Vol. 40 No.SIG6(TOD 3)

Regular Paper

TR e SO

Aug. 1999

GXML: A Novel Method for Exchanging and Querying Complete

Genomes by Representing them as Structured Documents

AARON J. STOKES," HIDEO MATSUDA' and AKIHIRO HASHIMOTOt

Complete DNA sequences (complete genomes) for an increasing number of organisms are
becoming available each year for use in biological research. However, genome project groups
incorporate their own formats (or schemas) for representing the genome data accumulated
by the projects. Such heterogeneity of their schemas prevents researchers from exchanging
and comparing their data across genomes. In this paper, we present a new method for
exchanging and querying information on complete genomes. Since genomes and the genetic
information encoded on them have a hierarchical structure, they can be represented as a kind
of structured document. We propose a document language called GXML for representing
complete genomes. The document language, based on XML, can be used to exchange many
kinds of genomic data, and offers a high degree of extensibility. We also define a query
language called GQL to operate on the genome documents. Using this language, one can
easily associate genes among different genomes and perform other biological analyses. We
developed a prototype system based on the language. Using the system, we executed several
test queries. The results were consistent with those published in biological literature. The

processor and memory requirements of the prototype system were acceptable.

1. Introduction

Recent advances in biotechnology make it
possible to determine the whole DNA nu-
cleotide sequence (the complete genome) for
an organism and to predict the entire set of
putative genes on the genome. However, the
functional roles of many predicted genes have
not yet been revealed. In the area of Com-
parative Genomics, researchers attempt to de-
termine the location and functionality of, and
the interaction between, putative genes on com-
plete genomes based on sequence comparison
between genomes and on previously-established
results.

Genome project groups make their data avail-
able to researchers directly via the Internet (by
WWW, FTP, etc.), or through some curated
biology databases. However, each project in-
corporates its own format (or schema) for rep-
resenting the genome data accumulated by the
project. Even if projects submit their data to
the same database, some degree of heterogene-
ity remains in the data representation due to
the differences in their original schemas.

Moreover, most data stored in biology
databases are not highly structured; in fact,

t+ CREST, JST (Japan Science and Technology)
11t Graduate School of Engineering Science, Osaka
University

66

much information (e.g., regarding gene func-
tionality) is described in a free-text format.
Thus, it is difficult for researchers to make com-
parisons between genomes based on such infor-
mation.

Several methods have been proposed for
querying various types of genome data®) . These
methods are classified into integration and
transformation approaches. In the integra-
tion approach, all the genome data are first
converted into some consistent form based on
a global schema incorporating a specific data
model (mainly, an object-oriented model), and
then queries are performed on the integrated
database. Typical examples are IGD?® and
ACeDB2Y), However, due to the rapid progress
of biotechnology, not only data but also the
relationships among the data are updated fre-
quently. Thus some structured data model is
required that exhibits significant flexibility to
schema updates.

On the other hand, the transformation ap-
proach incorporates a powerful query language
(such as BioKleislilO)), which can perform ar-
bitrary transformations among heterogeneous
data sources. Researchers can use the query
language to transform data to appropriate for-
mats and then issue queries on the transformed
data. However, in this approach, users need to
know some details about the original data for-
mats to be transformed. As described in Sec-

Vol. 40 No.SIG6(TOD3) A Method for Exchanging and Querying Complete Genomes 67

tion 2.3, several inconsistencies in data repre-
sentation exist, even within the same biology
database. Thus it is troublesome to specify how
to perform the transformation for each data
source.

We focus not on integration (although this is
a necessary step, of course), but on representa-
tion. We define a portable, plain text document
format for representing complete genomes, that
can be presented to humans with minimal pro-
cessing and is also highly machine-readable. We
then define a query language that acts on the
genome documents to expose important bio-
logical relationships. Using our method, re-
searchers can readily combine, analyze, and ex-
change genome information gathered from mul-
tiple sources.

Our method is currently in active use by
the Japan E. coli genome DNA sequencing
project!)12:15):27) and the WIT Project?? in
the United States to exchange project-related
data.

The rest of this paper is organized as fol-
lows. In the next section, we briefly intro-
duce genomes and related terminology and dis-
cuss how genome data is currently stored and
used. In Section 3, we describe how struc-
tured documents can be used to represent com-
plete genomes. In Section 4, we define GXML,
our genome-oriented structured document lan-
guage. In Section 5 we describe a query lan-
guage that is optimized for use with genome
data. Section 6 shows some experimental
results for querying information on complete
genomes. We follow with an overall discussion
in Section 7. The final section concludes the

paper.
2. Genome Data

2.1 Genes and Genomes

It is now widely known that DNA (de-
oxyribonucleic acids) form the basis of the in-
heritance mechanism of organisms. A DNA
molecule consists of a pair of two sequences (or
strands) of four nucleotides (A, T, G and C).
These two strands are held together by links
acting between A and T, and between G and C
nucleotides.

A gene is a functional unit of inheritance,
mainly corresponding to a segment of the or-
ganism’s DNA that codes for a protein. Pro-
teins can be represented by sequences of 20
types of amino acids. Genes and other segments
of DNA that are thought to code for functional

entities are collectively called features.

Enzymes are highly specific protein catalysts
that speed up certain chemical reactions within
the cell. Chemical compounds in the cell move
from enzyme to enzyme along specific reac-
tion pathways, the sum of which determines the
chemistry and behavior of the living cell.

The whole DNA sequence of an organism, to-
gether with the set of all of its features located
on the sequence and associated information, is
called its genome.

2.2 Genome Databases

Genome data (sequence, pathway, function-
ality information, etc.) are curated genome-
related databases such as GenBank®), SWISS-
PROT (Swiss Protein Database)®), PIR (Pro-
tein Information Resource)?), and KEGG (Ky-
oto Encyclopedia of Genes and Genomes)'?).

Currently, a number of different flat file en-
try formats are in use for retrieving information
about genomes (e.g., the GenBank, SWISS-
PROT, and PIR formats). A flat file is a
plain text file that has a straightforward, non-
hierarchical tagged structure.

