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Evaluation of Various Cache Extensions for LSTM Based
Language Models
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Abstract: Memory in recurrent neural networks is currently an issue. There have been various successful projects in
recent years which enlarged the memory of neural networks. When applied to language modelling, these techniques
showed a significant reduction in perplexity. However, on the downside these models are very costly to train as they
have many parameters and are very complex. Therefore recently, simpler models were presented, which do not suffer
from this drawback. The extensions to long short-term memory language models we present in this paper draw ideas
from the cache model for N-gram language models from the early 90s. We evaluate all models in terms of perplexity
and word error rate on the MIT-OCW lecture corpus.
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1. Introduction
The current state-of-the-art in language models (LM) has been

dominated by neural network based language models for a few
years. The first to propose the application of neural networks to
lanugage modelling were Bengio et al. in 2003 [1], when they in-
troduced feed forward neural networks to LMs. Later, Mikolov et
al. presented LMs based on recurrent neural networks (RNN) [2]
because these models have a better ability to capture long term
dependencies. However, RNNs suffer from various problems like
exploding and vanishing gradients [3], so Sundermeyer et al. pro-
posed using long short-term memory (LSTM) [4] based networks
[5].

However, recent research suggests, that these kinds of neural
networks do not have sufficient memory. This was first demon-
strated by neural touring machines [6] which showed more effec-
tive to abstract beyond the training data compared to LSTMs. In
one of the tasks, the network had to learn a simple sequence copy
algorithm and it showed to be successful in learning this copy
algorithm and abstracting to sequences of arbitrary length.

Memory networks [7][8], which share a similar idea were able
to outperform simpler RNN or LSTM models on a question an-
swering task and on perplexity evaluation on the Penn Treebank
dataset [9]. Using this idea, the authors in [10] proposed recur-
rent memory networks, which combine an LSTM and the mem-
ory cell from the memory network. They evaluated their model in
terms of perplexity on datasets for three languages and a sentence
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completion task. Furthermore, stack-augmented recurrent neural
networks [11], i.e., a recurrent network which has the ability to
read from and write to a stack, were investigated on the task of
learning simple algorithmic patterns.

The problem with the above models is, however, that they are
time consuming to train because the network has to learn the
memory access mechanism. This mechanism is in many cases
implemented by calculating attention vectors on the memory and
the input to the network. A simpler way to extend neural net-
works with memory has recently shown to be very effective in
the context of language modelling. First, a pointer network [12]
based approach [13] and second a neural cache based approach
[14]. In the former one, the pointers enable the network to es-
tablish direct connections from the input to the output and in this
way make use of out-of-vocabulary (OOV) words on the input in
the network’s prediction. In the latter one, the hidden state of the
network and the true output label is used to calculate a probability
from the cache for the next word.

In terms of language modelling, there have been other ap-
proaches in recent years based on the classic concept of bag-of-
words (BOW). In order to make use of the information in pre-
ceding dialog turns, the authors in [15] extended a feed forward
neural network with a cache component that captures information
about previous turns. RNNs extended with a BOW cache were in-
troduced by [16] and [17]. The BOW input was an exponentially
decaying cache for the whole history.

The authors of all aforementioned papers applied their respec-
tive models to various tasks, not limited but including natural lan-
guage processing. However, our main interest is speech recogni-
tion and in particular the effectiveness of LMs in n-best rescor-
ing. Therefore, in this paper we compare several cache extensions
based on the afore mentioned ones. First, we investigate the effec-
tiveness of the continuous neural cache from [14] and in addition
a direct combination of this cache with an LSTM based LM. Sec-
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Fig. 1 An LSTM cell.

ond, we analyse an extension to an LSTM that is inspired by the
BOW cache from [16] and [17]. We provide perplexity (PPL)
and word error rate (WER) results on an MIT lecture corpus [18].
The results and findings we present in this paper can be seen as a
current status of ongoing research.

