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Abstract: Fine-grained network traffic monitoring is important for efficient network management in software-defined
networking (SDN). The current SDN architecture, i.e., OpenFlow, relies on counters in the flow entries of forwarding
tables for such monitoring tasks. This is not efficient nor flexible since the packet-header fields that users aim for
monitoring are not always the same or overlap with those in OpenFlow match fields, which is designed for forward-
ing as a higher priority. This inflexibility may result in unnecessary flow entries added to switches for monitoring and
controller-switch monitoring-based communication overhead, which may cause the communication channel to become
a bottleneck, especially when the network includes a large number of switches. We propose SDN-Mon, a SDN-based
monitoring framework that decouples monitoring from existing forwarding tables, and allows more fine-grained and
flexible monitoring to serve a variety of network-management applications. SDN-Mon allows the controller to define
the arbitrary sets of monitoring match fields based on the requirements of controller applications to flexibly monitor
traffic. In SDN-Mon, some monitoring processes are selectively delegated to SDN switches to leverage the computing
processor of the switch and avoid an unnecessary overhead in the controller-switch communication for monitoring. We
implemented SDN-Mon and evaluated its performance on Lagopus switch, a high-performance software switch.
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1. Introduction

Software-defined network (SDN) [11], [12], [18] is an emerg-
ing network architecture that decouples the control plane and the
data plane for efficient and flexible network management. This
network architecture provides a centralized control that allows
network switches and routers to process network traffic in line-
rate speed while its controller can manage the network in real
time through a control channel. The most popular enabler of
SDN is currently the OpenFlow platform [10], [12], which in-
cludes a well-defined protocol and OpenFlow-supported hard-
ware switches/routers. SDN is aimed at enhancing the network
control and management, which is beneficial for a variety of net-
work applications. SDN has been being deployed more and more
widely nowadays by research communities and industrial com-
panies (e.g., Google deployed B4 [8], a software-defined WAN
connecting Google’s data centers across the planet). However,
besides its benefits, SDN still has some drawbacks including: (1)
overhead in monitoring at the controller due to the high frequency
of queries for flow statistics; (2) inflexibility when monitoring is
bound with forwarding into the same flow tables, while packet
features for monitoring purposes are not always the same or over-
lap with forwarding purposes; and (3) lack of scalability due to
the very limitted number of flow entries as current capacity sup-
port of hardware switches.
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Using the current SDN platform for monitoring may cause a
large amount of overhead due to the very frequent queries be-
tween the controller and switches. In particular, the current
SDN-supported monitoring mechanism does not support sam-
pling. With the current SDN/OpenFlow architecture, every first
packet of a new flow arriving at a switch will cause the switch to
send a packet-in message to the controller to request forwarding
rules to process the packet. Even if the packet is not the first one
of the flow (it may be one of the following packets of the same
flow that are ignored by the controller based on requirements of
monitoring-based applications or because of an overload prob-
lem), the switch also sends a new packet-in message to the con-
troller to request instructions to process the packet. Such very fre-
quent queries may cause a significant overhead to the controller-
switch communication channel and consume more processing in
the switches [5].

Moreover, monitoring based on the current SDN platform has
little scalability. This problem is due to the fact that the maximum
number of flow entries that current hardware switches can sup-
port is very limited (only a few thousands or a few tens of thou-
sands depending on the configuration of matching fields), while
the maximum number of flows in real networks can reach into the
millions, much larger than the number of flows that a switch can
handle. With those drawbacks, SDN monitoring is not as efficient
as it should be to support various network monitoring functions
for a variety of network management applications. We believe
that without a more scalable and flexible framework for both for-
warding and monitoring, it is not feasible for SDN to reach a wide
deployment.
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Some SDN-based monitoring mechanisms and frameworks
have been proposed recently for targeting specific applications
but cannot provide a flexible platform to benefit a variety of mon-
itoring applications [14], [25]. Another framework [26] is pro-
posed that does not take into account the scalability issue of SDN-
based monitoring, which results in a lack of scalability that lim-
its the framework to be widely deployed. Other mechanisms are
aimed at reducing the amount of communication overhead be-
tween the control plane and data planes [4], [21], [29], but still
lack scalability and flexbility since their monitoring relies on un-
modified flow tables without any sampling support.

To overcome those drawbacks, we propose a SDN-based mon-
itoring framework called SDN-Mon for more fine-grained, flex-
ible and scalable monitoring in SDN networks. With the sup-
port from SDN-Mon, the monitoring functionality is freed from
the forwarding functionality. This allows the controller to oper-
ate the forwarding functionality in a more efficient and scalable
way. For instance, by letting SDN-Mon handle monitoring, the
controller can insert more general forwarding rules with wild-
cards into switches to properly forward flows instead of insert-
ing very specific rules to handle both forwarding and monitoring.
This helps decrease the total number of forwarding entries that
a switch requires to process as well as saving processing power
due to handling unnecessary forwarding rules. As a result, the
forwarding functionality in a switch can be processed more effi-
ciently while leaving more processing capability for more fine-
grained, flexible, and scalable monitoring. With the above draw-
backs in current SDN monitoring support, a scalable, flexible,
and fine-grained monitoring framework like SDN-Mon is neces-
sary for monitoring in SDN networks.

