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Abstract: Haskell is a functional language featuring lazy evaluation and referential transparency. On one hand, Ref-
erential transparency is useful for parallel computing because the results do not depend on the evaluation order, but
on the other hand, parallel computing requires an evaluation order that is different from that of lazy evaluation. There
are some parallel programming libraries for Haskell, such as Repa (regular parallel arrays) and Accelerate. However,
little research has been conducted on evaluation with real applications, and the usefulness of these libraries remains
unclear. In this study, we evaluated the usefulness of parallel programming libraries for Haskell with an application
that applies a super-resolution technique to fMRI images. We developed a CPU-based parallel program with Repa and
GPU-based parallel program with Accelerate and compared their performance. We obtained reasonable speedups for
the program with Repa, but not for the program with Accelerate. We also investigated Accelerate’s performance issues
with an implementation in C and CUDA and the log from the Accelerate program. In this paper, we report our findings
through a case study, focusing on the advantages and difficulties in parallel program development with Haskell.
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1. Introduction

Recently, hardware environments with accelerators such as
GPUs as well as multicore CPUs are widely used, especially
in high-performance computing. As these hardware environ-
ments are becoming more and more complex, the cost of de-
veloping efficient parallel programs that utilize these environ-
ments is also increasing. Under these circumstances, increas-
ing the productivity of parallel programming is an important re-
search topic, and several programming languages have been de-
veloped to achieve this aim such as X10 [4], Chapel [1], and
XcalableMP [16]. Functional programming is often said to be
highly productive due to the strong modularity of functional lan-
guages [8]. In the area of functional programming, several lan-
guages or libraries for parallel computing have been developed
actively [3], [5], [9], [10], [11], [12], [14], [19], [21].

In this study, we use a functional programming language called
Haskell [13]. Haskell has two important features: referential
transparency and lazy evaluation. Referential transparency —the

evaluation results are independent of the evaluation order— is
very useful for parallel programming. Lazy evaluation —only

the required parts of the definition are evaluated— is useful to
write a program that manipulates infinite lists, which is hard to
write in other languages. However, lazy evaluation is inherently
sequential, and we require another evaluation strategy for ac-
tual parallel computation. Another important aspect of Haskell
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is that the user community has developed quite a few libraries.
For instance, we have the following libraries for parallel com-
putation: Control.Parallel [14] enables parallel computation by
changing the evaluation order, Repa (regular parallel arrays) [9]
helps parallel computation over multi-dimensional arrays, Accel-
erate [3] and Obsidian [21] enable parallel computing with GPUs,
and Eden [11] provides parallel computation patterns as algorith-
mic skeletons.

How Haskell and its libraries raise the productivity of appli-

cation development is an important question in programming re-
search. The authors of these papers that proposed these libraries,
of course, claimed their usefulness. In contrast, only two pa-
pers [17], [18] reported the experiences in actual application de-
velopment and the performance of these libraries from an out-
sider’s perspective. That is, the usefulness of parallel computing
libraries in Haskell was not evaluated enough from the viewpoint
of application development.

In this paper, we discuss the usefulness of parallel program-
ming with Haskell and its libraries through a case study, in which
we develop parallel programs of an existing application using two
parallel programming libraries in Haskell: Repa and Accelerate.
The target application (Section 3) is to apply a super-resolution
technique to a set of four fMRI images [15]. The authors’ group
also used this application to evaluate GPU parallelization [20] and
the optimization of sequential execution [7].

Important knowledge obtained from the case study is as fol-
lows.
• The Haskell program that was simply translated from the

original Java program showed as good performance as the
original.

• The Repa-based program achieved reasonable parallel
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speedups on multicore CPUs (but the parallel speedups were
smaller than linear speedups).

• The Accelerate-based program ran slower with GPUs than
the Repa-based program did in sequential execution. Mod-
ifications such as inline expansion applied to some parts of
programs made the Accelerate-based program run faster, but
we consider such modifications would spoil the advantages
of high-level functional programming with Accelerate.

• We guessed that the reason for lower performance was in Ac-
celerate’s automatic scheduling mechanism for the CUDA
kernel code.

• The (latest) Accelerate library does not work in the latest
CUDA environments, which makes it difficult to set up an
environment for Accelerate.

