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On the Enumeration of Polymer Topologies

Toshihiko Haruna1,a) Takashi Horiyama2,b) Koya Shimokawa2,c)

Abstract: We propose an algorithm for enumerating graphs representing polymer topologies. We also present exper-
imental results on the algorithm. This is a preliminary report of the on-going research.

1. Introduction
A polymer is a large molecule composed of many subunits.

Graph theoretical approaches have been applied to understand
its configuration [2], [7]. A classification of non-linear poly-
mer topologies will lay a basis for the elucidation of structural
relationships between different macromolecular compounds, and
eventually of their rational synthetic pathways [6].

In this paper, we enumerate the topologies of non-linear poly-
mers. A non-linear polymer topology can be represented as a
connected graph in which every vertex has degree at least three.
Note that the graph may not be simple, i.e., it may contain multi-
edges and selfloops. The rank of a graph (or the rank of a polymer
graph/topology) is the minimal number of removed edges for ob-
taining its spanning tree. For the cases of the rank 2, 3, and 4,
all non-linear polymer topologies are enumerated. The numbers
of the polymer topologies are 3, 15, 111, respectively. We will
obtain the polymer topologies of rank 5.

Our approach is based on the frontier based search [3] with
ZDDs (Zero-suppressed Binary Decision Diagrams) [5]. The
method is a generalization of Simpath (the method for enumer-
ating a family of s-t paths by Knuth), and can be considered as
a DP-like algorithm in which the resulting ZDD is obtained from
its top to the bottom. In these methods, a 1-path (a path from the
root node to the 1-node) in a ZDD represents a set of edges of
a given graph G, which induces a subgraph of G. And thus, the
set of 1-paths of a ZDD can be seen as a family of subgraphs of
G. Although these methods can be applied to non-simple graphs,
they need to distinguish the multi-edges between the same pair
of vertices. In our case, we treat multi-edges more directly: we
generalize the notion of ZDDs by allowing multisets of edges.
We propose Multiple-Valued ZDDs (MZDDs), in which variable
nodes can have more than two edges (the 0-edges and 1-edges in
ZDDs). Then, we generalize the frontier based search so that we
can construct a MZDD representing a family of multisets.
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Fig. 1 A ZDD representing {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}.

2. Preliminaries
2.1 Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [5] is a di-
rected acyclic graph that represents a family of sets. As illustrated
in Fig. 1, it has a unique source node*1, called the root node, and
has two sink nodes 0 and 1, called the 0-node and the 1-node,
respectively (which are together called the constant nodes). Each
of the other nodes is labeled by one of the variables x1, x2, . . . , xn,
and has exactly two outgoing edges, called 0-edge and 1-edge,
respectively. On every path from the root node to a constant node
in a ZDD, each variable appears at most once in the same order.

Every node v of a ZDD represents a family of sets Fv, de-
fined by the subgraph consisting of those edges and nodes reach-
able from v. If node v is the 1-node (respectively, 0-node),
Fv equals to {{}} (respectively, {}). Otherwise, Fv is defined as
F0-succ(v) ∪ {S | S = {var(v)} ∪ S ′, S ′ ∈ F1-succ(v)}, where 0-succ(v)
and 1-succ(v) respectively denote the nodes pointed by the 0-
edge and the 1-edge from node v, and var(v) denotes the label
of node v. The family F of sets represented by a ZDD is the
one represented by the root node. Fig. 1 is a ZDD representing
F = {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}. Each path from the root
node to the 1-node, called 1-path, corresponds to one of the sets
in F.

2.2 Enumeration by ZDDs
Now, we focus on the enumeration of graphs. More precisely,

*1 We distinguish nodes of a ZDD from vertices of a graph.
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Algorithm 1: Construct ZDD
Input : Graph G = (V, E) with n vertices and m edges
Output: ZDD representing a family of spanning trees in G

1 N1 := {noderoot}. Ni := {} for i = 2, 3, . . . ,m + 1
2 for i := 1, 2, . . .m do
3 foreach n̂ ∈ Ni do
4 foreach x ∈ {0, 1} do // x-edge
5 n′ := MakeNewNode(n̂, i, x)
6 // Returns 0, 1, or a new node
7 if n′ , 0, 1 then
8 // n′ is a new node
9 if there exists a node n′′ ∈ Ni+1 that is identical to n′

then
10 Forget n′

11 n′ := n′′

12 else
13 Ni+1 := Ni+1 ∪ {n′}

14 Create the x-edge of n̂ and make it point at n′

Procedure UpdateNodeInfo(n̂, i, x)
1 Let (vi1 , vi2 ) denote ei ∈ E
2 foreach v j ∈ {vi1 , vi2 } such that v j < Fi−1 do
3 // v j is entering the frontier

