
IPSJ SIG Technical Report

Evolutionary Power Modeling for Energy Efficiency in
CPU-GPU based systems

(Unrefereed Workshop Manuscript)

Patricia Arroba1,2,3,a) JoséM. Moya2,3 José L. Ayala4 SatoshiMatsuoka1

Abstract: Supercomputers have reached a massive energy consumption due to computational demand, so there is an
urgent necessity to keep them on a more scalable curve. In the last years, there has been a rising interest in reducing
the power consumption of these systems. Recently research works focus on the adjustment of their power states by
reducing clock frequency, applying power capping, and on the analysis of the thermal impact on static consumption.
These techniques rely on power models to predict the power consumption of the infrastructure. However, the power
consumption in these complex systems involves a vast number of interacting variables of different nature that may
include non-linear dependencies. So, extracting the relationships between the most representative parameters and the
power consumption requires an enormous effort and knowledge about the problem. We propose an automatic method
based on Grammatical Evolution to obtain a model that minimizes the power prediction error of a supercomputer node
that incorporates both CPU and GPU devices. We monitor the system during runtime using performance counters and
frequency, temperature and power measurements. This evolutionary technique provides both Feature Engineering and
Symbolic Regression to infer accurate models, which only depend on the most suitable variables, with little designers
expertise requirements and effort. Our work improves the possibilities of deriving proactive energy-efficient policies
in supercomputers that are simultaneously aware of complex considerations of different nature.

1. Introduction
In recent years, accelerated heterogeneous computing based

on Graphics Processing Units (GPUs) has become a key
technology in High Performance Computing (HPC). By
November 2016, the top two systems of the Green500 list of the
most energy-efficient supercomputers use GPU accelerators
obtaining a remarkable energy efficiency [1]. The supercomputer
ranked first on the Green500 list, NVIDIAs first petascale
in-house supercomputer, achieved a rating of 9.46 gigaflops per
watt, which outperformed the previous top spot in more than a
40% in just six months.

However, minimizing the energy consumption of these
infrastructures is still a major challenge to place them on a more
scalable scenario. CPU-GPU heterogeneous systems have the
potential to achieve higher energy savings by optimizing the
management of energy efficient techniques. Proactive
optimization techniques help to reduce the energy budget of
supercomputers, but they require a reliable estimation of the

1 Matsuoka Laboratory, Tokyo Institute of Technology, Meguro-ku
Ookayama 2-12-1-W8-33, Tokyo 152-8550, Japan

2 Laboratorio de Sistemas Integrados (LSI), Universidad Politécnica de
Madrid ETSI Telecomunicación, Avenida Complutense 30, Madrid
28040, Spain

3 CCS - Center for Computational Simulation Campus de Montegancedo
UPM, Boadilla del Monte 28660, Spain

4 DACYA, Universidad Complutense de Madrid Facultad de Informática
UCM, Madrid 28040, Spain

a) arroba.p.aa@m.titech.ac.jp

effects provoked by the different approaches throughout the data
center.

One of the biggest barriers in supercomputers, as complex
system scenarios, is the huge number of variables that are
potentially correlated. This problem complicates the inference of
general power models from a macroscopic analytical
perspective. The dependency of power on some traditionally
ignored factors, which are increasingly influencing the
consumption patterns of these infrastructures, must now be
considered in order to achieve accurate power models. Factors
like static power consumption, along with its dependence on
temperature, or the power due to internal server cooling, are just
some examples of parameters that typically have not been
considered in the published models.

Also, these infrastructures run workloads that may show
significant variations over time. So, power models need to be
aware of the fluctuation of the different parameters during
runtime. Consequently, a fast and accurate method is required to
model server performance, achieving a more accurate overall
power prediction under varying workloads and working
situations.

Analytical models require specific knowledge about the
different power contributions and their relationships, thus
becoming hard and time-consuming techniques for describing
these complex systems. Moreover, models are
architecture-dependent, so the modeling process has to be
replicated for each different server structure. Conversely,

c© 2017 Information Processing Society of Japan 1

Vol.2017-HPC-158 No.2
2017/3/8

IPSJ SIG Technical Report

metaheuristics, as high level procedures, help to find good
enough solutions for modeling heterogeneous, scalable and
distributed systems based on fragmentary information and
making few assumptions about the problem [2].