2. LSTM
A single LSTM cell is shown in Fig. 1. In the language model

multiple of these cells are used and they are described by the fol-
lowing set of equations.

i(t) = σ(Wi,wx(t) + Wi,hh(t − 1) + bi) (1)

f (t) = σ(W f ,wx(t) + W f ,hh(t − 1) + b f ) (2)

o(t) = σ(Wo,wx(t) + Wo,hh(t − 1) + bo) (3)

g(t) = tanh(Wg,wx(t) + Wg,hh(t − 1) + bg) (4)

c(t) = f (t) � c(t − 1) + i(t) � g(t) (5)

h(t) = o(t) � tanh(c(t)) (6)

i, f and o are usually named the input, forget and output gate,
respectively. Wy,w and Wy,h denote the weight matrices for gate
y for the word input and the previous hidden layer, respectively.
biasy are the bias vectors for the respective gates. Since we use
vector notation in the above equations, σ(·) is the element wise
sigmoid, tanh(·) is the element wise hyperbolic tangent and � de-
notes an element wise multiplication. We denote the time index t
in brackets after the corresponding vector.

3. Continuous Neural Cache
3.1 External Cache

An effective way to implement a continuous neural cache (NC)
was presented in [14]. In this method, the cache consists of a list
of tuples (h(t),w(t + 1)), where h(t) is the hidden state of the net-
work at time t and w(t + 1) the target label the network should
predict at step t. The input word vector w(t) to the network is en-
coded as a one-hot vector and the input to the LSTM is obtained
by multiplication with a linear layer U. The cache is shown with
an unfolded structure in Fig. 2.

The probability for each possible element i in the output vector
ŵ(t + 1) is calculated from the cache as follows.

h(t − 3) h(t − 2) h(t − 1) h(t)

w(t − 3) w(t − 2) w(t − 1) w(t)

ŵ(t + 1)(h(t − 3),w(t − 2))

(h(t − 2),w(t − 1))

(h(t − 1),w(t))

U U U U

V

Fig. 2 Continuous neural cache model as proposed by [14].
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Fig. 3 Continuous connected neural cache to the softmax of an LSTMLM.

pcache(ŵ(t + 1)(i)|cache) ∝
N∑

n=1

1ŵ(t+1)(i)=wc(t−n+1)(i) exp(θh(t)Thc(t − n). (7)

The elements of the cache are denoted by a subscript c to dis-
tinguish them from the current state of the network. 1a=b is a
function that evaluates to one if a is equal to b and is zero for all
other cases. θ is a positive real valued parameter. N is the size
of the cache, which makes the cache cover all the current history
ranging from the last time step t − 1 to t − N.

On can interpret this function as a similarity measure for the
history stored in the cache and the current hidden state. By mul-
tiplying this similarity with 1a=b it is restricted only to the cases,
where the previous target of the network matches the i-th word
in the output. In order to obtain a probability from the cache,
we sum over all elements in the resulting vector, i.e., summing
over the vocabulary size, and divide all entries by this sum. That
means we normalise the cache output that all elements in the vec-
tor sum up to one.

A major advantage of this cache, as stated by the authors in
[14], is the fact that the network does not need to be trained to-
gether with the cache. The output of the cache is simply linearly
interpolated with the output of the network and does not influence
the parameters of the network. Therefore, there is no training time
increase.

3.2 Connected Neural Cache
Taking the idea from Section 3.1 and Section 4, we connected

the continuous neural cache to the network directly. Fig. 3 shows
the cache connected to the softmax output layer. By integrating
the cache directly into the network and performing a joint opti-
misation of the parameters, the network should be able to learn
a better combination weights for each individual word. Through
the linear layers, we can use an individual interpolation weight
for each word, depending on the context.

The input to the LSTM can thus be formulated as
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Fig. 4 BOW extension for an LSTMLM.

x(t) = Uw(t) + Uchc(t) (8)

with hc begin the output of the hidden layer after the cache. The
input to the softmax can be written as

y(t) = Vh(t) + Vchc(t). (9)

Since the cache is computationally expensive, we combine the
cache with a pre-trained base model and only train the weights in
the linear layers for the cache. The parameters of the base model
are left unchanged except for the linear layer before the softmax
V.