Figure 1 shows an example of an entry in the
GenBank format. Each GenBank entry is com-
posed of tagged fields, each of which is a tag-
description pair. For example, the description
for the tag LOCUS consists of such information as
the entry ID and the number of nucleotides in
the entry. Each entry contains DNA sequence
data in the ORIGIN field, and a feature table
describing genes that lie on the sequence. A
field with the CDS (coding sequence) tag con-
tains information about a gene (its position,
gene name, etc.) specified by qualifiers such
as /gene.

2.3 Problems with Data Formats

Unfortunately, even though genome data rep-
resented in the various flat file formats may be
closely related or even contain cross-references
to each other, the formats differ vastly in struc-
ture. Also, most of the formats are designed for
human-readability, making it difficult to create
and maintain tools that can correctly interpret
the data contained in the files.

Another major difficulty is that there are in-
consistencies, even within the same format. As
an example, consider Fig. 2, which shows ex-
cerpts from the respective GenBank files for the
genomes of Mycoplasma genitalium and Aquifex
aeolicus, from Release 110 of the database.

Putative genes (or open reading frames,
ORFs) are generally identified and assigned a

68 THFRALEE 2 23R Aug. 1999
LOCUS U00096 4639221 bp DNA circular BCT 18-NOV~-1998
DEFINITION Escherichia coli K-12 MG1655 complete genome.
ACCESSION 000096
KEYWORDS
SOURCE Escherichia coli.

REFERENCE 1 {bases 1 to 4639221)

17

The complete genome sequence of Escherichia coll K-12
1453-1474 (1997)

AUTHORS Blattner, F.R., Plunkett III,G.
TITLE
JOURNAL Science 277 (5331),
FEATURES Location/Qualifiers
source 1..4639221
/organism="Escherichia coli”
/strain="K-12"
CDS 190..255
/gene="thrL"
CDS complement (1317813.
/gene="trpD"
CcDS 4638511..4639197
/gene="lasT"
CRIGIN

1 agcttttcat tctgactgca acgggcaata ...
61 tgatagcagc ttctgaactg gttacctgcc ...

Bloch,C.A., ..

.1319408)

Fig. 1 Portions of a sample GenBank entry for a complete genome.

unique ORF ID when the DNA sequence is
determined. Later, when the function of the
putative gene has been determined through se-
quence comparison to known genes and/or bio-
logical experiments, a gene name is assigned. In
the entries shown in Fig. 2, ORF IDs are shown
in bold type, while gene names are underlined.

In the file for Mycoplasma genitalium, the
/gene qualifier is used to store the ORF ID,
for both putative and known genes, whereas the
gene name of a known gene is placed inside the
free-text data for the /product qualifier. On
the other hand, in the file for Aquifex aeolicus,
the /gene qualifier is used to store the ORF ID
only for putative genes. For known genes, the
ORF ID is moved to the /note qualifier, and
the /gene qualifier is used for the gene name.

Since the GenBank file formats are up-
dated frequently (for example, the qualifiers
used for storing ORF IDs in Release 109
were different to those now used in Release
110; /standard.name for Mycoplasma genital-
ium and /label for Escherichia coli), it is diffi-
cult to design and maintain tools that overcome
such inconsistencies.

3. Genomes as Structured Documents

Genomes and the genetic information they
contain have a generally hierarchical structure:
DNA consists of two strands, each of which con-
tains features, which in turn have an associated
type and function, and so on. Furthermore, bi-

ological reactions occurring within the genome
also tend to be hierarchically organized. For
example, the Embden-Meyerhof pathway is in-
cluded in the glycolysis pathway, which is a
component of the intermediary sugar metabolic
pathway?)11).

Since a hierarchical data model can closely
represent the structure of the genome, describ-
ing genomes as hierarchical structured docu-
ments should assist in determining the corre-
spondence between genes. However, genomes
and the genetic information they contain can-
not be represented directly by structured doc-
uments for the following reasons.

e Many bacterial genomes form a circular
structure such that their DNA nucleotide se-
quences are wrapped.

e Although the elements of a structured doc-
ument cannot overlap, features may overlap if
their reading frames are different (see Fig. 3)
or if they are located on different strands.

e A genome consists of two strands that are
complementary to each other. Since each fea-
ture (such as a gene) can be located on either
strand, it must be possible to easily associate a
feature on one strand with another on the com-
plementary strand.

We approach the above problems by first
defining a structured document language which
can effectively express genome data. We then
introduce a query language equipped with a
“view” facility for querying genomes without

Vol.40 No.SIG6(TOD3) A Method for Exchanging and Querying Complete Genomes 69

Mycoplasma genitalium

Aquifex aeolicus

(Known gene)

gene 109262..109675
/gene="MG081"

CDs 109262..109675

/gene="MG081"

/codon_start=1
/transl_table=4

(.f-:'ljtative gene)

gene 158022..158246
/gene="MG131"
CDS 158022..158246

/gene="MG131"

/note="hypothetical protein; .
/codon_start=1

/transl_table-4

/product="M. genitalium predicted ...

/note="similar to GB:U00089 SP:P75550 ...

/product="ribosomal proteir L11 (rplll)”

(Known gene)

gene 3665..4390
/note="aq_009”
/gene="rplC”

CDS 3665..4390
/gene="rplC”

/codon_start=1
/product="ribosomal protein L03”

(Putative gene)

gene complement (9657..10157)
/gene="aq_022"

CDS complement (9657..10157)

/gene="aq_022"
/codon_start=1
/product="putative protein”

V7

7

Fig. 2 Example of inconsistencies within GenBank files.

l-————— Gene 1 -—————-|

[l 1
I . .GCTTATGCTCTATGTCCGCTCTTAAGATATAACAC. . l

it m]

L I It it m

!———-——— Gene 2 —————-*[

Fig. 3 Overlapping genes on a single strand.

regard to the underlying data representation.