Feature Engineering (FE) methods are used to select adequate
features, avoiding the inclusion of irrelevant parameters that
reduce generality [3]. FE properties help, not only to find
relevant variables, but their combinations and correlations,
offering a straightforward problem formulation thus generating
better solutions. GE is particularly useful to solve optimization
problems and build accurate models of complex systems. This
technique provides solutions that include non-linear terms while
still offering FE capabilities, thus bypassing the barrier of
analytical modeling. Also, as GE is an automatic technique,
little designer’s expertise is required to process high volumes of
data. We propose a GE-based approach to find optimized power
models that accurately describe and estimate the consumption of
high-end Cloud servers. We provide a general methodology that
can be applied to a broad set of server architectures and working
conditions.

Our work makes the following key contributions:
• In this paper we provide a methodology for the automatic

generation of fast and accurate power models to describe
the performance of supercomputers based on CPU-GPU
systems.

• We provide a method for data acquisition for metrics from
the whole system as well as specific parameters from both
CPU and GPU devices during runtime. In this work, we
also propose an interpolation-based technique to align the
different metrics that may be collected asynchronously from
the system.

• Our proposed modeling technique is able to include
combinations and correlations of variables due to FE and
SR performed by GE. Therefore, the power models
incorporate the automatic selection of representative
features that best describe power performance.

The remainder of this paper is organized as follows: Section 2
gives further information on the related work on this topic.
Section 3 presents the different phases of our modeling
methodology in terms of data acquisition, data alignment,
feature selection and model generation. In Section 4, we present
a case of use for the TSUBAME-KFC supercomputer. Finally, in
Section 5 the main conclusions are drawn.

2. Related Work
The current state-of-the-art offers different analytical power

models to describe the performance of CPU-based high-end
servers. Some research as the work presented by Pelley et al. [4]
focus on the development of linear regression models, thus
power consumption is presented as a linear function of the CPU
usage. Other modeling strategies [5] formulate server power as a
quadratic function of the CPU usage. However, these techniques
do not consider correlations between the different variables to
derive the analytical model.

The approach presented by Bohra et al. [6] is based on a
robust fitting technique to determine the power model, taking

also into account the correlation between the total system power
consumption and the utilization of the different resources. Our
work follows a similar approach but it also incorporates the
contribution of the static power consumption, and the effect of
applying DVFS techniques.

Currently, many research works also focus on modeling the
power consumption of GPUs. Research by Nagasaka et al. [7]
and Lim et al. [8] analyze the correlation of GPU’s performance
counters on the energy consumed by CUDA applications. On the
other hand, Ge et al. [9] studies the effects of frequency
management on GPU’s energy efficiency. However, this research
works only take into account the energy consumption of entire
applications, not considering power variations during runtime.

Moreover, linearity or input parameter limitations are barriers
associated to classical modeling. The fast generation of accurate
power models for high-end servers is a complex challenge that
designers have not yet fulfilled by analytical approaches.
Research by Song et al. [10] provides an instantaneous
evaluation of power during runtime for the GPU device using
Machine Learning techniques. Our methodology presented in
this paper, based on evolutionary computation, follows a similar
approach, but also considers the power consumption of the entire
node based on CPU-GPU devices. Moreover, our work also
provides an automatic feature selection to select those metrics
that have a higher impact on power consumption.

In our previous work we have used a Particle Swarm
Optimization algorithm (PSO) metaheuristic to identify
analytical models, providing accurate power estimations [11].
PSO help to simplify the resultant power model by reducing the
number of predefined parameters, variables and constants used
in our analytical formulation. However, this technique is a
parameter identification mechanism, so it does not provide the
features that best represent the system power consumption.
Some other features could be incorporated to enhance the power
estimation. Also, in recent work, we apply an evolutionary
algorithm combined with a classical regression to enforce
linearity, convexity and differentiability properties to complex
system models [12]. This technique achieve very good accuracy
results, but limits the degrees of freedom penalizing accuracy
against output linearity properties. A Grammatical Evolution
based modeling technique has been also proposed by J.C.
Salinas-Hilburg [13] to model specific contributions to power for
CPU and memory devices for HPC workloads. However, to the
best of our knowledge, this approach has not been yet used to
model the power consumption of the whole server and also for
systems that incorporates GPU devices.

The work presented in this paper aims to outperform previous
approaches in the area of power modeling for CPU-GPU
systems in several aspects. Our approach proposes an automatic
method for the identification of accurate instantaneous power
models particularized for each target architecture. We propose
an extensive modeling methodology consistent with current
architectures. Also, our procedure takes into account the main
sources of power consumption to obtain a multiparametric
model, allowing the development of novel power optimization
approaches. Different parameters are combined by our

c© 2017 Information Processing Society of Japan 2

Vol.2017-HPC-158 No.2
2017/3/8

IPSJ SIG Technical Report

evolutionary technique, thus enhancing the generation of an
optimized set of features. Our methodology allows to obtain
models that describe the power performance during runtime, for
workloads that are subject to vary significantly.