As a modification to the original cache implementation, we
also investigate a cosine word similarity measure instead of a hard
word identity. Using a similarity measure, also words which are
similar (in the vector space) to word i will be assigned some prob-
ability mass. We expect similar words to appear in a semantically
similar context (e.g. ’cat’ and ’dog’).

4. Bag-of-Words Cache
A simple form of a cache extension is BOW. In [16] and [17]

the authors used an exponentially weighted BOW cache. An ex-
ponentially decaying weight is multiplied with all words up to the
current time t, where the latest word has the highest weight and
the word seen first the lowest weight. Afterwards these weighted
word vectors are summed up and put into the network.

Our approach is similar, but we do not keep a continuously
updated BOW. We use a cache of N entries and each entry in the
cache gets an exponentially decaying weight, where the word first
in the cache has the highest and the word occurring last has the
lowest weight.

cu(t) =
∑N−1

n=0 w(n) exp(−n), (10)

where w(n) is the n-th vector in the cache.
The cache itself can be thought of as an ordered list. The el-

ements in the list (i.e. the words) are sorted according to their
order of appearance. However, each word is only contained once
in the list. If a new word appears, the last word in the list, i.e.,
the word appearing least frequently in the recent past, is removed
from the cache and the new word is inserted at the head of the
list. If a word re-appears, it is taken from its current position and
inserted at the head of the list. We call this cache the unigram
cache, as it contains the information about the last most frequent
N unigrams in the recent past. This cache is highlighted in red in
Fig. 4.

Since many words appearing frequently in the corpus (e.g.

’the’ or ’a’) don’t carry important information, we exclude fre-
quent words from the cache. The frequency is estimated on
the training data. Likewise, words appearing infrequently in the
training data are unlikely to appear often in the evaluation data.
Therefore, we also exclude infrequent words from the cache,
where we again estimate the frequency on the training data.

In addition to this unigram cache, we also use a bigram cache.
One can think of the bigram cache as another list attached to each
unigram. That means, for each unigram there exist a list with the
last M words appearing after this unigram. Again the same order-
ing and insertion policy as with unigrams is used, i.e., the word
appearing most recently is at the head of the list. However, we do
not use the threshold on the frequency for the bigram cache. The
bigram cache is highlighted in blue in Fig. 4. The calculation for
cb(t) is the analogue to the calculation of cu(t) in Equation 10.

Fig. 4 shows the final model. The output of both caches is
a vector of equal length as the vocabulary size. These vectors
are compressed by a linear layer with a subsequent non-linearity
(reLU in our case). The dimension if the hidden layer is chosen
to be equal to the number of LSTM units. We introduce this re-
duction for two reasons. First, it acts a a non-linear dimension
reduction and second, it speeds up the computation because the
number of parameters is significantly reduced. The output of the
hidden layer is combined with the output of the LSTM before the
softmax.

The Input to the LSTM can then be written as

h(t) = Uw(t) + Uuhu(t) + Ubhb(t), (11)

with hu and hb being the outputs of the hidden layer for the un-
igram and bigram cache respectively. The input to the softmax
can be written as

y(t) = Vh(t) + Vuhu(t) + Vbhb(t). (12)

The direct connection of the cache output to the output layer,
i.e., the softmax, is inspired by several prior research. [17] pro-
posed direct a connection in the case of using an RNN instead
of an LSTM. To a further extend it is also related to the idea of
highway networks [19] and residual connections [20] which have
proven useful when training deeper networks.

5. Experiments
5.1 Setup

For our experiments we performed PPL evaluation and N-best
rescoring on the MIT-OCW lecture corpus [18]. The corpus has
about 6M words and the vocabulary size is 47K. We did not trun-
cate the vocabulary. The corpus has about 100h of transcribed
speech.

