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Abstract: Users’ visiting patterns to POIs (Points-Of-Interest) varied with regard to the users’ familiarity with their
visited areas. For instance, users visit tourist sites in unfamiliar cities rather than in their familiar home city. Previ-
ous studies have shown that familiarity can improve POI recommendation performance. However, such studies have
focused on the differences between home and other cities, and not among small urban neighborhoods in the same city
where user activities frequently occur. Applying the studies directly to the areas is difficult because simple distance-
based familiarity measures, or visit-pattern differences represented on topics, groups of POIs that share common func-
tions such as Arts, French restaurants, are too coarse for capturing the differences observed among different areas. In
the urban neighborhoods in the same city, user visit-pattern differences originate from more precise POI levels. In
order to extend the previously proposed familiarity-aware POI recommendation to be adopted in different areas in the
same city, we propose a method that employs visit-frequency-based familiarity and precise POI level of visit-pattern
differentiation. In experiments on real LBSN data consists of over 800,000 check-ins for three cities: NYC, LA, and
Tokyo, our proposed method outperforms state-of-the-art methods by 0.05 to 0.06 in Recall@20 metric.
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1. Introduction

It is not easy for us to choose favorable POIs (Points-Of-
Interest, places of interest) to visit without pre-investigation be-
cause there are many POIs nearby, but we do not have much
knowledge about them. Personalized POI recommendations can
mitigate the problem by advising on preferable POIs.

Individual user preference and spatiotemporal influence are the
two most important building blocks for personalized POI recom-
mendations [1], [2], [3], [4], [5]. In previous papers [1], [5], “user
preference” is used as the individual user’s probability of visit-
ing each POI without external influence, such as spatiotemporal.
Spatiotemporal influence, such as the distance from the current
location or visit time, is a unique factor in POI recommendation
for reducing the number of candidate POIs by exploiting the fact
that people do not want to move far distances, or not visit POIs at
improper times. Although considering spatiotemporal influence
is powerful, user preference is still important, because we can
rank the reduced candidates by employing user preference.

Considering familiarity, i.e., how much a user knows a given
area, is one way to improve user preference inference. User pref-
erence varies in terms of his/her familiarity with the visited ar-
eas [6], [7], [8]. Baltrunas et al. [6] and Wang et al. [7] showed
that considering familiarity improves POI recommendation per-
formance with experiments that employ user visit-logs of both
the familiar home city and unfamiliar non-home cities.

Inspired by the previous studies, we propose a familiarity-
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aware POI recommendation method applicable to relatively small
sized areas: urban neighborhoods located in the same city. For a
concise description, we will call “the small sized areas” as “ur-
ban neighborhoods” or simply “areas.” Our work was carried out
by extending the previous method to manage user familiarity dif-
ference between the areas in the same city. However, extending
state-of-the-art methods [6], [7] to manage user-preference vari-
ations caused by the familiarity difference among the areas in
the same city is not straightforward, because the previous meth-
ods adopt the POI topic-level-preference difference, which is too
coarse to be applied to the “small areas in the same city” case.

Here, POI topics indicate groups of POIs with similar seman-
tic functions. For instance, we can classify both a movie theater
and museum into the “Arts” topic. Because the familiarity dif-
ference between home and other cities is huge, we can relatively
easily observe user preference differences caused by familiarity
at the topic level, as argued by previous studies [6], [7]. For ex-
ample, assume that there is a user who loves POIs classified into
the Arts topic, and often visits a movie theater in his/her home
city. When he/she visits an unfamiliar city, he/she might go to
a basketball stadium (“Sports” topic), regardless of his/her pref-
erence for movie theaters, because the city might be famous for
basketball. As shown in this example, users tend to visit famous
local POIs when they visit unfamiliar cities.

However, we found that the familiarity influence on topic-level
user preference is relatively weak “in different areas in the same
city” compared to “the home city and other city” case. Instead,
individual POIs should be highlighted [8], [27]. This means that a
user who loves Arts topic still visits Arts-related POIs when they
visit unfamiliar areas in the city, but his/her visiting POIs are dif-
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ferent. For example, such users might go to a movie theater in
familiar areas of the city, but visit a museum in unfamiliar areas
of the same city. Here, both of the POIs are classified as Arts
topic.

State-of-the-art methods [6], [7] manage and selectively use
two types of topic-level user preferences according to user famil-
iarity to each target region: preference of familiar users and pref-
erence of un-familiar users. However, these methods assume that
user preferences to all individual POIs in the same topic stay the
same regardless of familiarity. Therefore, it is difficult to manage
the familiarity influence on visits observed in POI level.

To exploit the familiarity influence observed in different areas
in the same city effectively, our proposed method manages the
familiarity-caused user-preference variations in individual POI
levels. More specifically, our method maintains several user-
group preferences for individual POIs located in a given area.
The user groups are constructed by classifying users with simi-
lar familiarity with the given area into the same group (e.g., users
familiar with, and users unfamiliar with the given area). We refer
to such group preference as global preference hereafter. Then, to
make recommendations for user u in area a, our method combines
u’s individual user preference with the selected global preference
that has a similar familiarity with that of user u about area a.

To infer each user’s familiarity with each of the areas, we first
divide a city into 2 km × 2 km non-overlapped areas. Then we
adopt the visit-frequency-based familiarity estimation proposed
in our previous work [8], [27] to calculate each user’s familiarity
with each area.

Our contribution is as follows: we propose a familiarity-aware
POI recommendation method applicable to areas with different
familiarity in the same city. Through our proposed method, we
show that visit-pattern differences with regard to familiarity exist
even between the areas closely located each other. In addition, the
difference that is difficult to capture with state-of-the-art methods
can be exploited using our proposed method.

The rest of this paper consists of 6 sections. We explain related
work in Section 2. Section 3 describes the preliminary knowl-
edge. In Section 4, our proposed method is presented in detail.
We evaluate our proposed method in Section 5 and discuss the
results in Section 6. In Section 7, we conclude our research.