3. Modeling Methodology
Our proposed modeling methodology consists of 4 different

stages: (i) data acquisition, (ii) data alignment, (iii) feature
extraction and (iv) model generation. In this section we provide
further details of our methodology for modeling CPU-GPU
systems.

3.1 Data Acquisition
In order to obtain a complete data set that allows us to

accurately model a CPU-GPU heterogeneous system we propose
monitoring various metrics. For CPU and GPU devices we
profile the following parameters during runtime:
• Power consumption: Real power measurements help us to

train the models and provide the accuracy of our power
estimations.

• Temperature: These metrics offer the thermal profile during
runtime and help to infer potential power leakage sources
correlated to temperature. The tradeoffs between
temperature and power provide information for future
cooling-computing joint power optimizations.

• Frequency: Describing the correlations between device
pstates and power consumption may lead to potential
optimizations based on Dynamic Voltage and Frequency
Scaling (DVFS).

• Performance counters: They provide representative
information for applications of different nature in terms of
computing requirements.

Then, we propose monitoring the power consumption and
temperature of the entire computing infrastructure in order to
obtain a global model for the heterogeneous system.

3.2 Data Alignment
The operating system, the available sensors and the software

tools, among others, limit the parameters that may be collected
from the physical system. Moreover, the sampling rate for each
metric will be also affected by these restrictions, and even there
may exist parameters that can not be collected periodically, but
in an asynchronous way. Additionally, some of the collected
values may be corrupted during data acquisition, thus resulting
on incomplete data sets. For these situations, in which
multisensor sampling is not accurately synchronized, we
propose the use of temporal interpolation to perform data
alignment among the collected metrics.
In the following subsections we provide further information of
our automatic evolutionary-based modeling technique in terms
of feature extraction and model generation. In our work, we
propose an evolutionary technique that covers these both phases
of our methodology.

3.3 Feature Extraction
Supercomputers, as complex systems, can be defined as

systems of interconnected agents (e.g. CPUs, GPUs, memory
devices) that exhibit a global behavior resulting from the
interaction of these agents [14]. So, inferring the global
performance is a complex and time-consuming challenge that
requires a deep knowledge of the operation and the physical
phenomena. Therefore, fast and automatic modeling techniques
are required, and that are more suitable for systems that have a
huge amount of parameters. Our research focuses on obtaining a
mathematical expression that represents power consumption. In
this work, the power formulation is derived from experimental
data collected in a real infrastructure.

Our data set compiles values of the different variables that
have been considered such as powers, temperatures, frequencies,
pstates and performance counters. In this context, we consider
the selection of the relevant features that will take part of our
model as a Symbolic Regression (SR) problem. SR helps to
simultaneously obtain a mathematical expression and include the
relevant features to reproduce a set of discrete data.

Genetic Programming (GP) has proven to be effective in
solving a number of SR problems [15], but it presents some
limitations like the excessive growth of memory computer
structures, often produced in the phenotype of the individual. In
the last years, Grammatical Evolution (GE) has appeared as a
simpler optimization variant of GP [16]. GE allows the
generation of mathematical models applying SR, where the
model generation is achieved thanks to the use of grammars that
define the rules for obtaining mathematical expressions.

3.4 Model Generation
In this work we will use GE using grammars expressed in

Backus Naur Form (BNF) [16] as this representation has been
satisfactorily used by the authors to solve similar problems when
combined with regressive techniques [12]. A BNF specification
is a set of derivation rules, expressed in the form:

<symbol>::=<expression> (1)

BNF rules are represented as sequences of Non-terminal (N) and
Terminal (T) symbols. The former symbols use to appear on the
left side of the equation, but they may appear also on the right,
while the later are shown on the right side. In Equation 1, we can
affirm that <symbol> and <expression> are non-terminals,
although these do not represent a complete BNF specification,
since those are always enclosed between the pair < >.

This equation represents that the non-terminal <symbol> will
be replaced (indicated ::=) by an expression. The rest of the
grammar may define the set of different alternatives for the
expression. A grammar is defined by the 4-tuple N,T, P, S , being
N the set of non-terminals, T the set of terminals, P the
production rules for the replacement of elements between N and
T , and S the start symbol that should appear in N. The symbol
“|” separates the different options within a production rule.