4 n̂.comp[v j] := j
5 // The initial component ID is the index of v j

6 if x = 1 then
7 //Merge two connected components of vi1 , vi2
8 cmin := min{n̂.comp[vi1 ], n̂.comp[vi2 ]}
9 cmax := max{n̂.comp[vi1 ], n̂.comp[vi2 ]}

10 foreach v j ∈ Fi do
11 if n̂.comp[v j] = cmax then
12 n̂.comp[v j] := cmin

given a graph G, we construct the ZDD representing a family of
subgraphs of G with desired property (e.g., a family of spanning
trees of G). Here, by regarding the variables xi as the edges ei

in G, each 1-path corresponds to a set of edges, which induces
a subgraph of G. In other words, each 1-path can be seen as its
corresponding subgraph.

The property for a spanning tree is as follows:
Property 1 Given a graph G = (V, E), a spanning tree is a

subgraph Gs of G induced by the set of edges Es (⊆ E) satisfy-
ing: (1) Es has no cycle. (2) All vertices in V are in the same
connected component.
By utilizing this property, we can construct a ZDD representing a
family of spanning trees: Algorithm 1 [1] gives the frontier-based
search [3] to construct such ZDDs. It can be considered as a DP-
like algorithm in which the resulting ZDD is obtained in the top-
down manner. Each search node in the algorithm corresponds to
a subgraph of the given graph G. The search begins with noderoot

(i.e., the root node of the resulting ZDD) corresponding to (V, {}).
In the search, we check whether we can adopt edge ei or not, in
the order of i = 1, 2, . . . ,m, where m is the number of edges in
G. In Line 4 of Algorithm 1, current search node is n̂, and in
case x = 1 (respectively, x = 0), we adopt (respectively, do not
adopt) ei. Search node n′ corresponds to the resulting graph, and
is pointed by the x-edge of n̂ in Line 14.

Procedure MakeNewNode(n̂, i, x)
1 Let (vi1 , vi2 ) denote ei ∈ E
2 if x = 1 then
3 if n̂.comp[vi1 ] = n̂.comp[vi2 ] then
4 // If vi1 , vi2 are in the same component,

// we have a cycle by adding ei

5 return 0

6 Copy n̂ to n′

7 UpdateNodeInfo(n′, i, x)
8 F := Fi ∪ {vi1 , vi2 } // F is the current frontier
9 foreach v j ∈ {vi1 , vi2 } satisfying v j < Fi do

10 F := F \ {v j}
11 // v j is leaving from the frontier

12 if there exists no vk ∈ F satisfying n′.comp[v j] = n′.comp[vk] then
13 // v j’s connected component cannot

// connect to any other components
14 if (i = m) and (n′.comp[vi1 ] = n′.comp[vi2 ]) then
15 //We have checked all edges in E,

// and all vertices are connected
16 return 1

17 else
18 //We have two or more connected

// components
19 return 0

20 Forget n′.comp[v j]

21 return n′

The key is to share nodes of the ZDD under construction (in
Lines 9–11) by simple “knowledge” of subgraphs, and not to
traverse the same subproblems more than once. Each search
node n̂ in the algorithm has an array n̂.comp[ ] as a knowledge,
where n̂.comp[v j] indicates the ID of the connected component
v j belongs to. We can reduce the size of knowledge by main-
taining the values of n̂.comp[ ] just for vertices incident to both
a processed and an unprocessed edges. Such set of vertices is
called the i-th frontier Fi (∈ V), which is formally defined as
Fi =

(
∪ j=1,...,i e j

)
∩
(
∪ j=i+1,...,m e j

)
, F0 = Fm = {}. We check

whether the subgraph corresponds to the search node n̂ consists
of a spanning tree in Procedure MakeNewNode. For more detail,
see [3].

3. Enumeration of Polymer Topologies
3.1 Multiple-Valued ZDDs

Since we enumerate multigraphs in our problem, we generalize
the definition of ZDDs by allowing multisets. In Multiple-Valued
ZDDs (MZDDs), a variable node v can have two or more outgo-
ing edges called 0-edge, 1-edge, 2-edge and so forth. The family
Fv of sets represented by v is defined as

∪
i

S
∣∣∣∣∣∣∣∣∣∣

S = {var(v), var(v), . . . , var(v)︸                         ︷︷                         ︸
multiplicity i

} ∪ S ′,

S ′ ∈ Fi-succ(v)

 ,
where i-succ(v) denotes the node pointed by the i-edge from node
v. The family F of multisets represented by a MZDD is the one
represented by the root node. Each 1-path in a MZDD corre-
sponds to one of the multisets in F. Fig. 2 is a MZDD repre-
sentingF = {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3, 3}, {4}, {1, 1, 4}}. To avoid
confusion, the 0-node and the edges pointing to the 0-node are
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Fig. 2 A MZDD representing {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3, 3}, {4}, {1, 1, 4}}.

omitted.