As speech recogniser, we used a GMM-HMM based system
as also used in [21]. This speech recogniser achieved a WER of
26.7% without rescoring. Our LSTM LM implementation used
the deep learning toolkit chainer [22]. We trained all LMs with
mini-batches of length 128 and did truncated backpropagation
through time for 20 words. The initial learning rate was set to
0.1 and decreased by a factor of 1.3 after the sixth epoch. As op-
timiser we used AdaGrad [23] and all models were trained for 16
epochs. For training we also used dropout.
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Table 1 PPL results for development and evaluation data of MIT-OCW.

model dev eval
LSTM 175.24 147.03
NC 125.58 103.42
Connected NC 213.12 189.60
Connected NC (wsim) 213.89 190.79
BOW unigram 183.07 149.02
BOW uni + bigrams 178.81 149.79

Table 2 WER results for 100-best rescoring on MIT-OCW.

model WER
LSTM 24.3
NC 24.2
Connected NC 25.2
Connected NC (wsim) 25.3
BOW unigram 31.5
BOW uni + bigram 31.7

For the networks with the neural connected cache, we con-
nected the neural cache to an LSTM model which was trained
for 16 epochs. In the training we only re-trained the connections
in the linear layer before the softmax of the base LSTM and the
linear layers of the cache for 5 epochs with a LR of 0.1. The LR
decreased by 1.3 every epoch.

To calculate the word error rate in N-best rescoring, we inter-
polated the LSTM log probability with a trigram probability and
the acoustic model score. The trigram LM was trained using the
SRILM toolkit [24] and used Kneser-Ney [25] smoothing. The
trigram itself gave a PPL of 199 on the evaluation data.

5.2 PPL Evaluation
At first we investigated the PPL of different models as shown

in Table 1 on the development and evaluation data. The baseline
trigram gave a PPL of 199. Our Chainer LSTM baseline gave a
PPL of 147.03.

Using the continuous cache from Section 3.1, we achieved an
improvement of roughly 30% on the evaluation data to 103.42.
This result corresponds to the numbers reported in [14]. How-
ever, connecting the cache directly to the softmax layer did not
give any improvement. Interestingly, the PPL remained more or
less constant during training, which means that the network did
not learn good parameters for the interpolation with the cache.
Also, using a word similarity (wsim) measure instead of the prob-
ability for the word vector did not change the result.

For the BOW cache we investigated two scenarios. In the first
case, we only used the unigram information hu(t) and in the sec-
ond we sued both unigram hu(t) and bigram hb(t) information. In
both cases the PPL raised slightly compared to the LSTM only
baseline.

5.3 ASR Experiments
Table 2 shows the results for n-best rescoring on the 100-best

list we obtained with SOLON speech recogniser [26]. Without
rescoring, the speech recogniser achieved a WER of 26.7%. For
the baseline system in 100-best rescoring with an LSTM we ob-
tained a WER of 24.3%.

With the continuous cache, although the PPL reduction was
significantly high, the WER only improved by 0.1% (absolute)
over the LSTM. One possible explanation for this result is, that

during PPL evaluation the cache can be filled with the true next-
word information. In rescoring however, we can only access hy-
pothesises. In addition, a hypothesis with multiple word inser-
tions and replacements might get a higher score than a single ut-
terance with just one word substitution, because the former one is
more likely from the LM’s perspective. Further reasons are that
the cache outputs probability zero in many cases and the capabil-
ity of the cache to predict OOVs is irrelevant for rescoring.

As expected from the PPL results, the neural connected conti-
nous cache did not achieve any improvements in WER over the
baseline.

Using the BOW cache, the WER increased dramatically. The
results were even worse than those after the first pass only. Such
a behaviour was no expected from the PPL evaluation where per-
formance dropped a little bit. So far we do not have any good
explanation why the WER increased so dramatically.

6. Conclusion
We evaluated two conceptually different cache extensions, i.e.,

continuous neural cache and BOW, connected to LSTMs. How-
ever, in our experiments the effect of the cache on the LSTM
was the opposite from what we anticipated. The continuous neu-
ral cache was successful in reducing the PPL but overall we did
not observe a significant benefit during n-best rescoring. With
the BOW cache, however, although PPL evaluation was only
slightly worse compared to the baseline, during rescoring the
cache severely decreased performance. Overall, we conclude that
the cache implementations we investigated were not effective for
our dataset on the task of rescoring in ASR.
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