Figure 1 shows an example of a BNF grammar, designed for
symbolic regression. The final expression resulting from the GE
execution will only consist of terminals of the T set.
Non-terminals will be translated to terminal options by using the
production rules in set P. Grammars can be adapted to bias the

c© 2017 Information Processing Society of Japan 3

Vol.2017-HPC-158 No.2
2017/3/8

IPSJ SIG Technical Report

N = {EXPR, OP, PREOP, VAR, NUM, DIG}

T = {+, -, *, /, sin, cos, log, x, y, z,

0, 1, 2, 3, 4, 5, (,), .}

S = {EXPR}

P = {I, II ,III ,IV ,V ,VI}

I <EXPR> ::= <EXPR><OP><EXPR>

| <PREOP>(<EXPR>)

| <VAR>

II <OP> ::= + | - | * | /

III <PREOP>::= sin| cos | log

IV <VAR> ::= x | y | z | <NUM>

V <NUM> ::= <DIG>.<DIG> | <DIG>

VI <DIG> ::= 0 | 1 | 2 | 3 | 4 | 5

Fig. 1 Example BNF grammar designed for symbolic regression

search of the relevant features because of the finite number of
options in each production rule. In this work, our variables set
<VAR> consists of the different parameters defined in
subsection 3.1, which are potential contributors to the server
power consumption. Our set of terminals consist of these
variables, the operators +,−, ∗ and /, the preoperators
exp, sin, cos and ln, and base-10 exponent format constants.
Finally, they will be combined in a final expression describing
power consumption.

GE works like a classic Genetic Algorithm (GA) [17] in terms
of structure and internal operators. Each individual is defined by
a chromosome and a fitness value. Each chromosome consists of
a specific number of genes, also called codons. Then, the
population formed by a set of individuals is evolved by the
algorithm. The fitness function is commonly a regression metric,
as a Mean Squared Error (MSE), a Root Mean Square Deviation
(RMSD) or a Coefficient of Variation (CV), and the chromosome
consists of a string of integers. The GA operators are applied
iteratively in order to improve the fitness function during the
algorithm execution. These operators are the selection of the
population, the crossover process, which combines the
chromosomes, and the mutation of the resulting individuals,
which occurs with a certain probability defined as mutation
probability. Then, in the decoding stage, the GE algorithm
computes the fitness function for each iteration, extracting the
expression defined in each individual. Through the following
example, we explain the GE decoding process to clearly explain
how this unsupervised algorithm selects the features. In this
example, we decode the following 7-gene chromosome using the
BNF grammar shown in Figure 1.
21-64-17-62-38-254-2

First, we begin to decode the expression using the Start symbol
S={EXPR} defined by the grammar in Figure 1.
Solution = <EXPR>

Then, we decode the first gene of the chromosome, 21, in rule I
of the grammar. This rule has 3 different choices:
(i) <EXPR><OP><EXPR>, (ii) <PREOP><EXPR> and (iii) <VAR>.
Hence, the modulus operator is applied as a mapping function:
21 MOD 3 = 0

As result of the mapping function, the first option
<EXPR><OP><EXPR> is selected, so this expression is used to
substitute the non-terminal. The current expression after this

decoding step is the following:
Solution = <EXPR><OP><EXPR>

The process continues with the substitution of the first
non-terminal of the current expression <EXPR>, using the next
codon, 64. The modulus is applied again to rule I.
64 MOD 3 = 1

In this case, the algorithm selects the second option offered by
the grammar for this rule, <PREOP>(<EXPR>). The current
expression is the following:
Solution = <PREOPR>(<EXPR>)<OP><EXPR>

The GE takes the next gene, 17, for decoding. At this point,
<PREOP> is the first non-terminal in the current expression.
Therefore, we apply the modulus operator to rule III to choose
1 of the 3 different choices.
17 MOD 3 = 2

So, the third option log is selected. The output of the decoding
process at this point results in the expression:
Solution = log(<EXPR>)<OP><EXPR>

The following codon, 62, decodes <EXPR> using rule I.
62 MOD 3 = 2

Value 2 means to select <VAR>, the third option, resulting in the
expression:
Solution = log(<VAR>)<OP><EXPR>

Next codon, 38, uses rule IV to decode <VAR>.
38 MOD 4 = 2

Non-terminal z is selected as the mapping function output means
the third option.
Solution = log(z)<OP><EXPR>

Codon 254 decodes the Non-terminal <OP> with rule II:
254 MOD 4 = 2

This value means the third option, terminal *:
Solution = log(z)*<EXPR>

The last codon of the chromosome in this example, decodes
<EXPR> with rule I:
2 MOD 3 = 2