3.2 Enumeration Algorithms

Procedure MakeNewNodeRevised(n̂, i, x)
1 Let (vi1 , vi2 ) denote ei ∈ E
2 Copy n̂ to n′

3 UpdateNodeInfoRevised(n′, i, x)
4 if n′.r > r then
5 // The rank of the resulting graph exceeds r
6 return 0

7 F := Fi ∪ {vi1 , vi2 } // F is the current frontier
8 foreach v j ∈ {vi1 , vi2 } satisfying v j < Fi do
9 F := F \ {v j}

10 // v j is leaving the frontier

11 if n′.deg[v j] ≤ 2 then
12 // v j does not satisfy the degree constraint
13 return 0

14 if there exists no vk ∈ F satisfying n′.comp[v j] = n′.comp[vk] then
15 // v j’s connected component cannot

// connect to any other components
16 if (i = m) and (n′.comp[vi1 ] = n′.comp[vi2 ]) then
17 //We have checked all edges in E,

// and all vertices are connected
18 return 1

19 else
20 //We have two or more connected

// components
21 return 0

22 Forget n′.comp[v j]

23 return n′

Now, for enumerating a family of multisets we extend Algo-
rithm 1 to construct a MZDD. The input is modified to receive the
following two items: rank r (≥ 0) and a complete graph Kn with a
selfloop added at each vertex (The multiplicity of all edges being
one). Given this input, we construct a MZDD representing a fam-
ily of non-linear polymer topologies of rank r with n vertices. We
modify Line 4 to repeat Lines 5-14 for each x ∈ {0, 1, . . . , r + 1},
since ei can be adopted at most r + 1 times. In each search
node n̂ in the algorithm, we also use an array n̂.deg[ ] and n̂.r
to store the degrees of the vertices and the rank of the graph in-
duced by the already adopted edges. We initialize noderoot.r := 0,
and, throughout the search, we update the rank of the subgraph
in Procedure UpdateNodeInfoRevised. In that procedure, simi-
larly to Procedure UpdateNodeInfo, we initialize n̂.comp[v j] and
n̂.deg[v j] when v j is entering the frontier (Lines 2–6). After that,

Procedure UpdateNodeInfoRevised(n̂, i, x)
1 Let (vi1 , vi2 ) denote ei ∈ E
2 foreach v j ∈ {vi1 , vi2 } such that v j < Fi−1 do
3 // v j is entering the frontier

4 n̂.comp[v j] := j
5 // The initial component ID is the index of v j

6 n̂.deg[v j] := 0 // The initial degree is 0

7 if x ≥ 1 then
8 //Merge two connected components of vi1 , vi2
9 if n̂.comp[vi1 ] , n̂.comp[vi2 ] then

10 cmin := min{n̂.comp[vi1 ], n̂.comp[vi2 ]}
11 cmax := max{n̂.comp[vi1 ], n̂.comp[vi2 ]}
12 foreach v j ∈ Fi do
13 if n̂.comp[v j] = cmax then
14 n̂.comp[v j] := cmin

15 n̂.r := n̂.r − x + 1

16 else // i.e., n̂.comp[vi1 ] = n̂.comp[vi2 ]
17 n̂.r := n̂.r − x

18 n̂.deg[vi1 ] := n̂.deg[vi1 ] + x
19 n̂.deg[vi2 ] := n̂.deg[vi2 ] + x

we update n̂.comp[v j], n̂.deg[v j], n̂.r if we adopt ei = (vi1 , vi2 ) (i.e.,
x ≥ 1). Note that x denotes the multiplicity of ei in the resulting
graph, and thus can be more than one. In case vi1 and vi2 are in the
same component, x is used to decrease the rank n̂.r of the con-
structing graph (Lines 16–17). Otherwise, one of the multiplicity
of ei is used to merge the two connected components of vi1 and
vi2 , and other x − 1 is used to decrease n̂.r.

After the execution of Procedure UpdateNodeInfo, the rank of
the constructed graph may exceed the value of r given as input.
In such case, we terminate the search since the rank does not de-
crease in the search (Lines 4–6 in Procedure MakeNewNodeRe-
vised). In the later half of Procedure MakeNewNodeRevised, in
addition to checking the number of connected components (Lines
14–21), we check whether degree n′.deg[v j] is greater than two.
In case n′.deg[v j] ≤ 2, since v j is leaving the frontier and we have
no chance to adopt edges adjacent to v j, we terminate the search
(Lines 11–13).