The rest of the paper is organized as follows. Section 2 intro-
duces the two Haskell parallel programming libraries used in the
paper. Section 3 shows the basic algorithm of the target applica-
tion that applies super-resolution to fMRI images and the origi-
nal Java program. Section 4 explains how we developed parallel
programs with the Repa and Accelerate libraries, and we discuss
the porting cost. Section 5 evaluates the developed programs,
including a hand-written one in C++ and OpenMP and another
one in C and CUDA, in terms of the computing speed. Section 6
investigates the reason the Accelerate program was slower than
sequential execution through several other experiments using de-
bug tools. Finally, Section 7 reviews related work, and Section 8
concludes the paper.

2. Parallel Programming Library in Haskell
Compared in This Study

2.1 Repa
Repa (regular parallel arrays) [9], [22] is a data-parallel pro-

gramming library in Haskell and is especially useful for data-
parallel programming in shared-memory environments. Usual
Haskell programs manipulate lists, and the Repa library provides
a mechanism for efficient manipulation of multi-dimensional ar-
rays. More specifically, the Repa library enables generation of
multi-dimensional arrays and parallel manipulation of those ar-
rays.

When the target algorithm applies computation independently
to every element of multi-dimensional arrays *1, we can execute
the computation in parallel with the computeP function provided
by the Repa library. Here, we do not need to consider how to
divide and distribute the data and tasks to threads.

Due to these features, we can obtain a shared-memory parallel
program with the Repa library without large modifications from
a normal (array-manipulating) sequential Haskell program.

2.2 Accelerate
Accelerate [2], [3] is an EDSL (embedded DSL) that enables

GPU programming in Haskell and was proposed based on the
earlier studies on GPU.Gen [10] and Repa [9]. The objective of
Accelerate is to ease GPU programming in Haskell by concealing

*1 Examples include the higher-order function map that applies a function
independently to every element and stencil computations that take an in-
dex and compute the corresponding value from neighbor elements.

complex details of GPU execution.
The Accelerate library takes a Haskell program with some lim-

itation and executes it on the GPU through CUDA. We can write
Accelerate programs almost in the same manner as we write usual
Haskell programs, except for the special types of elements of the
multi-dimensional arrays on GPU devices and for the special op-
erators *2 for branches in the code for GPUs (kernel codes). In
usual GPU programming, we need to explicitly write the code
that transfers data between the host memory and the device mem-
ory, but with Accelerate we do not need to write it because the
Accelerate library automatically does this. The kernel codes are
compiled at runtime, and the compiled codes are cached to avoid
the overhead of compilation.

3. Target Application

The target application in this study is to apply super-
resolution [6] to fMRI images [15]. Super-resolution is an image
processing technology that takes multiple input images of a cer-
tain resolution and reconstructs a higher-resolution image. The
target application takes four fMRI images as input and recon-
structs an image with twice the resolution in the horizontal and
vertical directions.

The main reasons we selected this super-resolution application
as our target application for the evaluation of parallel program-
ming libraries are as follows.
• In this application, each pixel is updated independently with

the values of neighboring pixels (i.e., this application is a
stencil computation in a broad sense). Therefore, we can ex-
pect parallel speedups not only on multicore CPUs but also
on GPUs.

• This application needs to deal with four static input fMRI
images and a dynamically changing super-resolved image.
This application is more complex than the benchmark appli-
cations evaluated so far [17], [18], and we consider that we
can evaluate libraries in a more realistic setting.

3.1 Basic Algorithm of Super-Resolution
There are two approaches to super-resolution. One is to fill in

the pixels by estimating the pixel values by pattern-matching or
machine-learning techniques. The other is to take multiple ob-
served images and reconstruct the original image so that statisti-
cal error is minimized. Here, we explain the latter, which is used
in the target application.