The third option is selected so, the expression is substituted by
the non-terminal <VAR>. In this step, the current expression is
the following:
Solution = log(z)*<VAR>

At this point, GE algorithm has run out of codons. However, the
decoding process has not obtained an expression with Terminals
in each of its components. GE, solves this problem by reusing
codons, starting from the first one in the chromosome, and
during the decoding process, it is possible to reuse the codons
more than once. This technique is known as wrapping, and it is
inspired in the gene-overlapping phenomenon present in many
organisms [18]. By applying wrapping to our example, the GE
reuses the first gene, 21, which decodes <VAR> with rule IV.
21 MOD 4 = 1

The result of the mapping function selects the second option,
non-terminal y, giving the final expression of the phenotype:
Solution = log(z)*y

As can be seen in this example, this process performs parameter
identification like in classic regression methods. Moreover,
when used together with an appropriate fitness function, GE is
also able to infer the optimal set of features that best describes

c© 2017 Information Processing Society of Japan 4

Vol.2017-HPC-158 No.2
2017/3/8

IPSJ SIG Technical Report

the target system. So, the evolutionary algorithm computes the
mathematical expression, performing both model identification
and feature selection, being able to result into the most accurate
power model.

4. Methodology Application:
TSUBAME-KFC Case of Use

In this section we describe a particular case study for the
application of the devised methodology presented in Section 3.
The problem to be solved is the fast and accurate estimation of
the power consumption in a heterogeneous CPU-GPU node
performing HPC applications. This section presents ongoing
work, so we provide the methods, the algorithms and partial
results that help to understand our modeling approach.

4.1 Hardware Monitoring Setup
Data have been collected gathering real measures from a node

of TSUBAME-KFC. This supercomputer is a state-of-the-art
prototype for the next-generation TSUBAME3.0, and achieved
world No.1 on the Green500 in November 2013 and June
2014 [19]. Each of the nodes in TSUBAME-KFC consists of 2
CPUs and 4 GPUs in a dense 1U form factor. The CPUs are
based on an Intel Xeon E5-2620 v2 (IvyBridge) with 6 cores
2.1GHz and two hardware threads per core. GPUs are NVIDIA
Tesla K80. The system has a DDR3 memory of 64GB, 4 FDR
InfiniBand HCA, and is running on a 64bit CentOS 7.0 Linux
OS. The nodes provide GCC Intel compiler 4.8.5 and CUDA
8.0.
4.1.1 CPU Subsystems

We monitor power per CPU package and per DRAM
controller per second, using the Intel’s Running Average Power
Limit (RAPL) interface. We use the Performance API (PAPI)
RAPL component to collect these values from the interface.
Temperature per CPU core is monitored via lm-sensors per
second. Frequency is sampled per second and per hardware
thread using Linux cpuinfo. Performance counters are collected
also via PAPI using a modified version of the papiex tool *1 to
provide performance counters per second. This tool allows us to
monitor hardware counters during the application execution
without the necessity of instrumenting its code.
4.1.2 GPU Subsystems

The NVIDIA System Management Interface (nvidia-smi) is
used to monitor power, temperature and frequency per GPU
device and per second. This command line utility is provided for
monitoring NVIDIA GPU devices, and is based on top of the
NVIDIA Management Library (NVML).

Collecting the performance counters periodically during
runtime for GPU devices is not provided by current toolkits.
This is not a trivial task, as GPU context may be retained during
the execution of application kernels so it can not be done using
an external tool. On the other hand, the nvprof profiling tool
provided by NVIDIA, is used to collect and view profiling data
from the command-line. When used together with the option
–print-gpu-trace, this tool provides the values of the

*1 http://icl.cs.utk.edu/ mucci/papiex/

performance counters, asynchronously, after kernel executions.
So, for those applications based on the execution of multiple
kernels, this tool allows us to collect the performance metrics
during application runtime, on an asynchronous way, without
instrumenting the code. However, the temporal granularity
would be imposed by kernels’ duration. For single kernel
applications or those applications whose kernel durations make
it unfeasible to obtain samples with enough granularity, code
modifications should be implemented.

Additionally, we plan to use the NVIDIA CUDA Profiling
Tools Interface (CUPTI) to provide periodic profiling for
performance counters. To implement this solution, it is
necessary to instrument the sources of our proposed applications
in order to preserve the context during kernel executions.
4.1.3 CPU-GPU System

The overall power of the compute node is measured per
second using Panasonic AKL 1000 Data Logger and Panasonic
KW2G Eco-Power Meter. This monitoring infrastructure also
allows us to profile the power consumption of the network and
the cooling infrastructure for the entire TSUBAME-KFC
system. Further details about these data profiling can be found in
the research provided by Endo et al. [19].