2. Related Work

We first describe works related to overall POI recommenda-
tions, and then analyze the studies related to the familiarity con-
cept.

POI recommendations: Many previous POI recommendation
studies have proposed effective ways for modeling and combining
mobility patterns and user preferences [1], [2], [3], [4], [5], [9],
[10]. Mobility patterns are represented by the density distribu-
tion of user activity over geographic areas. Activity density is in-
ferred from the geo-locations of user check-ins (visit logs) using
kernel density estimation [3], [9], topic model [4], Multi-center
Gaussian model [10], or simply penalizing the POIs located far
from the nearest already visited areas [1]. User preferences are
inferred from user check-ins or opinions about the visited POIs
using memory-based [1], [9] or model-based collaborative filter-

ing, such as matrix factorization [2], [5] or topic model [3], [7].
Other research has studied the influence of external environ-

mental factors. Gao et al. [11] and Yuan et al. [12] incorporated
the concept of visit time. Cheng et al. [13] and Liu et al. [14]
studied subsequent visit POI predictions based on the lastly vis-
ited POIs. Yang et al. [15] proposed POI recommendations that
are aware of user sentiment with regard to POIs.

Some approaches have focused on mitigating the cold start
problem: directly available data to infer user preference are
not large enough to achieve accurate recommendations. Gao
et al. [19] proposed a method that exploits “visit-patterns of
neighbors” to recommend POIs to those users with insufficient
visit logs. Bao et al. [16] and Yin et al. [17] studied the method
for addressing the cold start problem that arises when users visit
a non-home city. Bao et al. used the POIs that are popular among
local experts with preferences similar to users who request rec-
ommendations. Yin et al. inferred user preferences and popularity
distributions over POIs in the user’s visited city by topic model,
and combined them to generate recommendations.

Familiarity-aware POI recommendations: Familiarity-
related studies have been performed by Lian et al. [18], Baltrunas
et al. [6], and Wang et al. [7]. Lian et al. exploited user visit-
pattern differences to areas in order to reduce ambiguity in their
preferences. For example, if there exists an unvisited POI in an
area visited frequently by a given user, the system determines
that the user does not prefer the POI because we can assume that
he/she knows the POI well. In contrast, in an area rarely visited
by the user, the system assumes that he/she simply does not know
about the POI. This way, Lian et al. focused on how to reduce
“static user preference” ambiguity by treating un-visited POIs lo-
cated in familiar and un-familiar areas differently, whereas our
proposed method focuses on how to manage changes in user pref-
erences with regard to the degree of familiarity. Baltrunas et al.
studied familiarity influence on sightseeing recommendations as
a part of user context. This is also different from our proposed
method because it uses the familiarity degree explicitly given by
users. On the contrary, our proposed method automatically in-
fers the degree of familiarity from LBSN data without using any
information explicitly given by users.

The study of Wang et al. [7] is the most closely related to our
study. Similarly to Yin et al.’s study [17], Wang et al. studied an
effective way for combining user preference with popularity dis-
tribution over POIs located in a given area. Unlike Yin et al.’s
study, for each area, Wang et al. used two popularity distribu-
tions inferred from two separate user groups: natives to the city
(familiar users) and tourists from another city (unfamiliar users).
The system selects the popularity distribution according to the
target user’s familiarity with the city. Subsequently, it combines
the selected popularity with the target user’s preference. How-
ever, popularity difference with regard to familiarity is captured
at a topic-level that is too coarse for capturing visit-pattern differ-
ences observed at POI level. Therefore, Wang et al.’s method does
not work well in areas with different familiarity in the same city.
In addition, both Baltrunas et al. and Wang et al. calculated user
familiarity to each city, and then recommended POIs from candi-
date POIs located in the city. For instance, Wang et al. classified
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users into natives and tourists if their visited city is closer/farther
than 100 km from their home city. If we consider the small areas
located in the same city, it is difficult to measure familiarity using
the simple distance from home. For example, a workplace area
10 km far from home is more familiar than unvisited areas 5 km
far from home.

Limitations of POI recommendations: The performance im-
provement by adopting a new concept is generally small in POI
recommendations [28]. Most improvement is under 3% [28]. The
first reason for this is that user visits to POIs are influenced by
many factors. Therefore, the newly introduced single concept,
which is the subject of each study, cannot consider all influential
factors. The second reason is data sparseness. Most POI visit logs
are generated voluntarily by users, i.e., users generate their visit
logs only when they want to. Therefore, it is difficult to procure
sufficient data to precisely model and evaluate user visit-pattern.

3. Preliminaries

In this section, we define the concepts required to explain our
proposed method. Then, we describe the most related method,
GeoSAGE (Wang et al. [7]), to explain how we extend the idea
of GeoSAGE to manage user visit-pattern differences caused by
familiarity differences in different areas located in the same city.

3.1 Definitions
The notations defined here are listed in Table 1.
City and Area: A city is defined as the union of an exclu-

sively divided area a ∈ A, where A represents entire areas of the
city. 2 km × 2 km squared area is adopted in this paper.

User and Check-in History: User u ∈ U can visit any POI
v ∈ V located in area a ∈ A. u can leave a check-in c ∈ C as a visit
log to v. Therefore, u has check-in set Cu = {cu,1, cu,2, cu,3, . . .}
whose elements are check-ins left by u. cu,i indicates the i-th
check-in in Cu.

Check-in: Single check-in cu,i consists of six attributes: User
u, Visit time tu,i, Visited POI vu,i, POI’s name, POI’s location lu,i,
and POI’s tags Wu,i = {wu,i,1, wu,i,2, . . .}. wu,i, j indicates the j-th
tag in Wu,i. Figure 1 shows a check-in example. POI’s name is
given by the POI owner. POI’s location lu,i indicates the POI’s

Table 1 Notations of variable.