When we take photos with some devices, the observed im-
ages are affected by several factors: motion of the objects, blur,
(down-)sampling in the device, and noise (Fig. 1). Let y denote
the observed image and x denote the image with the ideal reso-
lution. With the geometric transformation for the object’s motion
M, transformation for blur B, transformation for down-sampling
D, and noise n, we assume that the observed image y is given by
the following equation:

y = DBMx + n . (1)

*2 These operators have additional asterisks, for example, the Boolean sum
operator is ||*.
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The goal of super-resolution is to compute the ideal high-
resolution image x from the given multiple observed images yi

(Fig. 2). In general, we need to solve the inverse problem after
estimating geometric transformations Mi and blur transformation
B. In this study, based on the properties of the fMRI images (and
the MR device), we assume for simplicity that geometric trans-
formations Mi are given and blur B is the identity. In addition, we
assume that the down-sampling reduces the resolution by half in
the horizontal and vertical directions (we double the resolution in
super-resolution).

However, this simple reconstruction, which minimizes the er-
rors in the model above, generates an image with amplified noise

Fig. 1 Resolution decreases when image is observed.

Fig. 2 Increase resolution by super-resolution.

Fig. 3 Core part of original super-resolution program implemented in Java. Variable org has last es-
timation of high-resolution image; nxt has updated estimation of high-resolution image. Four
low-resolution images are given by img, and their positions are given by param.

due to overfitting. Therefore, in the target application, we itera-
tively update the value of each pixel so that the sum of the fol-
lowing error and penalty is minimized.
• (Error) The difference between the pixel value in the ob-

served image and the pixel value in image y′i = DMix gener-
ated from the high-resolution image x.

• (Smoothness penalty) The difference between the pixel value
and the average of the values of its four neighboring pixels
in the high-resolution image x.

3.2 Original Program in Java
We used a Java program developed by Miyazaki [15] as the

original program for the target application. Figure 3 shows the
core part of the program.

Lines 6 and 7 in this program compute the adjusted position
lx and ly for each low-resolution image. Lines 10–18 compute
the average of pixel values corresponding to the high-resolution
image and then the error dEdp from the pixel value in the low-
resolution image. Lines 21–24 compute the smoothness penalty
by comparing the pixel value with the average of four neighbor-
ing pixel values. Finally, line 26 updates the pixel value in the
high-resolution image with the value of dEdp. A single step ap-
plies these computations to each pixel (for each x and y) in the
high-resolution image, and we perform 200 steps to generate the
output image.

Note that the input images are four 2D images with resolution
384 × 384. The MR device takes 36 slices of 64 × 64 images and
we align those slices in 6 × 6 to obtain an input 2D image. The
super-resolved image has a resolution of 768 × 768.
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4. Implementation of Parallel Programs in
Haskell

4.1 Implementation Using Repa Library
Figure 4 shows the program implemented with the Repa li-

brary. In the implementation with the Repa library, we defined
function sr for the process of super-resolution on a pixel and
used the computeP function in the Repa library to apply func-
tion sr to all the pixels. The computeP function automatically
applies the sr function in parallel with multiple cores.

Here, we explain the important points in Fig. 4.
type OImg = Array U DIM2 Int This defines the type of

arrays for the output (super-resolved) images. U indicates
that the boxing is not applied to the data.

type IImg = Array U DIM3 Int This defines the type of
arrays for the input (low-resolution) images.

repaSuperResolution :: IImg -> OImg -> OImg This
function computes super-resolution with the Repa library.

step :: IImg -> OImg -> Int -> OImg This function
updates the overall image and is iterated for the specified
times.

sr :: DIM2 -> Int This function takes a 2D index and re-
turns the result value of the pixel at the specified index.

In function sr, lines 12, 16–23, and 27–30 come naturally from
the corresponding parts of the Java program. The loops of x and
y in the Java program are implemented by the function computeP
in line 8, and the loop of l over images is implemented by the list
comprehension in line 26. The iterations that update the whole
image are described explicitly in the step function.

As we have seen above, we can implement the target applica-

Fig. 4 Haskell code with Repa library.

tion in Haskell using the Repa library at rather low cost.