4.2 Experimental Workload
We present an experimental scenario using various workloads

with the purpose of building and validating our modeling
approach. We define a set of different workload profiles that
represent different computing patterns found in typical HPC
infrastructures.

For performance evaluation, we use CUDA and OpenMP
applications from the Rodinia benchmark suite [20]. These
applications allows to stress both CPU and GPU devices, also
covering a wide range of computation patterns in heterogeneous
computing. We have modified their input arguments to increase
their runtime in order to collect more samples during their
execution. Table 1 shows the profiled applications, their input
parameters and their execution time for the CUDA
implementation.

We find different power profiles for the different benchmarks
proposed in this work with a periodic resolution of one second.
Applications as hotspot, gaussian, lud, myocyte, srad v1 and
particlefilter show a uniform power profile during application
execution. On the other hand, srad v2, streamcluster, hotspot3D
and pathfinder present a highly variable power profile. This kind
of applications represent a challenge on power modeling during
runtime, as power variability may be predicted. Figure 2
presents the different profiles found for the selected applications
for the CUDA Rodinia benchmark. For both applications, kernel
executions are evenly distributed during the application runtime,
alternated with memory operations. These benchmarks only run
on one GPU and do not use any dual-precision logic.
Additionally, NVIDIA Tesla K80 is a dual-GPU card, and to
meet the PCI-E power specifications, its clock is slowered down.
For these reasons, the power consumption during the execution
of the applications shown in Figure 2 is lower than the Thermal
Design Power (TDP).

c© 2017 Information Processing Society of Japan 5

Vol.2017-HPC-158 No.2
2017/3/8

IPSJ SIG Technical Report

Table 1 Execution time and test parameters for the Rodinia CUDA applications.

Name Exec. Time (s) Test parameters
gaussian 117 ./gaussian -q -t -s 8000
hotspot 118 ./hotspot 512 2 2500000 ../../data/hotspot/temp 512 ../../data/hotspot/power 512 output.out
hotspot3D 115 ./3D 512 8 3000 ../../data/hotspot3D/power 512x8 ../../data/hotspot3D/temp 512x8 output.out
lud 107 ./cuda/lud cuda -s 32768
myocyte 182 ./myocyte.out 200 200 0
particlefilter 144 ./particlefilter float -x 128 -y 128 -z 10 -np 1500000
pathfinder 106 ./pathfinder 6500000 100 20
srad v1 154 ./srad 2000 2 10000 10000
srad v2 100 ./srad 16384 8192 0 127 0 127 0.5 150
streamcluster 246 ./sc gpu 10 20 256 2091008 2091008 1000 none output.txt 1

0 50 100 150
55

60

65

70

75

80

Time (s)

P
o

w
e

r
(W

)

a) myocyte

0 50 100 150 200
55

60

65

70

75

80

Time (s)

P
o

w
e

r
(W

)

b) streamcluster

Fig. 2 Rodinia CUDA applications with heterogeneous power profiles.

4.3 Data alignment
For data alignment we provide our multiparametric profiling

data sets with Linux epoch traces. However, in the case of using
nvprof for collecting GPU counters, our measurements are
provided asynchronously, once each kernel finishes. Thus, in
order to perform data alignment, we propose the use of
MATLAB spline cubic interpolation function. Figure 3 shows
spline interpolation applied to the inst executed metric collected
during the execution of the lud Rodinia test configured as in
Table 1. Figure 4 provides a zoom in, so the interpolated values
can be appreciated.

4.4 Feature Selection and Power modeling
As stated in the previous Subsection 4.1, TSUBAME-KFC

nodes provide power measurements for both CPU and GPU
devices. So, we propose to model these devices independently in
order to provide more accurate power distributions. Then, the
model for the entire system would include both CPU and GPU
submodels as well as other metrics considered by our modeling
algorithm. This approach helps to infer a complex numerical
model that has a high number of input metrics.

20 40 60 80 100
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

9

Time (s)

N
u

m
b

e
r

o
f

in
s
tr

u
c
ti
o

n
s

inst_executed

inst_executed

spline interpolation

Fig. 3 Spline interpolation applied to inst executed for lud application.

4 4.5 5 5.5 6 6.5 7 7.5

2.44

2.46

2.48

2.5

2.52

x 10
9

Time (s)

N
u

m
b

e
r

o
f

in
s
tr

u
c
ti
o

n
s

inst_executed

inst_executed

spline interpolation

Fig. 4 Zoom in of the spline interpolation applied to inst executed for lud
application.