Fig. 1 An example of check-in.

geographic position. Such position is represented by a latitude-
longitude pair. Wu,i is the keyword set that represents the POI’s
characteristics. A tag wu,i, j is selected from the entire keyword
set W that consists of user-defined keywords and the categories
defined by LBSN providers. For example, “tasty coffee” is a key-
word and “Coffee shop” is a category. Because a single check-in
indicates a user’s single visit to a POI, there is only one check-
in that has the exact 〈u, tu,i, vu,i〉 triple. In this paper, we use
cu,i = 〈u, tu,i, vu,i, lu,i,Wu,i〉 to show single check-in.

Activity Area: A user’s activity area is the area where the user
has left most of his/her check-ins. Typically, users have plural
activity areas [10].

Familiarity and Familiarity degree: Familiarity fu,a indicates
how much user u knows about area a, which has a range of [0.0,
1.0]; 0.0 indicates that u does not know about a, and 1.0 indicates
that u knows much about a.

In this paper, instead of directly using fu,a, we use familiarity
degree f ′u.a, which is a discretized version of fu,a whose value is
discretized to a set of pre-defined non-overlapped bins. For in-
stance, if we have the set of two pre-defined bins F = {U: [0.0,
0.9), F: [0.9, 1.0]}, then fu,a1 = 0.22, fu,a2 = 0.91, and fu,a3 = 0.35
become f ′u.a1 = U, f ′u.a2 = F, and f ′u.a3 = U, respectively.

POI Recommendation: As shown in Fig. 2, a user can visit
any of the areas with different familiarities in a city. When a
user requests a POI recommendation, the system extracts a finite
number of POIs from those located in the user’s currently visit-
ing area. In familiarity-aware recommendation, according to f ′u.a,
different POIs can be extracted for the same user-area pair (u, a).

3.2 GeoSAGE [7]
GeoSAGE is the latest and most closely related work to our

study. The algorithm attempts to capture individual user prefer-
ence variations with regard to the user’s familiarity with a visited
area. The algorithm assumes that the area is as wide as the city.
The idea of GeoSAGE is to exploit the global preference in order
to estimate the target user’s preference bias in the target area. For
explanation simplicity, we call a user who wants a recommenda-
tion, the target user, and the area where the target user is currently
visiting, the target area. To infer global preference, the algorithm
uses those check-ins that meet two conditions. First, the check-
ins are made by a public whose familiarity with the target area is
similar to that of the target user. Second, the check-ins are made
in the target area. The idea behind this is that people tend to show
similar visiting preferences when under similar conditions.

As shown in Fig. 3 (a), GeoSAGE maintains both “individ-
ual preference” and “global preference” in the form of proba-
bility distribution over topics. A topic is a type of POI group
where POIs in the same topic share common functions, for in-

Fig. 2 POI recommendation.
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Fig. 3 Overview of GeoSAGE and proposed method.

stance, POIs related to “dining.” This topic-based preference
was adopted to address the data sparseness problem in unfamil-
iar areas. Since users tend not to visit POIs in unfamiliar areas,
the individual-POI-based model encounters difficulties when es-
timating the target user visit-patterns in unfamiliar target areas.
In contrast, because GeoSAGE assumes that user visits are “vis-
its to topics,” the algorithm can mitigate the problem by recom-
mending POIs with a strong relationship to the topic. In con-
crete, when target user u visits familiar (or unfamiliar) area a,
GeoSAGE blends u’s topic preference with the global topic pref-
erence of the public who are familiar (or unfamiliar) with a. Then,
the recommended POIs are selected from all POIs in the target
area based on the blended preference, followed by a ranking of
both the POI relationship strength to each topic and the proba-
bility of each topic in the blended preference. If a given POI has
higher relationship strength to the preferred topics, i.e., high prob-
ability in the blended preference, the POI has a higher probability
of being ranked high as the recommended POI.

To infer the topics, blending ratio, and relationship strength
between POIs and topics, GeoSAGE uses SAGE [20], a topic-
learning algorithm. Simply speaking, a user is represented as
a collection of POIs checked in by the user. In general, topic-
learning algorithms classify those POIs that are commonly co-
visited by many individual users into a single topic. For instance,
movie lovers frequently visit “indie” (independent) movie the-
aters and multiplexes. Therefore, the two types of theaters are
likely to be classified into the same topic. Because a user is rep-
resented by the POIs he/she has visited, individual and global
topic preferences can be inferred using the POI-topic relationship
strength of the visited POIs.

GeoSAGE does not work well when we changed the problem
from “inter-city” to “inter- urban neighborhoods in the city”.

First, GeoSAGE adopts an approximate delimiter (e.g., 100 km
far from the home city) to classify user u as being familiar or un-
familiar with city a. The delimiter cannot be directly applicable
to the classification of urban neighborhoods in the same city be-
cause, in the city, there are areas with different familiarity within
the same distance from a user’s active area such as the location
of home. For example, when we set familiar areas as those areas
within 4 km from home, other familiar areas, such as the work-
place or frequently visited shopping areas, exist outside the 4 km
range.

Second, there is a suspicion that the topic preference variation

Fig. 4 Visit pattern variance w.r.t. familiarity in Roppongi [27].

caused by the familiarity difference is relatively weak in “areas
in the same city” compared with the “inter-city” case [8], [27].
Therefore, we believe that individual POIs should obtain more
highlights. We describe this issue in detail in Section 3.3.

3.3 Familiarity Observed in Areas Located in the Same City
In our previous paper [27], we confirmed that even in the home

city, user visit-patterns represented by topic probability distribu-
tion varied with regard to the familiarity with the area but not suf-
ficient to exploit in recommendation. Moreover, even if the topic
distribution representing visit-patterns of familiar user group and
that of unfamiliar user group are similar in a given area, visited
POIs by the two user groups are different each other.

Figure 4 (a) show the global topic preferences with different
familiarities in Roppongi. The preferences are learned by Gibbs
sampling [21], a popular topic-learning algorithm. As shown in
Fig. 4 (a), while clear differences can be detected between Fam.
and Unfam., and between Moderate and Unfam., we cannot de-
tect a definite preference difference between Fam. and Moderate.