4. GXML: Genome-oriented eXtensi-
ble Markup Language

4.1 The Case for XML

Several structured document languages have
been proposed, including Abstract Syntax No-
tation One (ASN.1), SGML, and the eXtensible
Markup Language (XML)?*). Among these lan-
guages, ASN.1 has been used as an alternative
to the flat file in GenBank. ASN.1 is a pow-
erful language for incorporating relational and
object-oriented schemas directly in documents.
However, ASN.1 requires strict definitions for
all aspects of the schema. It is difficult to mod-
ify the structure of ASN.1 documents without
adversely affecting the operation of tools that
operate on them.

Since relationships between biological enti-
ties are rapidly changing due to the progress of
biotechnology, we focus on the ability to easily
define, modify, and parse the structure and con-
tent of the document, rather than representa-
tion of strict inter-object relationships. In this
case, XML seems a better candidate.

An XML file (see Fig. 4) consists primar-
ily of text data surrounded (marked up) by
matching start and end tags. Provided the tags
nest correctly (i.e, the regions they cover do
not overlap), the document is considered to be
well-formed and can be parsed by any XML-

compliant parser. A distinct advantage of XML
over other data formats is that XML documents
are self-descriptive; i.e., information about the
structure of a well-formed document can be de-
termined during the parse process, without the
necessity for any definition of the document
structure. This is highly useful for ad hoc repre-
sentation of temporary data, as might be trans-
ferred between genome projects.

Where it is desired to maintain some degree
of consistency between documents, XML allows
the definition of a set of rules (known as a Docu-
ment Type Definition, or DTD) that govern the
structure of the document. Once a document
conforms to a particular DTD, it is considered
to be valid.

4.2 GXML and the GXML DTD

To cope with the issues described in Section 3,
we have designed an XMI-based document lan-
guage called GXML (Genome-oriented eXtensi-
ble Markup Language) in consideration of the
following points.

e Circular genomes: Since features can over-
lap, splitting the genome may also split a fea-
ture into two segments. We define the at-
tributes nostart and nostop to indicate that
the segments are contiguous across the split, as
shown below.

<feature>
<location nostop="true">

</location>
<location nostart="true">

</location>
<feature>
o Overlapping features and Complementary
strands: It must be possible to associate

70 THERALEE S 23 S0 Aug. 1999

Address-book ::= seq {
entry {
id “e001”
name {
firstname “John”
lastname “Smith” }
tel “0123-45-6789"

}
entry {

id “e258"
}

<?xml version=“1.0" ?>
<addressbook>
<entry id="e001”>
<name>
<firstname>John</firstname>
<lastname>Smith</lastname>
</name>

<tel1>0123-45-6789</tel>
</éﬁ£ry>
<entry id="e258”>
%}éntry>
</addressbook>

Fig. 4 Extracts from sample files in ASN.1 (left) and XML format (right).

B
~'~-|ATGCGGCATTAZ_%]GCGTTAGACTAAACTC'“-'

4 "TACGCCGTAATTCGCAATCTGATTTG G-
<

GXML representation

<feature fid=“genel”>
<location>
<strand> + </strand>
<start>101</start>
<end>112</end>
</location>
<dna>ATGCGGCATTAA</dna>
</feature>

<feature fid=“gene2”>
<location>
<strand> - </strand>
<start>116</start>
<end>127</end>
</location>
<dna>AATCTGATTTGA< /dna>
</feature>

4

Fig. 5 Representing features on different strands.

features based on their locations regardless of
whether or not the features are overlapped and
whether or not they are on the same strand.
Thus we do not mark up features according to
strand; rather, we specify the strand within the
location data (see Fig. 5).

We have defined a GXML DTD, a condensed
form of which is shown in Fig. 6. <!ELEMENT
.. .> statements declare the structure and con-
tent of elements using a regular expression-like
syntax. <!ATTLIST ...> statements declare
the name, type, and default value for attributes
associated with the elements.

In a GXML document, genome data is
marked up under several major elements.
genome is the root element for a single genome.
contig contains the nucleotide sequence for a
contiguous region of the genome. feature con-
tains information on a gene, such as gene name,
location, DNA sequence, amino-acid sequence

<!-- An XML DTD for representing complete genomes —=>
<!-— gxml.dtd version 1.2 Jun 1999 Aaron J. Stokes --~>

<!ELEMENT gxml
<!ELEMENT genome

genome) >

gid, whose, date, contigt,
feature*, pw*, role*)>
#PCDATA)>

<IELEMENT gid

(
<!ELEMENT whose (#PCDATA)>
<!ELEMENT date { #PCDATA)>
<!ELEMENT contig (cid, dna)>
<!ELEMENT cid (#PCDATA)>
<!ELEMENT dna (#PCDATA)>
(

<!ELEMENT feature fid, alias*, location+,
dna, prot?, function?)>

<{ATTLIST feature type orfirnalintron|intein)

#REQUIRED>
<!ELEMENT fid (#PCDATA)>
<!ELEMENT prot (#PCDATA)>
<!ELEMENT alias { #PCDATA)>

(

<!ELEMENT location
<!ATTLIST location

cid, start, end, strand)>

nostart (trueifalse) "false">
nostop (true|false) "false">
<!ELEMENT start (#PCDATA)>
<!ELEMENT end (#PCDATA)>
<!ELEMENT strand { #PCDATA)>
<!ELEMENT function { fdescription, confidence?,
why?) >
<!ELEMENT fdescription { #PCDATA)>
<!ELEMENT confidence (#PCDATA)>
<!ELEMENT why (#PCDATA)>
<!ELEMENT pw { pid, pwname, rid* }>
<!ELEMENT pid { #PCDATA)>
<!ELEMENT pwname (#PCDATA }>
(

<!ELEMENT role rid, rdescription, fid*,

substrate*, product*)>

<!ELEMENT rid (#PCDATA)>
<!ELEMENT rdescription { #PCDATA)>
<!ELEMENT substrate (#PCDATA)>
<!ELEMENT product (#PCDATA)>

Fig. 6 Outline of the GXML DTD.

for the encoded protein, and function. pw con-
tains information on a specific pathway, such
as a list of enzymes that constitute the path-
way. role contains information on a specific
enzyme, such as a list of genes that can encode
the enzyme, and the substrates (reactants) and
products of a reaction involving the enzyme.