4.2 Implementation Using Accelerate Library
Figure 5 shows the program implemented with the Accelerate

library.
In the implementation with the Accelerate library, we need to

define the arrays and variables used in the GPU processing to
have specific types wrapped by Acc and Exp and to edit the pro-
gram for some operations. The expression is partly limited in the
function executed on GPUs. For instance, we cannot use normal
Haskell lists, recursion, or iteration. Therefore, instead of the list
comprehension used in the implementation with the Repa library,
we expanded it and wrote down all the function applications (line
27). In the sr function that is executed on GPUs, we used dedi-
cated operators for all the comparisons and replaced the branches
with an expression similar to (Java-like) ternary operators. Al-
though there were the differences listed above, the program with
the Accelerate library was obtained without many modifications
from that with the Repa library, and we consider that the devel-
opment cost with the Accelerate library is rather small.
Execution of Program in Fig. 5

The program with the Accelerate library in Fig. 5 is executed
as follows.
( 1 ) Initialization of the Accelerate runtime.
( 2 ) Compilation of the code executed on GPUs (the step func-

tion (lines 8–31 in Fig. 5)) into the kernel code in CUDA.
( 3 ) Preprocessing by the Accelerate runtime. The authors be-

lieve that the calls of kernel code (lines 5–6 in Fig. 5) are
expanded and scheduled to be executed on GPUs.

( 4 ) Based on the scheduling above, the CUDA kernel code is
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Fig. 5 Haskell code with Accelerate library.

executed on GPUs (multiple times).
( 5 ) Finally, the result is returned to where the Accelerate func-

tion was called from (this is not shown in Fig. 5).
During the execution of the program in Fig. 5, the preprocess-

ing by the Accelerate runtime took much time. In Section 6, we
investigate and consider the reason the Accelerate program was
so slow.
Problem of Setting up Library

Although we could easily write the Accelerate program, we
had to spend most of our efforts setting up the environment for
Accelerate. The Accelerate library depends on other Haskell li-
braries such as cuda and c2hs, as well as the CUDA library for
actual execution. In our experiments, we tried to install Haskell
and Accelerate library version 0.15 (the latest) on an environment
with CUDA library version 7.5 (the latest), but we could not exe-
cute the Accelerate program. Therefore, we tested other versions
of the Accelerate and CUDA libraries and eventually succeeded
in executing the program with CUDA library version 6.0 and Ac-
celerate library version 0.13.

Downgrading the CUDA library may cause the problem that
we cannot utilize new mechanisms of GPUs. In fact, when we
executed the program, the CUDA library could not recognize the
GPU device used and gave the warning “Unknown CUDA de-
vice” (but the program ran).
Another Way to Replace List Comprehension

In the Accelerate programs, the parts executed on GPU devices
cannot include list comprehensions or high-order functions. This
is a major disadvantage in functional programming. In this study,
we wrote down all the elements since the number of elements is
just four. When the number of elements is much greater, it causes

Table 1 Lines of source programs.

Implementation Number of Lines
Java 50
Parallel Haskell with Repa 34
Parallel Haskell with Accelerate 36

a problem in terms of development/maintenance costs.
Another way to resolve the problem is to use GPU-side arrays

instead of the usual lists. Although programming with GPU-
side arrays requires additional pack and unpack operations, it
increases the maintenancability. The preliminary experiments
showed that the program that replaced the four parameters with a
GPU-side array ran slower by about 10%.

4.3 Discussion on Porting Cost
Table 1 shows the lines of programs implemented in this study.
We could implement the Repa and Accelerate parallel pro-

grams in fewer lines of code due to the characteristics of func-
tional programming languages and loop processing with the map
function. When we port applications from an imperative lan-
guage like Java to Haskell, the differences of grammar or pro-
gramming paradigm often become issues, but in this study it was
rather straightforward. The porting between Accelerate and Repa
is very easy, and this is an advantage when we test parallel pro-
cessing on multicore CPUs and GPUs.

5. Performance Evaluation

5.1 Programs Evaluated and Environment
We conducted several experiments using a CPU-based parallel

program with the Repa library and a GPU-based parallel program
with the Accelerate library and compared them in terms of the ex-
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Table 2 Hardware and OS environment.

CPU Intel Xeon CPU E5-2620 v3 2.40–3.20 GHz 6 cores
× 2 (hyper-threading off)

RAM 32 GB
GPU GM107-400-A2 1020 MHz 640 CUDA cores
VRAM 2 GB
OS Ubuntu 14.04 LTS

Table 3 Experiment results.