Although the global topic preferences are similar, in the case
of “Fam” and “Moderate” for Topic ID 6 in Fig. 4 (a), as shown
in Fig. 4 (b), the POIs related to Topic ID 6, visited by “Fam” and
“Moderate” are different.

4. Familiarity-aware POI Recommendation

In this section, we describe the actual familiarity used in our
proposed method. Subsequently, our basic idea is described fol-
lowed by its detailed explanation. Unless explicitly indicated, the
notations used in this paper are those listed in Table 1 and Ta-
ble 2.
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Table 2 Model parameters.

4.1 Familiarity calculation
Familiarity fu,a indicates how much user u knows about area a.

In general, fu,a increases either when area a is one of the activ-
ity areas where user u has left many check-ins, or when area a is
closer to one of the activity areas of user u. This is because we
can assume that a person knows more about an area if the person
frequently visits the area, or he has more opportunities to visit
because of the area’s geographic proximity to a frequently visited
area.

We use Eqs. (1)–(3) [8], [27] to calculate fu,a. fu,a has the range
[0.0, 1.0], where 0.0 indicates that user u does not know about
area a, and 1.0 indicates that user u knows much about area a.

fu,a = max

⎛⎜⎜⎜⎜⎜⎜⎜⎝
log(n′u,a)

max
a′∈A

(log(nu,a′ ))
,

log(nu,a)
max
a′∈A

(log(nu,a′ ))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (1)

n′u,a = (max nu,a′
a′∈A

) · pchk(du,a) (2)

pchk(du,a) = z1 · du,a
z2 (3)

Activity areas of user u are extracted from check-in set Cu by
using DBSCAN algorithm [22]. If check-ins in Cu are located
densely in n different geographic areas and there is no densely
located check-ins between each areas, DBSCAN generates n dif-
ferent clusters. If area a includes the averaged geo-location of all
the check-ins in one of the extracted clusters, we assume area a

is an activity area of user u. Here, we allow a user to have multi-
ple activity areas. We empirically use eps = 1, mitPts = 5 as the
parameters for DBSCAN. z1 = 1 and z2 = −1.1 are constants.
Interested readers can refer to Refs. [8], [27] for fu,a and Ref. [1]
for the method for finding z1 and z2.

Our definition of familiarity is more robust than that of
GeoSAGE [7], because 1) we are able to represent the familiarity
by using a numerical value from 0 to 1, instead of using the binary
representation used in GeoSAGE, i.e., familiar-or-unfamiliar, and
2) we are able to use multiple activity areas to calculate the fa-
miliarity, while GeoSAGE calculates the familiarity based on the
distance from a single activity area.

4.2 Basic Idea
Our basic idea is to adopt individual POI-level preferences, i.e.,

global POI preferences, instead of using GeoSAGE’s topic-level
preference, global topic preference.

Since the preference difference between familiar users and un-
familiar users over topics is small in the areas located in the same

Fig. 5 Graphical representation of proposed method.

city as described in Section 3.3, we utilize familiarity for the pref-
erence defined for individual POIs. As shown in Fig. 3 (b), our
proposed method re-orders the POI order in a target user’s prefer-
able POI list using the global POI preference. POIs in the prefer-
able POI list are ordered by the target user’s preference degree
for each POI. The global POI preference is the preference of in-
dividual POIs calculated from the check-ins of all users with a
similar familiarity degree to the target user. By carrying out the
re-ordering, we can calculate familiarity awareness while person-
alizing the POI recommendation list.

For a given area a, the proposed method maintains several
global POI preferences. The number of preferences is pre-
defined, such as two, based on the familiarity degree defined in
Section 3.1, e.g., the global POI preference of familiar and un-
familiar users. “Area a’s global POI preference with familiar-
ity degree f ” is calculated from the check-ins made by all users
whose familiarity degree f ′u,a = f . If user u visits area a with
f ′u,a = f , the proposed method first calculates u’s familiarity-
unaware preferable POI list with regard to a. The list is con-
structed using a method similar to GeoSAGE, but not using the
global topic preference. Then the method combines the POI list
with “a’s global POI preference with familiarity degree f ” to cal-
culate recommended POIs.

4.3 Model Description
As described in Section 4.2, in order to calculate target user

u’s preference to a given POI v, our proposed method combines
user u’s preference to POI vwith the familiarity-aware global POI
preference to POI v. The combination is calculated with Eq. (4).
This equation is used to calculate the case where user u visits
area a, and the familiarity degree f ′u,a = f . The first term (in Σ’s
range) represents user u’s preference to POI v. The second term
represents area a’s global POI preference with familiarity degree
f . Figure 5 shows a graphical representation of the proposed
method.

To infer user preference, similarly to GeoSAGE, we adopt
topic models because other popular methods, such as matrix fac-
torization, cannot easily manage recommendations in unfamiliar
areas [4]. User u’s preference is represented by a probability dis-
tribution over topics. As shown in the first term of Eq. (4), user
u’s preference to POI v is calculated by accumulating POI v’s re-
lationship strength to each topic. When accumulating the rela-
tionship strength, we grant a weight to each topic based on user
u’s preference to the topic.
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We linearly combine the two types of user preference distribu-
tion over topics (Eq. (5)). The first distribution is the general user
preference distribution inferred by all the check-ins left by the
user. The second distribution is the familiarity-aware user prefer-
ence inferred from the check-ins left by the user in areas with the
same familiarity degree. Combination weight b is automatically
learned in learning phase.

POI v’s relationship strength to topic z is calculated by tak-
ing both the relationship strength between POI v and z and the
strength between the keywords that describe POI v and z (Eq. (6)).
In this way, we can exploit both of POI’s semantic closeness to a
given topic and POI’s popularity in the given topic. Because the
number of describing keywords is different for each POI, we use
the normalized version.