3.3 Isomorphism Elimination
Since the vertices are labeled in the obtained graph, they may

contain isomorphic graphs. By using nauty [4], we can select
essentially different graphs as polymer topologies. As will be
shown in Section 4, however, the number of labeled graphs is far
larger than that of essentially different graphs, and the elimination
of isomorphic graphs is too much time consuming compared to
the enumeration of the labeled graphs.

To reduce the computation time for eliminating isomorphic
graphs, we add the following constraints to the algorithm pro-
posed in Section 3.2. Constraint A: the degrees of the vertices in
an obtained graph are in descending order, i.e., deg[vi] ≤ deg[v j]
holds if i ≤ j. Constraint B: in addition to the constraint A, if the
degrees of two vertices are the same, the numbers of selfloop are
in descending order. Constraint C: if v1 is adjacent to vi, it is also
adjacent to all vertices v j for j < i. By taking an intersection of
the MZDD constructed by rhe algorithm in Section 3.2 and the
MZDD representing the family of graphs satisfying one of the
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Table 1 The numbers of polymer topologies of ranks r = 2, 3, . . . , 6.

Rank
#vertices 2 3 4 5 6

1 1 1 1 1 1
2 2 4 7 10 14
3 — 5 20 48 99
4 — 5 36 153 481
5 — — 30 277 1,451
6 — — 17 323 2,946
7 — — — 193 3,806
8 — — — 71 3,188
9 — — — — 1,496

10 — — — — 388
Total 3 15 111 1,076 13,870

Fig. 3 Partial list of non-linear polymer topologies of rank 5.

constraints. Note that this operation does not eliminate unneces-
sary graphs one by one, but emilinate them efficiently.

4. Experimental Results
Experimental results are summarized in Table 1. For rank

r = 2, there are 3 polymer topologies in total, where 1 poly-
mer topology consists of 1 vertex, and 2 consist of 2 vertices. For
ranks r = 3, 4, 5, 6, there are 15 polymer topologies, 111 polymer
topologies, 1,076 polymer topologies and 3,870 polymer topolo-
gies, respectively. Partial list of polymer topologies of rank 5 is
shown in Fig. 3.

The compution time is shown in Table 2. The experiment
was done on a PC with Intel(R) Core(TM) i7-3770K CPU
(3.50GHz)/32GB. The column ‘Naive’ gives the computation
time for the enumeration by MZDD and the elimination by nauty.
The columns ‘with Constraint A,’ ‘with Constraint B’ and ‘with
Constraint C’ give the computation time by reducing unnecessary
graphs by the constraints proposed in Section 3.3. Table 3 shows
the number of graphs given to nauty by the 4 approaches. The
numbers in the table is proportional to the computation time in
Table 2. The memory consumption is at most 752 MB for Naive,
while it is at most 90 MB for the approach with Constraint C.
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Table 2 Comparison of the computation time of 4 approaches.

Time (sec)
Rank r #vertices n Naive with Constraint A with Constraint B with Constrainnt C

5 1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.04 0.01 0.01 0.01
5 0.26 0.04 0.03 0.07
6 1.40 0.23 0.13 0.21
7 6.25 1.00 0.44 0.50
8 18.11 18.06 5.00 0.94

6 1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.01 0.00 0.00 0.00
4 0.11 0.01 0.00 0.02
5 1.10 0.07 0.04 0.18
6 13.65 0.65 0.32 1.38
7 134.83 5.36 2.26 9.02
8 1,045.67 60.28 20.37 49.51
9 5,055.92 584.79 176.65 177.13

10 16,600.58 16,563.36 4,159.20 471.97

Table 3 The number of graphs obtained by 4 approaches.

#graphs
Rank r #vertices Naive with Constraint A with Constraint B with Constraint C

5 1 1 1 1 1
2 17 10 10 17
3 246 58 48 141
4 2,825 393 238 867
5 24,245 1,997 991 4,064
6 145,923 13,600 5,091 14,604
7 550,620 78,660 25,171 36,984
8 983,640 983,640 224,106 48,408

6 1 1 1 1 1
2 24 14 14 24
3 525 116 99 299
4 9,620 1,025 668 2,876
5 141,155 7,544 3,915 22,887
6 1,608,663 59,953 24,527 155,000
7 13,726,671 458,289 161,301 876,618
8 82,723,760 4,438,970 1,300,382 3,826,313
9 314,968,500 34,996,500 9,363,390 11,231,436

10 571,634,280 571,634,280 117,187,200 16,446,600
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