An example of a GXML document is shown
in Fig. 7. As can be seen, the entire DNA
sequence of an organism, together with all of
the genes and associated information that con-
stitute the genome, are represented in a self-
descriptive package of data that is logical and
highly machine-readable.

Vol.40 No.SIG6(TOD3) A Method for Exchanging and Querying Complete Genomes 71

<?xml version="1.0" ?>
<!DOCTYPE gxml SYSTEM "gxml.dtd" >

<gxml>
<genome>
<gid>Escherichia coli K-12 ,..</gid>
<whose>E. coli Genome Project</whose>
<date>98NovlB</date>
<contig>
<cid>e000</cid>
<dna>ATGCGAGTGTTGAAGTTCGGCGG. . . </dna>
</contig>

<feature type="orf">
<fid>bl263</fid>
<alias>trpD</alias>
<location>
<cid>e000</cid>
<start>1317813</start>
<end>1319408</end>
<strand>-</strand>
</location>
<dna>ATGGCTGACATTCTGC. . . </dna>
<prot>MADILLLDNIDSF...</prot>
</feature>
<pw>
<pid>00401</pid>
<pwname>tryptophan biosynthesis</pwname>
<rid>4.1.3.27</rid>

</pw>
éféle>
<rid>4.1.3.27</rid>

<rdescription> ...
<fid>b1263</fid>

</rdescription>

;éﬁbstrate>Pyrophosphate</substrate>
<product>Anthranilate</product>
</role>
</genome>
</gxml> ﬁ7

Fig. 7 Example of a GXML genome document.

5. GQL: Genome-oriented Query
Language

Several query languages have been proposed
to query XML documents, such as XQL?%) and
XML-QL?%. Although these languages offer
similar capability in terms of data extraction,
XMIL-QL is considered to be most expressive
because XML-QL queries can construct new
XML data from the results of queries. Since this
data can be used as input to further queries,
results can be refined through successive appli-
cation of queries.

We introduce a new query language, called
Genome-oriented Query Language (GQL), that
is based on XML-QL and is optimized for ex-
tracting and processing the genome data con-
tained in GXML documents.

5.1 Simple Extraction using GQL

A typical GQL query consists of a WHERE
clause, specifying the structural elements or
content which are to be extracted or processed,
and a CONSTRUCT clause, which specifies how
the results will be formed.

For example, the following query obtains a

list of the feature IDs for all features contained
in ecoli.gxml.
WHERE
<feature>
<fid>$id</>
</> IN "ecoli.gxml"
CONSTRUCT
<fid>$id</>
Such a query would give the following output.
<fid>b0001</fid>
<£id>b0002</fid>

<fid>b4403</fid>

5.2 GQL Genomic View

GQL also presents an extended genomic
‘view’ of the underlying data, as illustrated
in Fig. 8. The genomic view allows one to
form queries using biologically meaningful con-
structs, without having to consider how the
data is implemented in the underlying GXML
document. We define the following major func-
tions to constitute the view.

e dist describes the distance between two
features, defined as the number of nucleotides
separating the features, regardless of strand.
On a circular genome, distance is measured on
the path around the genome that returns the
least number of nucleotides. If the features
overlap, distance is measured between the clos-
est ends and is negated.

e neighbors matches features that are neigh-
bors on the genome. The user can specify the
maximum distance, in nucleotides, between fea-
tures for them to be considered as neighbors.

e upstream, downstream match features that
are upstreamn or downstream of each other on
the same strand of DNA, based on the ordering
within the document and accounting for circu-
lar genomes.

e similarity describes the similarity be-
tween the DNA sequences of two features, as
calculated by the FASTA'®) program (a string
comparison algorithm that is widely used for
sequence comparison).

® besthit matches best-hits across genomes.
The best-hit on genome, of feature f; on
genome; is fo, if fi shows greater sequence
similarity to f; than to any other features on
genomez. The notion of a best-hit has been
shown to be effective in deducing functional
and evolutionary relationships between features
across genomes'?).

bidirbesthit matches features that are
identical (more exactly, orthologous) across

72 LR

Aug. 1999

/genomes

/ i
substrates /
products

circular
GXML b1 Tdistance, O
doc & neighbors
P upstream, ‘
I% downstream
i best-hits GQL
overlapping genes query
linear genomes
GXML pathway neighbors
doc e W sequence
/ / similarity \. J
pathways,

encoded enzymes

/

Fig. 8 Genomic ‘view’ provided by GQL.

genomes by applying besthit in both direc-
tions.

¢ pwneighbors matches features that encode
for enzymes where a product of one enzyme is a
substrate of the other enzyme; i.e., the enzymes
may be consecutive components of a pathway.

6. Experimental Results

6.1 Prototype System

Based on GXML and our query language
GQL, we have implemented a prototype sys-
tem for querying complete genomes, as shown
in Fig. 9. Using the Perl language, we created
tools that extract data from the GenBank and
KEGG databases and convert and merge the
data into complete GXML genome documents.
A position-based element index!”) is generated
for each document.

We created a GQL query processor in the
C++ language, which uses the element indices
to match patterns and bind GQL variables to
elements or content within the GXML docu-
ments. The GQL “view” functions are imple-
mented in part as macros that are expanded to
GQL conditions on execution, and in part using
internal routines or external programs.

The system used in this experiment was a
Gateway GP6-400 (Intel Pentium-II 400MHz
processor).

6.2 Experiment

In our experiment, we first created GXML
genome documents for two complete genomes,
Escherichia coli and Bacillus subtilis, based on
data extracted from GenBank Release 110 and
a February 21, 1999 download of the KEGG
database.

We then performed several test queries based
on the GXML genome documents. Each of the

queries is described in detail below, making par-
ticular note of the biological significance of the
results obtained.

6.2.1 Exploring Functional Relation-

ships on a Single Genome

The first test query demonstrates how our
method can be used to explore functionally re-
lated genes on a single genome, using sequence
similarity. In natural language, we can express
our query in the following way.