Area a’s global POI preference with familiarity f is calculated
with Eq. (7). Our method maintains the logged number of check-
ins made to POI v in area a for each familiarity degree ηpop

f ,a.v. In ad-
dition, our method maintains ηpop

∗,a,v that indicates the logged num-
ber of check-ins of all users, regardless of familiarity degrees. We
combine ηpop

f ,a.v with ηpop
∗,a,v to mitigate the data sparseness problem.

The assumption behind this is that in general, popular POIs attract
people of all familiarity degrees to some extent.

The final recommendation list for user u is constructed by se-
lecting the top-k POIs from the ordered candidate POI list. The
candidate list is constructed by ordering the POIs in area a ac-
cording to the recommendation score (Eq. (4)) in decreasing or-
der. k is given by user u.

s(v|u, a, f ,Φ)

=

(∑
z∈Z p (z|u, f ) · p(v|z, a, ϕPOI , ϕword)

)
· p(v|a, ηpop

∗ , η
pop
f )

(4)

where, Φ = {θpre f
∗ , θ

pre f
f , η

pop
∗ , η

pop
f , ϕ

word, ϕPOI}
p(z|u, f ) = b · θpre f

∗,u,z + (1 − b) · θpre f
f ,u,z (5)

p(v|z, a, ϕPOI , ϕword) =
1

Na
·
⎛⎜⎜⎜⎜⎝
√
ϕPOI

z,v · 1
|Wv|
∑
w∈Wv
ϕword

z,w

⎞⎟⎟⎟⎟⎠
(6)

p
(
v|a, ηpop

∗ , η
pop
f

)
=

1
N′a
·
⎛⎜⎜⎜⎜⎜⎜⎜⎝

exp
(
η

pop
∗,a,v + η

pop
f ,a,v

)
∑
v∈Va

exp
(
η

pop
∗,a,v + η

pop
f ,a,v

)
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (7)

where Na and N′a in Eqs. (6) and (7) are the normalization factors.
Each factor is calculated by the summation of the second term (in
parentheses) in each equation of all POIs located in area a (e.g.,∑
v located in a 2nd term).

4.4 Parameter Learning
In this sub-section, we describe how we learn parameters in Φ

in Eq. (4) and b in Eq. (5).
We employed two-stage learning. In stage 1, we learn the

topic model using the keywords that describe POIs to calculate
the keyword-topic relationship strength. User u’s preference over
topics indicates the categories that user u likes. Then in stage
2, based on the keyword-topic relationship strength, we learn the
POI-topic relationship strength. We calculate the POI-topic rela-
tionship strength by using both the assigned keywords and num-
ber of check-ins made to POIs, because some POIs are assigned

Fig. 6 Learning algorithm.

to the same keywords. For example, if both POI v and POI v′ have
the same keyword “Coffee” that is strongly related to topic t and
users made more check-ins to POI v than POI v′, we can state POI
v is more strongly related to topic t than POI v′.

We show the pseudocode for the learning algorithm in Fig. 6.
In stage 1, similar to Liu et al.’s work [23], a user can be repre-
sented with the keywords that describe visited POIs and the POI
visit frequency. This way, a user can be viewed as a single doc-
ument that contains keywords. We can model user preference by
LDA (Latent Dirichlet Allocation) [24] and infer user preference
θ

pre f
∗,u , θpre f

f ,u , and topic-keyword relationship strength ϕword
z with

Gibbs sampling [21]. The topic is sampled for each keyword in
each check-in. Equation (8) shows the topic sampling probability
used for drawTopicP1( ).

p(zu,i, j|z¬(u,i, j), w, u)∝ n¬(u,i, j)
u,zu,i, j

+ αzu,i, j∑
z∈Z(n¬(u,i, j)

u,z +αz)
· n¬(u,i, j)

zu,i, j ,wu,i, j
+ βwu,i, j∑

w∈W (n¬(u,i, j)
zu,i, j ,w +βw)

(8)

where wu,i, j represents an instance of the keyword that appears
at the j-th position in keyword list Wu,i that describes the POI
checked in by cu,i. zu,i, j represents an instance of the topic sam-
pled for wu,i, j. nu,z is the number of times topic z is sampled for
user u. nz,w is the number of times topic z is sampled for key-
word w. αz and βw are the hyper-parameters of Dirichlet prior for
topic z and keyword w. ¬(u, i, j) means excluding the result for
wu,i, j. For example, if topic z is sampled for wu,i, j, the value for
nu,z − n¬(u,i, j)

u,z equals 1; otherwise, equals 0.
Familiarity degree value f is calculated from getFamiliarity( ).

As described in Section 3.1, we discretize the familiarity of
Eq. (1) by grouping similar familiarity values into the same fa-
miliarity degree.

In updCounterP1( ), we count the topic sampling results to cal-
culate user preferences (Eqs. (9) and (10)) and topic distributions
over keywords (Eq. (11)).

θ
pre f
∗,u,z =

n′∗,u,z + αz∑
z′∈Z(n′∗,u,z′ + αz′ )

, (9)

θ
pre f
f ,u,z =

n′f ,u,z + αz∑
z′∈Z(n′f ,u,z′ + αz′ )

, (10)

ϕword
z,w =

n′z,w + βw∑
w′∈W (n′z,w + βw)

(11)

where n′∗,u,z and n′f ,u,z are the number of times topic z is sampled
for user u in all areas and in the areas of familiarity degree f . n′z,w
is the number of times topic z is sampled for keyword w.

In stage 2, we calculate the topic probability distributions over
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POIs (ϕPOI
z ), the area’s global POI preference (ηpop

∗ , η
pop
f ), and

weight b in Eq. (5). In drawTopicP2( ), in order to calculate ϕPOI
z ,

we sample topic z based on the topic probability to the keywords
that describe POI v (Eq. (12)). Each sampled topic is counted and
topic z’s probability distribution over POIs is given by Eq. (13).

p(z|v, ϕword) =
1
|Wv|
∑
w∈Wv

ϕword
z,w∑Z

z′ ϕ
word
z′ ,w

(12)

ϕPOI
z,v =

n′z,v + β′v∑
v′∈V (n′z,v′ + β

′
v′ )

(13)

where n′z,v is the number of topic z sampled for POI v. β′w is a
hyper-parameter of Dirichlet prior for POI v.