First, the CUDA and OpenMP versions of the Rodinia
benchmarks are executed independently in order to train and
validate both models. We split the benchmarks into a training
and a validation data set so we use different applications for both
phases. For the training data set, the GE algorithm automatically
selects those parameters that best describe the instantaneous
power consumption and provide the final expression. In this
work, our fitness function is an error metric between our model
estimation and the real power measurement. We plan to use
RMSD, but we are evaluating other alternatives to enhance the
GE modeling process.

After this subsystem modeling stage, we model the
instantaneous power consumption for the entire
TSUBAME-KFC node. We enforce the GE to incorporate the
expressions of our subsystems models as features together with
the other collected metrics. In this phase, we simultaneously
stress both CPU and GPU subsystems using the Rodinia
benchmarks, so the GE is able to incorporate those features that
describe this behavior. For this purpose, we also plan to increase
the number of applications incorporating more complex
CPU-GPU offloading schemes.

c© 2017 Information Processing Society of Japan 6

Vol.2017-HPC-158 No.2
2017/3/8

IPSJ SIG Technical Report

Taking into account the number of inputs and the amount of
collected data, and based on our previous experience, we expect
GE to provide an accurate model in no more than 150 hours. We
also expect to obtain an average error below 10 watts between
our model estimations and the real measurements.

5. Conclusions and Future Directions
The contribution of supercomputers to the global consumption

is increasing dramatically, so placing them on a more scalable
curve is a major challenge that has to be faced by service
providers. The design of novel proactive energy-efficient
policies requires a reliable prediction of their effect in terms of
power. As complex systems scenarios, one of the biggest
barriers is to find the relationships between the huge amount of
potentially correlated variables. This problem complicates the
design of general power models from a macroscopic analytical
perspective. Therefore, a fast and accurate method is required to
achieve overall power consumption prediction.

The work presented in this paper makes contributions on the
accurate power modeling of CPU-GPU based supercomputers.
Our Gramatical Evolutionary (GE) based automatic approach
does not require designer’s expertise to describe the complex
relationships between parameters and power consumption
sources. This algorithm performs Feature Engineering (FE) and
Symbolic Regression (SR) that help to infer accurate models by
incorporating only those features that best describe the power
consumption.

Our methodology can be considered as a starting point for
implementing novel efficient policies for CPU-GPU
heterogeneous supercomputers. The resulting power models
could help to derive innovative energy optimization strategies
that combine management approaches that consider the joint
effect of different features.

For future research we plan to apply and validate the present
methodology using real HPC applications during runtime. We
also propose the usage of the resulting models to use the
tradeoffs between performance and energy efficiency in order to
perform an optimal offloading of workload to the GPUs. Finally,
we propose to complement these models with a thermal model to
simultaneously optimize both computing and cooling resources.

Acknowledgments The stay of Patricia Arroba in the Tokyo
Institute of Technology has been supported by the Erasmus
Mundus EASED (Euro-Asian Sustainable Energy Development)
programme (Grant 2012-5538/004-001) coordinated by
CentraleSuplec.

References
[1] TOP500.org: The Green500 list,

https://www.top500.org/green500/lists/2016/11/ (2016). ”Online;
accessed 5-February-2017”.

[2] Bianchi, L., Dorigo, M., Gambardella, L. M. and Gutjahr, W. J.: A
Survey on Metaheuristics for Stochastic Combinatorial Optimization,
Natural Computing: An international journal, Vol. 8, No. 2, pp. 239–
287 (online), DOI: 10.1007/s11047-008-9098-4 (2009).

[3] Turner, C. R., Fuggetta, A., Lavazza, L. and Wolf, A. L.: A conceptual
basis for feature engineering, Journal of Systems and Software,
Vol. 49, No. 1, pp. 3 – 15 (1999).

[4] Pelley, S., Meisner, D., Wenisch, T. F. and VanGilder, J. W.:
Understanding and Abstracting Total Data Center Power, Proc. of the

2009 Workshop on Energy Efficient Design (WEED) (2009).
[5] Warkozek, G., Drayer, E., Debusschere, V. and Bacha, S.: A new

approach to model energy consumption of servers in data centers,
Industrial Technology (ICIT), 2012 IEEE International Conference
on, pp. 211–216 (online), DOI: 10.1109/ICIT.2012.6209940 (2012).

[6] Bohra, A. and Chaudhary, V.: VMeter: Power modelling for
virtualized clouds, Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pp.
1–8 (online), DOI: 10.1109/IPDPSW.2010.5470907 (2010).

