automatically
from a pair of omni-directional images based on
the proposed omni-directional stereo algorithm.
Additionally, we considered stability issues of
the inverse lighting approach and showed the ef-
fectiveness of using occluding information of in-
coming light in estimating an illumination dis-
tribution of a scene. Our proposed method was
able to estimate even complex illumination dis-
tribution of a natural scene from image bright-
ness observed inside shadows cast by an object
of known shape in the scene.

Regarding the second issue of modeling and
synthesizing complex appearances of real ob-
jects for variable illumination, we carefully
studied the issue of sampling appearance of real
objects in the frequency domain. Based on our
analysis, we introduced a novel method for ana-
lytically obtaining a set of basis images from in-
put images of a real object taken under a point
light source. The main contribution of our work
was that we showed that a set of lighting direc-
tions was able to be determined for sampling
images of an object depending on the spectrum
of the object’s bidirectional reflectance distribu-
tion function (BRDF) in the angular frequency
domain such that a set of basis images could
be obtained analytically based on the sampling
theorem on spherical harmonics.
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Once a set of basis images is obtained, the ap-
pearance of the object can be synthesized sim-
ply as a linear combination of these basis images
under novel lighting conditions, which may be
provided by either image-based lighting meth-
ods or inverse lighting methods. The future
direction of this study includes extending our
method for modeling the appearance of an ob-
ject seen from arbitrary viewing directions and
synthesizing its appearance under novel lighting
and novel viewing conditions.
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