We represent area a’s global POI preference ηpop
∗,a,v and ηpop

f ,a,v as
the logged frequency of check-ins for POI v (Eqs. (14) and (15)).

η
pop
∗,a,v = log

(∑
f∈F n′f ,v

)
, (14)

η
pop
f ,a,v = log(n′f ,v) (15)

where n′f ,v is the number of check-ins made for POI v by users
with familiarity degree f .

Weight b is calculated with Eq. (16).

b =
n′avg

(n′avg + n′f am)
(16)

where n′avg and n′f am are the number of topics sampled from the

average preference (θpre f
∗,u ) and from the familiarity-aware prefer-

ence (θpre f
f ,u ).

The probability of the sampled source selection used by
drawSrcPref() follows Eq. (17).

p(s = avg|θpre f
∗,u,z , θ

pre f
f ,u,z ) =

θ
pre f
∗,u,z

θ
pre f
∗,u,z + θ

pre f
f ,u,z

(17)

where term avg indicates that the source is the average preference.

5. Evaluation

5.1 Experimental Settings
Dataset: We evaluated our proposed method with check-in

data from Foursquare *1, one of the popular LBSNs. We tested
the proposed method in three cities: New York City (NYC) and
Los Angeles (LA) in the United States, and Tokyo in Japan. We
selected these three cities because their residents have the most
check-ins that we could gather. We first gathered Twitter *2 users
who left publicly available Foursquare check-ins in one of the
cities. Subsequently, using both Twitter API *3 and Foursquare
API *4, we gathered more publicly available check-ins from the
users. We also collected keywords that describe POIs using the
Foursquare API. The data were gathered from 2013.7 to 2014.12,
and we collected over 1 million check-ins. Because the famil-
iarity described in Section 4.1 needs information about activity
areas, we only used the check-ins of users who have at least one
activity area in the evaluation city. In Table 3, we list the statistics
of the check-in data after filtering.

*1 https://foursquare.com
*2 https://twitter.com
*3 https://dev.twitter.com/rest/public
*4 https://developer.foursquare.com/

Table 3 Check-in data statistics.

Table 4 Algorithms for comparison.

Methods: We evaluated the following six methods: LCARS,
GeoSAGE, FamLCARS, our proposed method, and two variants
of the proposed method. We set 2 km × 2 km as the area size for
all the algorithms. Here, in GeoSAGE, the lowest spatial pyra-
mid is set as 2 km × 2 km. The height of the pyramid is shown in
Table 3. FamLCARS is a familiarity aware extension of LCARS
implemented by us. FamLCARS maintains two global topic pref-
erences to each area a: the preferences of familiar users, and un-
familiar users. In addition, it uses two latent switching variables
for each user u to indicate the preference influenced to a given
user visit: a variable for familiar area visits, and unfamiliar area
visits. Table 4, we list the six algorithms and their parameters
used in training phase to achieve the best performance. We eval-
uated the combination of (|Z|, h) for GeoSAGE, (|Z|) for the other
methods. |Z| ∈ {10, 20, 40, 80, 100} indicates the number of top-
ics, h ∈ {0, 1, . . . ,max} indicates the height of the spatial pyra-
mid. We selected the combination that the Racall@k improve-
ment started to be saturated. For priors αz ∼ γ, we used the same
value used in LCARS.

Evaluation: 5 × 2 cross-validation [25] was adopted. In a sin-
gle two cross-validation, half of the randomly selected data were
used to train the model, 20% of the last half was used to tune
the parameter, and the remainder were used for testing. Then, we
evaluated once more by exchanging the roles between the training
and tuning/testing data. We repeatedly performed the two cross-
validation five times to calculate the average as the results. In
the 5 × 2 cross-validation, we are not concerned with the check-
in time when constructing the training/tuning/testing sets because
this is the methodology commonly used in POI-recommendation
evaluations [7], [17], [23].

By following the evaluation setting descripted in Wang et al.’s
work [7], for each user u, we construct ground truth POI set Tu

by collecting every POI v ∈ V that satisfies the two conditions: 1)
POI v appears in at least one of user u’s check-ins of the test data
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Fig. 7 Recommendation performance.

Fig. 8 Performance improvement in areas in the same city after adopting familiarity.

set. 2) POI v does not appear in any of user u’s check-ins of the
training data set. Besides, we newly adopt the third condition: 3)
POI v is located in area a ∈ A that contains at least 120 identical
POIs. The third condition was introduced to avoid the accidental
occurrence of a good result that is originated in the small number
of recommendation candidate POIs.

For each v ∈ Tu, the algorithms shown in Table 4 extract a list
of top-k ranked POIs from the POIs located in the same area a ∈ A

where POI v is located, on the assumption that the algorithms do
not know the ground truth POI v.

We used Recall@k shown in formula Eq. (18) as the evaluation
metric employed by Wang et al. [7] and Yin et al. [17].

Recall@k =

∑
u∈U |Ru,k |∑
u∈U |Tu| (18)

where Ru,k indicates a set of successfully recommended POIs for
user u. Here, if the ground truth POI v is included in the top-k
recommended POI list, the recommendation is decided as suc-
cessful. | | indicates the set cardinality.

Unless explicitly indicated, we adopt the binary familiarity de-
grees {Uufam:[0.0, 0.9), Fam:[0.9, 1.0]} for familiarity classifi-
cation with 2 km × 2 km area a for all the algorithms including
GeoSAGE in Table 4. This indicates that the algorithms regard
that area a is an unfamiliar area to user u if familiarity fu,a is less
than 0.9.