[7] Nagasaka, H., Maruyama, N., Nukada, A., Endo, T. and Matsuoka,
S.: Statistical power modeling of GPU kernels using performance
counters, International Conference on Green Computing, pp. 115–122
(online), DOI: 10.1109/GREENCOMP.2010.5598315 (2010).

[8] Lim, J., Lakshminarayana, N. B., Kim, H., Song, W., Yalamanchili, S.
and Sung, W.: Power Modeling for GPU Architectures Using McPAT,
ACM Trans. Des. Autom. Electron. Syst., Vol. 19, No. 3, pp. 26:1–
26:24 (online), DOI: 10.1145/2611758 (2014).

[9] Ge, R., Vogt, R., Majumder, J., Alam, A., Burtscher, M. and
Zong, Z.: Effects of Dynamic Voltage and Frequency Scaling on a
K20 GPU, Proceedings of the 2013 42Nd International Conference
on Parallel Processing, ICPP ’13, Washington, DC, USA, IEEE
Computer Society, pp. 826–833 (online), DOI: 10.1109/ICPP.2013.98
(2013).

[10] Song, S., Su, C., Rountree, B. and Cameron, K. W.: A Simplified
and Accurate Model of Power-Performance Efficiency on Emergent
GPU Architectures, 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, pp. 673–686 (online), DOI:
10.1109/IPDPS.2013.73 (2013).

[11] Arroba, P., Risco-Martn, J. L., Zapater, M., Moya, J. M.,
Ayala, J. L. and Olcoz, K.: Server Power Modeling for Run-
time Energy Optimization of Cloud Computing Facilities, Energy
Procedia, Vol. 62, No. 0, pp. 401 – 410 (online), DOI:
10.1016/j.egypro.2014.12.402 (2014).

[12] Arroba, P., Risco-Martı́n, J. L., Zapater, M., Moya, J. M. and Ayala,
J. L.: Enhancing Regression Models for Complex Systems Using
Evolutionary Techniques for Feature Engineering, J. Grid Comput.,
Vol. 13, No. 3, pp. 409–423 (online), DOI: 10.1007/s10723-014-9313-
8 (2015).

[13] Salinas-Hilburg, J. C., Zapater, M., Risco-Martn, J. L., Moya,
J. M. and Ayala, J. L.: Unsupervised power modeling of co-
allocated workloads for energy efficiency in data centers, 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1345–
1350 (2016).

[14] Boccara, N.: Modeling Complex Systems, Graduate Texts in Physics,
Springer (2010).

[15] Vladislavleva, E., Smits, G. and den Hertog, D.: Order of
Nonlinearity as a Complexity Measure for Models Generated by
Symbolic Regression via Pareto Genetic Programming, Evolutionary
Computation, IEEE Transactions on, Vol. 13, No. 2, pp. 333–349
(online), DOI: 10.1109/TEVC.2008.926486 (2009).

[16] O’Neill, M. and Ryan, C.: Grammatical evolution, Evolutionary
Computation, IEEE Transactions on, Vol. 5, No. 4, pp. 349–358
(online), DOI: 10.1109/4235.942529 (2001).

[17] Back, T., Hammel, U. and Schwefel, H.-P.: Evolutionary computation:
comments on the history and current state, Evolutionary Computation,
IEEE Transactions on, Vol. 1, No. 1, pp. 3–17 (online), DOI:
10.1109/4235.585888 (1997).

[18] Hemberg, E., Ho, L., ONeill, M. and Claussen, H.: A comparison of
grammatical genetic programming grammars for controlling femtocell
network coverage, Genetic Programming and Evolvable Machines,
Vol. 14, No. 1, pp. 65–93 (online), DOI: 10.1007/s10710-012-9171-8
(2013).

[19] Endo, T., Nukada, A. and Matsuoka, S.: TSUBAME-KFC: A modern
liquid submersion cooling prototype towards exascale becoming the
greenest supercomputer in the world, 2014 20th IEEE International
Conference on Parallel and Distributed Systems (ICPADS), pp. 360–
367 (online), DOI: 10.1109/PADSW.2014.7097829 (2014).

[20] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H.
and Skadron, K.: Rodinia: A Benchmark Suite for Heterogeneous
Computing, Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), IISWC ’09, Washington,
DC, USA, IEEE Computer Society, pp. 44–54 (online), DOI:
10.1109/IISWC.2009.5306797 (2009).

c© 2017 Information Processing Society of Japan 7

Vol.2017-HPC-158 No.2
2017/3/8