Implementation Execution time (s) Speedup
Java sequential 16.0 —
Haskell Repa (sequential) 14.3 —
Haskell Repa (parallel 2 cores) 9.87 1.44
Haskell Repa (parallel 4 cores) 5.69 2.51
Haskell Repa (parallel 8 cores) 2.87 4.98
Haskell Repa (parallel 12 cores) 2.40 5.96
Haskell Accelerate 18.4 0.78
C++ (sequential) 5.15 —
C++ (parallel 2 cores) 2.94 1.75
C++ (parallel 4 cores) 1.77 2.89
C++ (parallel 8 cores) 0.91 5.65
C++ (parallel 12 cores) 0.65 7.87
C and CUDA 0.21 24.4

ecution time. In addition to the original Java program, we used as
opponents a sequential program in C++, its parallel version with
OpenMP, and GPU-based parallel program in C and the CUDA
library. Here, in the C++ programs and the CUDA program, the
sizes of images were given as constants so that the compiler opti-
mization worked *3. We did not apply optimization techniques on
cache utilization such as the tiling technique.

Table 2 shows the hardware and OS environments used in the
experiments. The systems and additional options for each lan-
guage were as follows.
Repa GHC 7.6.3 + Repa 3.2.3.3
• Compilation: -O2 (optimization), -fllvm (optimization)
• Runtime: -qg (invalidating parallel GC) *4, -H256M (heap

size)
Accelerate GHC 7.6.3 + Accelerate 0.13.0.3 + CUDA 6.0
• Compilation: -O2 (optimization)
• Runtime: -qg0 (parallel GC), -H256M (heap size)

Java Java 1.8
C++ GCC 4.8.4
• Compilation: -O3 (optimization), -std=c++0x (language)

CUDA GCC 4.8.4 + CUDA 6.0
• Compilation: -O3 (optimization)

5.2 Results and Discussion of Performance Evaluation
Table 3 and Fig. 6 show the execution time excluding the data

input/output. We conducted experiments using 1, 2, 4, 8, and 12
cores for the Repa program. In the case of execution using the sin-
gle core, we used the computeS function instead of computeP.
We call the execution using single core “Haskell Repa (sequen-
tial)”.

The original Java sequential program was not that efficient, but
the Haskell Repa program (sequential) ran in almost the same
time as the original Java program. We confirmed the parallel

*3 In our previous study [7], we confirmed that the compiler optimization
worked well when we defined the values (such as the sizes of images) to
be constant.

*4 We tested options for the parallel GC, and the program ran fastest with
the option that invalidates parallel GC.

Fig. 6 Experiment results.

speedups for the parallel program with the Repa library.
The parallel speedups in the 8-core case were 4.98 (for Repa)

and 5.65 (for C++). We consider that we obtained enough paral-
lel speedups using the Repa library, though the speedups were a
bit smaller than expected. We consider the reasons we could not
obtain the expected number of speedups were that we used se-
quential GC (since parallel GC had poorer absolute performance)
and had less efficient cache utilization due to complex accesses to
the memory.

The Accelerate program, in turn, took more time than the se-
quential implementation did. A possible reason was that the com-
piler optimization did not work well due to inappropriate descrip-
tions of programs or algorithms in the Accelerate program. We
will discuss this issue in more detail in Section 6.

6. Investigating Issues of Slower Accelerate
Program

We considered the following issues to explain why the Accel-
erate program ran slower than the sequential Haskell program:
• branch divergence due to the many branches in the algorithm

and the number of available threads,
• missing cache mechanism for the CUDA kernel, and
• overhead of the Accelerate library or runtime.

6.1 Branch Divergence and Number of Available Threads
The first issue regarding the branch divergence and the number

of available threads comes from the mechanism of GPGPU com-
putation. In GPGPU computation, the computation is executed
in parallel by SIMD (single instruction multiple data) operations.
When a program includes conditional branches, the GPUs need
to execute both of the branches; thus, the overhead increases if
the number and/or depth of branches increase. Since the target
application includes many branches based on the coordinates and
values of pixels, these branches would slow down. In terms of the
number of available threads, it is important to use many threads
to execute the SIMD operations efficiently.

The following two techniques are often used to resolve the
branch divergence problem when many branches come from the
boundary conditions. The first technique is to implement two pro-
cesses: one for the boundary region and the other for the internal
region without branches. The second technique is to remove the
boundary conditions themselves by putting padding outside the
region. Unfortunately, the current version of the Accelerate li-
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Table 4 Results with NVIDIA Visual Profiler.