Query 1:

“Given two neighbor genes phoP and phoQ on
the Escherichia coli genome, retrieve all pairs
of two neighbor genes p; and ps on the same
genome where p; and po are paralogous to phoF
and pho@, respectively.”

Two genes are considered to be paralogous
if they lie on the same genome and their se-
quences exhibit a certain degree of similarity to
each other. Biologically, exposing this relation-
ship can be useful in determining genes that
were derived from a duplication event on the
genome during the process of evolution. Such
genes often share common functionality. In our
test query, we consider two genes to be paral-
ogous if they are located on the same genome
and the FASTA similarity score is at least 200.
This threshold could be adjusted easily if de-
sired.

In our query language, the query can be ex-
pressed as follows.

WHERE
<feature><alias>"phoP"</></> AS $phoP
<feature><alias>"phoQ"</></> AS $phof
<feature></> AS $pi
<feature></> AS $p2 IN "ecoli.gxml",
$p1 t= $phoP, $p1 != $phoqQ,
$p2 !'= $phoP, $p2 '= $phoqQ,

Vol. 40 No. SIG 6(TOD 3)

A Method for Exchanging and Querying Complete Genomes 73

/
4 N [N (7 N)
GenBank GXMLY =
et p| GenBank Doc | & GXML. GaL
* location translator oc 1% [
- sequence A Generator Parser
: t '
GXML| 5
Merger M | Doc & Query engine
Ar SN 4 S K
v
Index &
KEQG »| KEGG Generator | | GXML
- reaction | translator P Search engine
pathways
\Translator) _GXML DB) ____ GQL Processor)
Fig. 9 The prototype system.
neighbors($p1,$p2), <pair> .. phoB .. phoR .. </pair>
similarity($phoP,$p1,$s1), <pair> .. baeR .. baeS .. </pair>
L. . <pair> .. £227 .. £480 .. </pair>
similarity($phoQ, $p2,$s2), <pair> .. ompR .. envZ .. </pair>
$s1 >= 200, $s2 >= 200 <pair> .. kdpE .. kdpD .. </pair>
CONSTRUCT <pa%r> .. cpxR .. cpxA .. </pair>
) <pair> .. rstA .. rstB .. </pair>
<pair> <pair> .. basR .. basS .. </pair>
$p1 <pair> .. £239 .. £452 . </pair>
$p2 <pair> .. creB .. creC .. </pair>
</> T0 "queryl.gxml" Fig. 10 Results for Query 1.

The first two patterns bind the variables
$phoP and $phof to the feature elements cor-
responding to the genes phoP and pho@), respec-
tively. The following two patterns bind $p1 and
$p2 to all feature elements in turn.

The next two lines of the query stipulate that
neither $p1 nor $p2 can be bound to the same
features to which $phoP and $phoQ are bound;
i.e., we exclude the genes phoP and phoQ from
the search.

The remaining four lines simply state that
$p1 and $p2 must refer to neighboring features
and that the similarity scores between phoP and
the feature bound to $pi, and between phoQ
and the feature bound to $p2, must not be less
than 200.

The CONSTRUCT block creates a new file,
queryl.gxml, and then outputs a new
<pair></pair> instance for every unique per-
mutation of values for $p1 and $p2.

A shown in Fig. 10, ten pairs of gene neigh-
bors were isolated by the query. The fact that
these pairs are all paralogous to the gene pair
(phoP, phoQ) suggests that they may have sim-
ilar functionality to phoP and pho(Q.

This hypothesis was confirmed in biologi-

e SENSOr gENE
e ragulator gene

Fig. 11

Graphical depiction of results
for Query 1.

cal literature'®, where Mizuno reports that
the pair (phoP, phoQ) and the ten pairs
we obtained are, indeed, functionally related.
The genes function together as cognate sen-
sor/regulator pairs. This is illustrated graph-
ically in Fig. 11.

74 geusd

6.2.2 Corresponding Genome Loca-

tion and Pathway Functionality

The second test query shows how we can use
GQL to elucidate a correspondence between the
location of genes on the genome and the func-
tionality of the encoded proteins on a pathway.
More specifically, the objective is to show that
some genes that are neighbors on a genome also
encode for proteins that are consecutive compo-
nents of a pathway.

Query 2: :

“Find all pairs of neighbor genes g; and g, on
the Escherichia coli genome and a pathway pw,
where g1 and gy encode enzymes that are con-
secutive components of pw.”

The query can be expressed in GQL in the
following way.

WHERE
<feature></> AS $fi
<feature></> AS $£f2 IN "ecoli.gxml",
neighbors($f1,$£2),
upstream($£f1,$£2),
pwneighbors($£1,$£2, $pw)
CONSTRUCT
<pathway>
$pw
(<pair>
$£1
$£2
</>)
</> TO "query2.gxml"

The first two lines of the query bind $£f1 and
$£2 to each pair of features on the genome in
turn. The following three lines specify that the
two features must be neighbors on the genome
and that proteins encoded by the features must
be neighbors on a pathway. Note that our def-
inition of neighbors allows for a gene to be its
own neighbor.

The CONSTRUCT block appears rather more
complex than that of Query 1 because we want
to group the resultant gene pairs according
to the pathways for which they encode pro-
teins. We achieve this in GQL by enclosing the
<pair> pattern in parentheses.

A portion of the output is shown in Fig. 12.
Several similar groups of gene pairs were ob-
tained for other pathways, but without loss of
accuracy we can restrict our discussion to the
results shown. The figure shows six pairs of
genes that were found to encode for the trypto-
phan biosynthesis pathway.

We investigated the accuracy of the result,
and found that the biological literature®) con-

L INEATER

Aug. 1999

FE AL

<pathway>
<pw> .. tryptophan biosynthesis .. </pw>
<pair> .. trpD .. txrpD .. </pair>
<pair> .. trpE .. trpD .. </pair>
<pair> .. trpD .. trpC .. </pair>
<pair> .. trpC .. trpC .. </pair>
<pair> .. trpC .. trpA .. </pair>
<pair> .. trpC .. trpB .. </pair>

</pathway>

.