5.2 Recommendation Performance
Recall@20: The results are shown in Fig. 7. The proposed

method outperforms the two state-of-the-art methods. Com-
pared to LCARS which is the best performing state of the arts,
the proposed method achieved 0.05 to 0.06 improvement in Re-

call@20. Both of two statistical significance tests, t-test for
5 × 2 cross-validation [25] and Binary test [26], show that the
performance difference between the proposed method (Prop.)
and the familiarity-unaware version of the proposed method
(Prop NoFam) is statistically significant (p < 0.01) to all the

cities.
It is interesting that the performance difference between

each of the LCARS–FamLCARS pair, and Prop NoFam–
PropPrefFam pair is negligible. This implies that user prefer-
ence variation with regard to familiarity degree cannot be easily
captured at the topic level by using Gibbs Sampler. GeoSAGE
showed the worst performance. It contradicts the result in Wang
et al.’s work [7]. We will discuss these issues in Section 6.

Impact of Familiarity Degree Configuration: Figure 8 (a)
shows the proposed method’s Recall@20 improvement achieved
in comparison with the familiarity-unaware configuration
(Prop NoFam) by various familiarity degree configurations.
Figure 8 (b) presents how the check-ins in each of the cities are
distributed over the areas with different familiarity.

The binary classification, classifying areas into activity area or
others, A.A. or not, which is concerned only with areas with fa-
miliarities in the range [0.9, 1.0] as familiar areas, shows the best
performance improvement.

We divided the check-ins into “three bins” based on the check-
in decreasing rate in NYC (three different slopes in blue line in
Fig. 8 (b)). “Three bins” shows nearly the same performance as
“A.A. or not” in NYC. However, in Tokyo and L.A., “Half &
Half” configurations show better performance than “three bins.”

“5 (the same sized) bins” shows the lowest improvement. Es-
pecially in NYC and LA, the performance decreased. The most
probable reason is the data sparsity of the four bins with less than
0.8 familiarity.

Recall@20 improvement w.r.t. Familiarity: Figure 8 (c)
shows the Recall@20 improvement of our proposed method
(Prop.) from the familiarity-unaware version of the proposed
method (Prop NoFam) calculated for each familiarity range. The
performance is measured with the same configuration described
in Section 5.1. The performance improvement is minimal in fa-
miliar areas (0.9 on the x-axis) in all three cities. We believe that
the phenomenon is caused by the fact that most check-ins are left
by familiar users, as shown in Fig. 8 (b). Therefore, in familiar ar-
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Fig. 9 Recommendation performance to various sized areas.

eas, there is no significant pattern difference between familiarity-
unaware and familiarity-aware POI preference for familiar users,
because the familiar users’ check-ins govern both types of pref-
erences.

For unfamiliar areas, we have a significant improvement be-
cause the familiarity-aware method (Prop.) can capture unfa-
miliar user visit-patterns normally diluted by massive check-
ins made by familiar users in the familiar-unaware version
(Prop NoFam). It is worth noting that we have succeeded in per-
formance improvement, especially in unfamiliar areas, which is
not easily demonstrated by Fig. 7 because it only shows the aver-
age improvement.

Recall@20 w.r.t. the size of areas: Recall@20 of the algo-
rithms measured with various area size from 2 km × 2 km to
16 km × 16 km listed in Fig. 9. Our proposed method shows
better performance with every area size. It shows that the pro-
posed method is able to capture familiarity-caused-visit-pattern-
variance in areas in the same city better than the other methods.
We will discuss a possible reason in Section 6.

6. Discussion

In this section, we investigate why the familiarity-caused
global topic preference difference captured by GeoSAGE does
not contribute to high accuracy of recommendation. Then we ex-
amine why our proposed method works better in areas in the same
city.

Differences of Global topic preferences: Figure 10 shows
two kinds of global topic preferences - one for familiar and an-
other for unfamiliar users, learnt by GeoSAGE, FamLCARS and
our proposed method (shown as Prop.) for Roppongi in Tokyo,
Japan. We omitted LCARS because the patterns of the preference
and the performance is similar to FamLCARS. Table 5 shows the
human interpretation of each topic ID.

As for Prop., we calculated pseudo global topic preferences
based on topic-venue strength (ϕPOI

z,v ) and the number of check-
ins to venues as shown in Eq. (19) because our proposed method
does not directly learn the global topic preference.

p (z|a, f ) =
∑
〈u,v,t〉∈Ca, f

ϕPOI
z,v

/∑
z′∈|Z|
∑
〈u,v,t〉∈Ca, f

ϕPOI
z′ ,v (19)

where, 〈u, v, t〉 is a triple representation of check-in that each
symbol represents user, POI, and visit time. z ∈ Z, a ∈ A,
f ∈ {Familiar, Un-familiar}, and Ca, f represents the set of check-
ins made in a ∈ A by the users who have familiarity f with a.

In FamLCARS and Prop., the global topic preference distri-
bution difference between familiar users and un-familiar users is
minimal. This indicates that, in areas in the same city, preference
differences caused by familiarity are difficult to be captured in
topic level by Gibbs sampling.

On the other hand, GeoSAGE captures clearer preference dif-

Fig. 10 Global Topic preferences in Roppongi in Tokyo, Japan.

Table 5 Topic interpretation.

ference between familiar users and un-familiar users than the
other algorithms. However, the captured preferences are concen-
trated on a few topics. For instance, in Roppongi area, famil-
iar users’ preference is mostly concentrated on Restaurant topic
(TID 1 and 5). On the other hand, un-familiar users’ preference is
concentrated on Theater and Music topic (TID 0). We think that
phenomenon was caused by sparse distribution learning charac-
teristic of SAGE [20] method. When recommending POIs in the
cities far from home city as Wang et al. evaluated [7], GeoSAGE
can capture user preferences more clearly than other algorithms
because user preferences are concentrated on a few topics such
as sightseeing. However, when GeoSAGE recommends POIs for
areas with different familiarity in the same city, the deficiency of
topic diversity results in poor accuracy.