Implementation Divergent branch Number of threads
C and CUDA 19,967 1152 × 512
Accelerate 7,674 70 × 64

brary does not provide a function that applies a given function to
part of the multi-dimensional arrays, and we cannot implement
the program with either of these techniques.

To verify that the branch divergence and the number of avail-
able threads cause the slow-down problem, we compared the
Accelerate program with the C and CUDA program using the
NVIDIA Visual Profiler tool. Table 4 shows the results from
both programs.

The results in Table 4 show that the number of branches is
larger in the C and CUDA program than in the Accelerate pro-
gram. Because the C and CUDA program ran fast as we expected,
we consider that the branch divergence is not the main reason for
the slow down.

The number of available threads in the Accelerate program is
much smaller than that in the C and CUDA program. The number
of threads is not given by the user in Accelerate programs, and it
depends on the implementation of the Accelerate library. If the
number of threads is smaller than the number of GPU cores, the
computation on the GPU side may slow down because we cannot
fully utilize the parallelism. In fact, in terms of the execution time
of the GPU, the Accelerate program took 12 times as much time
as the C and CUDA program did. Therefore, the CUDA kernel
code generated by the Accelerate library was less efficient than
that written in C, and this is one of the reasons the Accelerate
program ran slow.

6.2 Cache Mechanism for CUDA Kernel
The Accelerate library compiles functions (after filling the pa-

rameters) into CUDA kernels at runtime, and this compilation
incurs unignorable overhead. Therefore, the Accelerate runtime
caches the compiled kernel code and skips the compilation if the
functions run in the same way as the cached ones. In the target
application, the same function over the whole image is executed
iteratively. When the function was compiled for each iteration, it
caused a large overhead.

We executed the Accelerate program with the debug options
of Accelerate runtime on and investigated how it ran. The three
debug options we used were as follows.
ddump-cc This outputs the information of the CUDA kernel

generated by the Accelerate library, number of threads, and
resource.

ddump-gc This outputs the information of the garbage collec-
tion when the Accelerate program runs.

ddump-exec This outputs the information of the execution of
the CUDA kernel.

By investigating the log from these experiments, we found the
following facts.
( 1 ) The Accelerate library compiled the Haskell code into the

CUDA kernel the fewest times.
( 2 ) The log recorded the memory management operations (by

the Accelerate library) before the GPU device ran, and the

cost of memory management was very large.
From fact (1), we confirmed that the caching mechanism of
CUDA kernels worked well. We will discuss fact (2) in the fol-
lowing section.

6.3 Overhead of Accelerate Library
Fact (2) above, which we found by investigating the log of the

Accelerate program, is a very important clue. The log with the de-
bug option for Accelerate’s garbage collection ddump-gc showed
that 70% of the execution time was consumed for the process on
the Haskell (CPU) side. In particular, look-up operations were
executed on some arrays during the execution, and the number
of operations was proportional to the number of iterations of the
super-resolution process. We, however, could not determine ex-
actly what this operation did.

To investigate the reason the program in Fig. 5 slowed down,
we wrote the following three simpler Accelerate programs and
measured the execution time.
AC-small1 This program increments the value of each pixel in-

dependently 200 times.
AC-small2 This program updates the value of each pixel based

on the values of neighboring pixels 200 times.
AC-small3 This program takes four input arrays and computes

the value for each pixel by reading the corresponding value
in those arrays 200 times.

The execution times were 0.89 s for AC-small1, 2.58 s for AC-
small2, and 1.50 s for AC-small3. These were much less than the
execution time of 18.4 s for the program in Fig. 5. From these
results, we consider that the computation itself in the target appli-
cation can be executed efficiently with the Accelerate library.

The execution time for AC-small2 and AC-small3 differed
greatly, even though the number of read/write/arithmetic opera-
tions was similar. From this fact, we expected that the (nota-
tional) complexity of the Accelerate programs affected the exe-
cution time especially for the preprocessing executed by the Ac-
celerate runtime. We transformed the program in Fig. 5 where we
applied the inline expansion by hand for the function srl in line
27. Then, the overall execution time shortened significantly to
11.6 s. This result suggested that in the preprocessing, the Accel-
erate runtime performed scheduling of CUDA kernel execution
(and maybe functions as units).