Fig. 12 Partial results for Query 2.

genome 5\

trpA trpB trpC tpD trpE
A - W,

pathway .. N
. y
Sl TS el el e
Fig. 13 Graphical depiction of results for Query 2.

firms that the pairs we found are indeed consec-
utive members of the tryptophan biosynthesis
pathway. The relationships thus exposed are
illustrated in Fig. 13.

Several interesting facts are revealed by the
results of the query. Firstly, the fact that we
obtained the two pairs (¢rpC, trpC) and (trpD,
trpD) indicates that we can correctly identify
genes which are multifunctional. Multifunc-
tional genes encode for proteins with two or
more different functions. Secondly, the results
indicate that trpA and trpB may be sub-units.
These are genes that work together to encode a
single protein.

It is interesting to note that the tryptophan
biosynthesis pathway is shown in 8) to be an
example of a pathway where gene order is con-
served significantly between different genomes.
In future tests, we could extend our query to in-
clude multiple genomes in an attempt to expose
this relationship.

6.2.3 Corresponding Genes across

Genomes

The third test query illustrates how our query
language can be used to determine the corre-
spondence between genes on different genomes,
and thus highlight possible functional relation-
ships.

Specifically, we consider a pair of gene neigh-
bors on one genome whose functionality is
known, and search for neighbors on another
genome that are orthologous to the reference
pair. The query can be expressed in natural
language as follows.

Query 3:
“Given two neighbor genes sdhA and sdhB on

Vol.40 No.SIG6(TOD3) A Method for Exchanging and Querying Complete Genomes 7

the Bacillus subtilis genome, retrieve all neigh-
bor genes g; and go on the FEscherichia coli
genome where ¢g; and g, are orthologous to
sdhA and sdhB, respectively.”

As mentioned in Section 5.2, two genes can
be considered as orthologous (they correspond
across genomes) if they are bi-directional best-
hits. Hence we arrive at the following GQL rep-
resentation of the query.

WHERE
<feature><alias>"sdhA"</></> AS $sdhA
<feature><alias>"sdhB"</></> AS $sdhB
IN "bsub.gxml",
<feature></> AS $gi
<feature></> AS $g2
IN "ecoli.gxml",
neighbors($gl, $g2),
bidirbesthit($sdhi,$bsub,$gl,$ecoli),
bidirbesthit($sdbB,$bsub,$g2,$ecoli)
CONSTRUCT
<pair>
$g1
$g2
</> TO "query3.gxml"

The first two lines of the query bind $sdhA
and $sdhB to the feature elements that repre-
sent the genes sdhA and sdhB, respectively, on
the genome of Bacillus subtilis. The next two
lines bind $g1 and $g2 to all pairs of feature
elements on the genome of Escherichia coli.

The remaining conditions add the restrictions
that $g1 and $g2 must bind to neighboring
genes, that $g1 must bind to a gene that is a bi-
directional best hit of sdhA4, and that $g2 must
bind to a gene that is a bi-directional best hit
of sdhB. We are not concerned with the dummy
parameters $bsub and $ecoli; we implicitly
specify the source genome when we specify the
source files ecoli.gxml and bsub.gxml.

The result of the query is the single gene pair
(frdA, frdB). The fact that we achieved a sin-
gle, exact match across the genomes strongly
suggests that the pairs (sdhA, sdhB) and (frd4,
frdB) may be evolutionarily related, and there-
fore may exhibit common functionality.

Indeed, it is confirmed in 7) that both pairs
of genes participate in the citric acid cycles,
also referred to as TCA cycles, of their respec-
tive genomes. The citric acid cycle is a well-
known pathway that is central to the energy
metabolism in many organisms.

It is important to note that our definitions of
gene distance and gene neighbors allowed us to
obtain a biologically meaningful result regard-

less of the fact that the genes frdA and frdB are
overlapping on the genome.

6.3 System Performance

We first measured the user CPU time re-
quired to create and index two GXML genome
documents, as shown in Table 1. Translation
and index creation time totals were under 10
seconds for each genome. Since the sets of com-
plete genome data contained in GenBank and
KEGG are updated relatively infrequently (no
more than once daily), we can conclude that
the translation times achieved are highly ac-
ceptable.

We then performed each test query, measur-
ing the times required to perform each phase
of query execution. The results are shown in
Table 2. It is evident that the bulk of the
time required to execute each query was con-
sumed in executing joins between bound vari-
ables. Pattern matching and FASTA calcula-
tion times were found to be acceptable.

Although each query required approximately
9 minutes to execute, this is reasonable when
we consider the ease with which a complex an-
alytical query can be written and performed on
data for several complete genomes.

7. Discussion

7.1 Translation into GXML

The data stored in KEGG and GenBank is
updated infrequently in relation to the time re-
quired for translation into GXML. From this
it would seem that the process is efficient and
could easily be automated. However, a fully
automatic translation system is difficult to im-
plement for the following reasons.

o Translators must be able to cope with com-
plex database schemas and inconsistencies on
both the syntactic and semantic levels. For
example, a GenBank translator would require
dedicated parsing routines for many genomes,
because of the inconsistencies described in Sec-
tion 2.3.

o Database schemas and flat file formats are
updated frequently, and in some cases the
changes may go undetected, causing erroneous
results. For example, if a qualifier currently
used to store one type of data is instead used
to store a different type of data in a future re-
lease, the change may not be detected since the
qualifier still exists and contains some form of
data.

e It is difficult to find a complete and accu-
rate method for corresponding the data trans-

76 [3 SR Aug. 1999
Table 1 Performance of GXML translator and index generator.

organism genes pathways enzymes translation time index creation time GXML doc size

Escherichia coli | 4405 81 548 6.76 2.78 11,566,197 bytes

Bacillus subtilis | 4221 81 425 6.20 2.37 10,391,654 bytes

Table 2 Performance of GQL query processor.

query pattern matching/binding joining FASTA calculation function expansion/other total
Query 1 5.48 429.49 15.82 11.60 462.39
Query 2 8.78 484.09 — 10.22 503.09
Query 3 4.91 462.72 55.34 9.88 532.85

lated from multiple data sources, due to the het-
erogeneity of their schemas. In the case of Gen-
Bank and KEGG, it is necessary to follow sev-
eral transitive correspondences to collect data
for a particular gene.

o Some form of automatic version control is
required to cope with differences in the data
contained in the databases. For example, if the
contents of KEGG are updated less frequently
than GenBank, the most recent version of Gen-
Bank data might not necessarily be the optimal
one for integration with KEGG data.