For each area a ∈ A where we made recommendations in Sec-
tion 5 (55 areas in NYC, 58 areas in Tokyo, 41 areas in LA),
we calculated the global topic preference of familiar users, and
that of unfamiliar users. And then we calculated 1) cosine simi-

larity [29] between the two global topic preferences, 2) Shannon

Entropy [29] for each of the preferences (Eq. (20)).

ShannonEntropy(	g) = −
∑|Z|

t
	gt · loge(	gt) (20)

where, 	g is a global topic preference vector of |Z| dimension. t-th

element of 	g, 	gt indicates the probability of topic ID t.
When the global topic preferences of familiar users and un-

familiar users in a given area are identical, the similarity is 1.0.
And, if totally different (orthogonal), the similarity is 0. For the
entropy, if the probability is concentrated on a single topic, then
the value is 0.

For model parameters, we used the values described in Table 4
except for |Z|. We chose the same |Z| = 40 to compare all of the
three algorithms in the same condition. We ran the same tests 10
times with the models trained from the 10 different training sets
described in Section 5 and all of the test results led us to the same
conclusion. Therefore, we list the results of one of the tests in
Table 6 and Table 7.
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Table 6 Similarity and entropy of the global topic preference.

Table 7 Similarity between top-20 relevant POI set for familiar user group
and that for un-familiar user group.

Table 6 showed the averaged values of all tested areas. We can
see only GeoSAGE can capture differences between global pref-
erence of familiar and unfamiliar users with significant difference
but the captured preferences have a narrow spectrum.

Differences of individual POIs: As we can see in Fig. 10, in
FamLCARS and Prop., the global topic preferences between fa-
miliar users and unfamiliar users are similar. However, as ex-
pected in Section 3.3, the individual POI popularity between the
two user-groups are different each other.

To validate our hypothesis, for each area a ∈ A where we made
recommendations in Section 5, we calculated the top 20 rele-
vant POIs for familiar users and the top 20 relevant POIs for un-
familiar users. We prepared the two POI sets for each of FamL-
CARS and Prop. In FamLCARS, the sets are constructed by the
top ranked POIs in the recommendation score calculated by the
global topic preference without using individual user preference.
In Prop., we used ηpop

∗ and ηpop
f because our method does not ex-

plicitly adopt the global topic preference. Instead, ηpop
∗ and ηpop

f

were designed to be used for this purpose.
For each of FamLCARS and Prop., we calculated Jaccard co-

efficient [29] (Eq. (21)) by using the top-20 POI list of familiar
users, and that of unfamiliar users calculated by each of the al-
gorithms for each of the areas. The averaged results of all tested
areas are shown in Table 7.

J (A, B) =
|A ∩ B|
|A ∪ B| (21)

Even though the global topic preference distributions between
familiar users and unfamiliar users are similar in Prop. as shown
in Fig. 10 and Table 6, the values of Jaccard coefficient of Prop. in
Table 7 are substantially low compared to those of FamLCARS.
This indicates FamLCARS cannot capture the clear preference
difference between familiar users and unfamiliar users because it
adopts the same topic-POI relationship strength for both familiar
and unfamiliar user groups, and the topic level preferences be-
tween familiar user group and unfamiliar user group captured by
FamLCARS are similar to each other. This means, user prefer-
ence to POI groups (topics) are not significantly changed by user
familiarity with areas in the same city. Instead, visit attitudes to
individual POIs change. For instance, ramen lovers eat ramen
in any visited areas, but visit the ramen restaurants loved by the

users whose familiarity with the visited area is similar to them.
Limitations of the experimental results: Our experimental

results have two limitations. One of the limitations is related to
generalization. Our results discussed in this paper were obtained
from the data of only three big cities, from the single LBSN ser-
vice: NYC, Tokyo, LA in Foursquare. In addition, we tested
recommendation performance for users who have at least one ac-
tivity area in the target city. By doing this, we implicitly expected
that users have familiar areas and unfamiliar areas in the target
city. However, the possibility that a tourist left many check-ins
in a single area exists. As a result, the users who are equally un-
familiar to all of the areas in the target city may exist regardless
of their familiarity value to areas, the value calculated by Eq. (1).
Therefore, it is difficult to say the results are valid in all cities and
all the logs could be obtained from LBSN services.

Second, we empirically defined areas are 2 km × 2 km squares
on geographic space and used DBSCAN [22] with empirically
tuned parameters to find activity areas of users. However,
the shape and the size of areas might be different between
cities because of user life-style difference between the different
cities. One solution to finding optimal areas is using the method
Cranshaw et al. [30] suggested. Cranshaw et al. used a spectral
clustering method to find POI groups that have the POIs closely
located and visited by the similar set of users. And then the areas
that include the POIs for each group are defined. By doing this,
we may capture the areas that can reflect user life-style in each
city more precisely. However, this issue is still an open question.
In activity area search, because users left check-ins in a volun-
tary manner, it is difficult to devise a general automated method
applicable to every user.

Despite of the limitations we addressed, the experimental re-
sults showed that visit-pattern differences with regard to familiar-
ity exist even between areas in the same city and there is a way to
exploit the differences in POI recommendation.

7. Conclusion

In this paper, we proposed a familiarity-aware POI recommen-
dation method. The method is designed to capture user preference
differences with regard to familiarity differences in areas of the
same city. Through experiments performed on real LBSN data,
we showed that visit-pattern differences with regard to familiarity
exist even between areas of the same city. In addition, the differ-
ence that cannot be easily captured by state-of-the-art methods
can be exploited using the proposed method.

For future work, we will investigate if our findings described
in this paper are still valid in small sized cities, because users’
familiarity may be varied depending on the size of city. We will
also study the suitable granularity of both POI category and rec-
ommended POIs. For example, in a large city that has many
cafés, the questions, such as what kind of café and how many
cafés should be recommended for familiar or un-familiar users,
are interesting. The granularity issue is also related to the im-
provement of POI recommendation in familiar areas where lower
improvement was achieved by our proposed method compared to
un-familiar areas.
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