7. Related Work

7.1 Other Haskell Libraries for Parallel Computing
7.1.1 Control.Parallel (Parallel Haskell)

One of the important features of Haskell is lazy evaluation.
With the lazy evaluation strategy, subexpressions are evaluated
in the order required, and the computation is inherently executed
in a sequential manner. To enable parallel computing in Haskell,
we need some mechanisms to allow evaluation in a different order
from that of the lazy evaluation.

Control.Parallel [14] is a library that supports changing the
evaluation order. Users can specify the parts to be executed in
parallel, using basically two keywords: par and seq. The Con-
trol.Parallel library enables parallel computing in a similar way to
the task parallelism of the fork-join model. Users can also spec-
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ify some strategies to control the evaluation of the subexpressions
with par.
7.1.2 Obsidian

Obsidian [21] is another Haskell library for GPU program-
ming. The design of Obsidian is quite different from that of
Accelerate: in Obsidian, users can specify low-level GPU ma-
nipulation. For example, users can distinguish between arrays in
the host memory and in the device memory; they should specify
explicit data transfer between the host and the device. This in-
creases the cost of program development but has more potential
to exploit the performance of GPUs.
7.1.3 Eden

The Eden library [11] provides semiexplicit channels between
(distributed) processes in Haskell and enables parallel comput-
ing in a task-parallel manner. In particular, it provides several
patterns of inter-process communication through channels as al-
gorithmic skeletons. By using algorithmic skeletons, we can de-
velop data-parallel applications rather easily on Eden.

7.2 Comparison of Parallel Programming Libraries
As far as the authors know, the following two studies com-

pared Accelerate and Obsidian, which are GPU programming li-
braries developed in different approaches. Ouwehand compared
the libraries in terms of expressiveness and performance with ma-
trix multiplication as the target application [17]. Sadde did a case
study with multiple applications including simple reduction [18].
Both studies reported that program development is easier with
Accelerate and the performance is better with Obsidian. Sadde
also stated that Accelerate is very useful when we port existing
Haskell programs and Obsidian is very useful when we newly
develop applications.

8. Conclusion

In this study, we evaluated the usability of two parallel Haskell
libraries, Repa and Accelerate, through the implementation of a
super-resolution application.

The Repa program ran (sequentially) on a single core as fast
as the original Java program did. The relative speedups with re-
spect to the number of cores was a factor of 4.98 with eight cores
(88% of the factor of C++, 5.65). Although we have not ob-
tained linear speedups, we consider that we obtained reasonable
speedups since the speedups of the target application are bound
by the memory speed. Since the development cost of Repa pro-
grams is small enough, we consider that Repa has high usability.

In contrast, there remains several issues for parallel program-
ming with GPUs with Accelerate. The Accelerate program in
Fig. 5 took more time than the sequential Haskell program did.
The main problems for this slow down are the following. Firstly,
due to the lower quality of the CUDA code compiled from the Ac-
celerate program and fewer available threads, the execution time
of the GPU was 12 times longer. Secondly, the Accelerate run-
time took quite a long time for preprocessing before the GPU exe-
cution. We found that the time of preprocessing depends on how
we write Accelerate programs from the fact that it was reduced
by inline expansion by hand. In terms of the development cost,
Accelerate has an advantage that programs can be easily ported

from Repa programs. However, there remain some issues: the
use of list comprehension is limited and no function is available
to apply functions to part of arrays.

With Accelerate, users can develop a program combining ab-
stract computing patterns provided as higher-order functions.
Concrete execution with GPUs, such as data assignment and com-
munication between the host and devices, are handled in Accel-
erate. We found from the experiments in this study that it may
take a long time for the preprocessing by the Accelerate runtime
(more than that for the GPU processing). In the target applica-
tion, the input (low-resolution) images do not change, and we
can reuse the buffers for high-resolution images by the so-called
double-buffering technique. However, we cannot express these
programmers’ knowledge in the current Accelerate programs.

Our future work is to evaluate the performance improvement
with another GPU-programming library, Obsidian. With Obsid-
ian, we can describe rather low-level GPU manipulations that Ac-
celerate conceals, but in turn we need to compare them with direct
CUDA programming in terms of the development and/or mainte-
nance costs.
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