The idea of a trusted dato set may be of use
in solving some of these problems. We could
translate from a specific set of GenBank and
KEGG flat files into a specific set of GXML
documents, based on a set of translation and
integration rules. When the flat file formats are
updated, the rules would be revised automati-
cally based on a comparison between the up-
dated files and the trusted set, knowing the ex-
pected output. A final consistency check of the
GXML output could then be performed based
on rules derived from the trusted document set.

7.2 Query Optimization

It is evident from Table 2 that the execu-
tion of joins is more computationally intensive
than any other process in the prototype GQL
system, which incorporates a naive nested-loop
join algorithm. Since GQL functions such as
neighbors, similarity and upstream match
pairs of features, this generally results in a dou-
ble nested-loop iteration of over 4000 features
per loop for any query incorporating these func-
tions. This indicates why the join times were
similar for each of the test queries.

We can use the constraints inherent in GQL
functions to remove some of the nested iter-
ations. For example, in Query 2, the naive
implementation would have $f1 and $£2 form-
ing a double nested-loop, testing the functions
neighbors, upstream, and pwneighbors for
each iteration. By noting that the neighbors

function matches only pairs of neighbors on the
same genome, we can remove the $£2 loop.
For each iteration of the remaining loop, we
consider $£f1 as a key, for which neighbors,
upstream, and pwneighbors return sets of can-
didate values for $£2. Since these sets are of
constant size (and quite small), an intersection
between the sets will result in values for $£2 in
constant time.

The same technique can be applied to
Query 1, where we can use the constraint on
neighbors to remove the loop formed by $p2
and achieve a significant increase in efficiency.
For Query 3, we can take advantage of the con-
straints that we expect only one feature given
its gene name (alias), and that bidirbesthit
returns at most only one match per genome.
Pattern-matching would first bind $sdhA and
$sdhB, and then bidirbesthit can be executed
to find candidate sets for $g1 and $g2. A test
of whether $g1 and $g2 are neighbors or not is
readily accomplished, and a check of whether
$g1 (or $g2) is in ecoli.gxml concludes the
iteration.

7.3 Future Work

Our data model is limited in that it only sup-
ports implicit linking between elements within a
single document. We are investigating the use
of XLink and XPointer to allow for more ef-
ficient representation of relationships between
GXML documents.

A highly useful addition to GQL functionality
would be the capability of calculating transitive
closures. This would allow us, for example, to
achieve a meaningful sequence of genes rather
than a set of gene pairs in Query 2: the re-
sultant sequence would directly represent the
gene ordering on the pathway. However, it
is known to be difficult to optimize transitive
closure queries since they are generally recur-
sive. A number of recursion evaluation tech-
niques have been designed, including the well-
known magic sets transformation®. In our fu-

Vol. 40 No.SIG6(TOD 3) A Method for Exchanging and Querying Complete Genomes 77

ture work, we will consider incorporating magic
sets transformation in GQL to allow the pro-
cessing of transitive closures.

8. Conclusion

We have developed a method for represent-
ing genomes and associated data as structured
documents. Since genome data have com-
plex structures, several extensions from ex-
tant structured document languages were re-
quired. We have also designed a query language
equipped with biological constructs to act on
the genome documents.

From the results of executing several test
queries, our prototype system obtained sev-
eral biologically meaningful results with accept-
able performance. In practice, our method has
proven useful to several genome projects as a
method of exchanging genome data. The over-
all perspective of complete genomes that our
method provides is a unique tool for genomic
research.

Acknowledgments This work was sup-
ported in part by CREST of JST (Japan
Science and Technology), and a Grant-in-Aid
“Genome Science” (08283103) for Scientific Re-
search on Priority Areas from the Ministry
of Education, Science, Sports and Culture in
Japan. We would also like to thank Dr. Ross
Overbeek of the WIT Project for his valuable
suggestions and assistance in this research.

References

1) Aiba, H. et al.: A 570-kb DNA Sequence of
the Escherichia coli K-12 Genome Correspond-
ing to the 28.0-40.1 min Region on the Linkage
Map, DNA Research, Vol.3, pp.363-377 (1996).

2) Alberts, B. et al.: Molecular Biology of The
Cell, Garland Publishing, New York, 3rd edi-
tion (1994).

3) Bairoch, A. and Apweiler, R.: The SWISS-
PROT protein sequence data bank and its sup-
plement TrEMBL in 1999, Nucleic Acids Re-
search, Vol. 27, No. 1, pp. 49-54 (1999).

4) Barker, W. C., Garavelli, J. S., McGarvey,
P. B. et al.: The PIR-International Protein
Sequence Database, Nucleic Acids Research,
Vol. 27, No. 1, pp. 39-43 (1999).

5) Benson, D. A. et al.: GenBank, Nucleic Acids
Research, Vol. 27, No. 1, pp. 12-17 (1999).

6) Bancilhon, F., Maier, D. et al.: Magic sets
and other strange ways to implement logic pro-~
grams, Proceedings of the ACM Symposium on
Principles of Database Systems, Cambridge,
Massachusetts, pp. 1-15 (1986).

7) Cronan, J. E. Jr. and Laporte, D.: Tricar-
boxylic Acid Cycle and Glyoxylate Bypass,
Escherichia coli and Salmonella: Cellular and
Molecular Biology, ed. Neidhardt, F. C. et al.,
ASM Press, Washington D.C., chap. 16, pp.
206-216 (1996).

8) Dandekar, T., Snel, B. et al.: Conservation
of Gene Order: a Fingerprint of Proteins that
Physically Interact, Trends in Biochemical Sci-
ence, Vol. 23, No. 9, pp. 324-328 (1998).

9) Davidson, S.B., Overton, C., and Buneman,
P.: Challenges in Integrating Biological Data
Sources, J. Computational Biology, Vol.2, No.4,
pp. 557-572 (1995).

10) Davidson, S. B., Overton, C., Tannen, V.,
and Wong, L.: BioKleisli: A Digital Library for
Biomedical Researchers, J. Digital Libraries,
Vol. 1, No. 1 (1996). ‘

11) Fraenkel, D. A.: Glycolysis, Escherichia coli
and Salmonella: Cellular and Molecular Biol-
ogy, ed. Neidhardt, F. C. et al., ASM Press,
Washington D.C., chap. 14, pp.189-198 (1996).

12) Itoh, T. et al.: A 460-kb DNA Sequence of
the Escherichia coli K-12 Genome Correspond-
ing to the 40.1-50.0 min Region on the Linkage
Map, DNA Research, Vol.3, pp.379-392 (1996).

13) Mizuno, T.: Compilation of All Genes En-
coding Two-component Phosphotransfer Sig-
nal Transducers in the Genome of Escherichia
coliy, DNA Research, Vol. 4, pp. 161-168 (1997).

14) Ogata, H., Goto, S., Sato, K., Fujibuchi, W.
et al.: KEGG: Kyoto Encyclopedia of Genes
and Genomes, Nucleic Acids Research, Vol. 27,
No. 1, pp. 29-34 (1999).

15) Oshima, T. et al.: A 718-kb DNA Sequence of
the Escherichia coli K-12 Genome Correspond-
ing to the 12.7-28.0 min Region on the Linkage
Map, DNA Research, Vol.3, pp.137-155 (1996).

16) Pearson, W. R. and Lipman, D. J.: Im-
proved Tools for Biological Sequence Compar-
ison, Proc. Natl. Acad. Sci. USA, Vol. 85, pp.
2444-2448 (1988).

17) Sacks-Davis, R., Dao, T. et al.: Indexing Doc-
uments for Queries on Structure, Content and
Attributes, Proc. International Symposium on
Digital Media Information Base (DMIB’97),
pp. 236-245 (1997).

18) Skupski, M. P., Booker, M., Farmer, A. et al.:
The Genome Sequence DataBase: Towards an
Integrated Functional Genomics Resource, Nu-
cleic Acids Research, Vol. 27, No. 1, pp. 35-38
(1999).

19) Tatusov, R. L. et al.: Metabolism and Evolu-
tion of Haemophilus influenzae Deduced from
a Whole-Genome Comparison with Escherichia
coli, Current Biology, Vol. 6, No. 3, pp. 279-291
(1996).

78 TEHRALE 2 S5m0

20) Tamames, J., Casari, G., Ouzounis, C. and
Valencia, A.: Conserved Clusters of Function-
ally Related Genes in Two Bacterial Genomes,
J. Molecular Evolution, Vol.44, No.1, pp.66-73
(1997).

21) Thierry-Mieg, J. and Durblin R.: ACeDB — A
C. elegans Database: Syntactic Definitions for
the ACEDB Data Base Manager, 1992.

22) The WIT Project, available at
http://wit.mcs.anl.gov/WIT2/.

23) Bray, T., Paoli, J. and Sperberg-McQueen,
C.M. ed.: Extensible Markup Language (XML)
1.0, W38C Recommendation 10-Feb-98, avail-
able at http://www.w3.org/TR/REC-xml.

24) Deutsch, A., Fernandez, M., Florescu, D.,
Levy, A. and Suciu, D.: XML-QL: A Query
Language for XML, W3C Submission 19-
August-1998, available at
http://wuw.w3.org/TR/NOTE-xml-ql.

25) Ritter, O.: The Integrated Genomic Database,
Computational Methods in Genome Research
(S. Suhai.(ed.)), Plenum Press, New York, pp.
57-73 (1994).

26) Robie, J., Lapp, J. and Schach, D.: XML
Query Language (XQL), W8C Proposal Sep-
tember 1998, available at http://wuw.w3.o0rg/
TandS/QL/QL98/pp/xql.html.

27) Yamamoto, Y. et al.: Construction of a Con-
tiguous 874 kb Sequence of the Escherichia coli
K-12 Genome Corresponding to the 50.0-68.8
min Region on the Linkage Map and Analysis
of its Sequence Features, DNA Research, Vol.3,
pp. 91-113 (1997).

(Received March 20, 1999)
(Accepted June 27, 1999)

(Editor in Charge: Kazumasa Yokota)

Aaron J. Stokes was born
in 1973. He received his
B.Eng. from Osaka University
in 1999, and is currently a re-
search assistant at CREST of
JST (Japan Science and Tech-

: nology). His research interests
include database applications in molecular bi-

ology.

Aug. 1999

Hideo Matsuda was born in
1959. He received his B.Sc.,
M.Eng. and Ph.D. degrees from
Kobe University in 1982, 1984
and 1987 respectively. From
1984 to 1990, he was a research
associate and, from 1990 to 1994
a lecturer of the Department of Systems Engi-
neering at Kobe University. He was a visiting
scholar of Mathematics and Computer Science
Division at Argonne National Laboratory from
1991 to 1992. He is now an associate professor
of Department of Informatics and Mathemati-
cal Science at Osaka University. His research
interests include bioinformatics and molecular
biology database. He is a member of IEICE,
IEEE CS and ACM.

Akihiro Hashimoto was
born in 1938. He received his
B.Eng., M.Eng. and Dr.Eng.
degrees from Osaka University
in 1961, 1963 and 1966, respec-
tively. He worked in NTT Lab-
oratories from 1966 to 1989 and
was engaged in research on fault diagnosis and
design automation in computer systems and de-
velopment of the DIPS system. He was a vis-
iting assistant professor of University of Illinois
from 1969 to 1971. He is now a professor of the
Department of Informatics and Mathematical
Science at Osaka University. His research inter-
ests include information processing technology
in molecular biology. He is a member of IEICE,
IEEE and ACM.