This paper makes the following contributions: (1) We propose
SDN-Mon, a framework that separates the monitoring function-
ality from the forwarding functionality in an SDN switch, and
allows monitoring to be processed in a more fine-grained, effi-
cient way and independently from forwarding to serve a variety
of SDN management applications; (2) We provide an architec-
tural design for SDN-Mon and implement it on a Lagopus switch
and a Ryu controller; (3) Our performance evaluation indicates
that our monitoring framework incurs only an acceptable over-
head in an SDN switch.

2. SDN-Mon Architecture

Our SDN monitoring framework (SDN-Mon) is a scalable
framework that supports a fine-grained and flexible monitor-
ing for controller applications. In SDN-Mon, the separation of
monitoring and forwarding allows monitoring to be processed
in a more fine-grained and independent manner from forward-
ing. SDN-Mon allows controller applications to monitor flows
based on flexible monitoring match fields that are defined ac-
cording to their monitoring demands. Unlike current frameworks,
SDN-Mon supports an efficient sampling mechanism that makes
it more scalable to be adaptable with larger-scale networks than
current mechanisms. With SDN-Mon support, the SDN con-
troller can determine forwarding logics in a more proper and
scalable way with less flow entries in the switches’ flow tables
to avoid a possible overflow problem. Moreover, the number of

Fig. 1 SDN-Mon Architecture.

controller-switch messages required for monitoring are smaller,
this helps reduce the monitoring-based overhead in the SDN com-
munication channel. SDN-Mon leverages the switches’ process-
ing power to process its monitoring functionality and is designed
with a high priority for low processing overhead in a switch. In
this section, we describe the architecture of SDN-Mon, how it op-
erates alongside other processing of SDN switches as well as its
APIs to support monitoring applications on SDN networks.

2.1 Architecture Overview
As shown in Fig. 1, SDN-Mon is composed of a controller-side

module and a switch-side module. The controller-side module
has SDN-Mon monitoring APIs that enable a flexible monitoring
in the SDN controller. These APIs operate on top of the SDN con-
troller platform to support monitoring purposes of controller ap-
plications. The switch-side module consists of three components:
the SDN-Mon local control app, SDN-Mon monitoring APIs,
SDN-Mon monitoring database. These components operate to-
gether to handle the monitoring functionality in switches. The
support of these components together with the SDN-Mon mon-
itoring APIs on the controller-side enables a more fine grained
and flexible monitoring with a set of arbitrary monitoring match
fields defined by controller applications.
2.1.1 SDN-Mon Monitoring APIs at Controller Side

The controller-side SDN-Mon monitoring APIs are program-
ming APIs to support controller applications for monitoring.
With these APIs, controller applications can request the switches
to insert monitoring entries with a certain user-defined set of mon-
itoring match fields, remove monitoring entries from the monitor-
ing database in switches, query network statistics of monitoring
entries in switches, as well as other monitoring control functions,
as described in Section 2.3. These APIs serve a variety of moni-
toring purposes of controller applications independently from the
forwarding functionality.
2.1.2 SDN-Mon Handler

The SDN-Mon handler is a module at the controller-side that
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is responsible for handling SDN-Mon-related communication
with switches. This module supports encapsulating the con-
troller’s monitoring request parameters into SDN-Mon messages
and sending the messages to the switches. For SDN-Mon-related
replies from the switches, the SDN-Mon handler supports pars-
ing the received messages and extracting the monitoring data or
switch notification information from the messages for controller
applications.
2.1.3 SDN-Mon Local Control Application

The SDN-Mon local control app is a lightweight processing
application that is responsible for handling SDN-Mon-related re-
quests from the controller as well as local switch-management
processing to ensure the proper operation of the SDN-Mon
switch-side module. This application analyzes the monitoring-
related messages delegated by the SDN communication channel
between the control and data planes, which is enabled by the well
defined OpenFlow protocol [12], and leverages the SDN-Mon
monitoring APIs to process and manage the monitoring database
based on the controller requests. For network-statistics requests
from the controller, the SDN-Mon local control app queries the
statistics from the monitoring database, encapsulates the statis-
tical information, and delegates it to the controller-switch com-
munication channel to send to the controller. The SDN-Mon
local control app also reserves room for local pre-processing
in switches for experimenters’ applications (e.g., pre-checking
flows in a switch for anomaly detection, and pre-checking flow
volumes to detect large flows in the networks).
2.1.4 SDN-Mon Monitoring APIs at Switch

The switch-side SDN-Mon monitoring APIs are programming
APIs for the SDN-Mon local control app to process the monitor-
ing tasks delegated by the controller through the monitoring re-
quests. Basically, the programming functions provided by these
APIs correspond to the functions of the controller-side SDN-
Mon monitoring APIs. These APIs support the SDN-Mon local
control app to manage the SDN-Mon monitoring database and
query monitoring statistics from the database to respond to the
controller requests. Details of these APIs are described in Sec-
tion 2.3.
2.1.5 SDN-Mon Monitoring Database

The SDN-Mon Monitoring Database includes a monitoring ta-
ble and a Bloom filter. The monitoring table has a set of monitor-
ing entries. Each monitoring entry consists of monitoring match
fields, counters, and a hash value.

Since OpenFlow protocol [12] is basically the only protocol
that enables SDN communication channel between the control
and data planes, in our current design, monitoring match fields are
a set of fields that correspond to the match fields of a flow entry
defined in the OpenFlow protocol. These fields consist of a sub-
set of or all OpenFlow match fields. Controller applications de-
fine monitoring match fields based on their monitoring purposes
at the initial stage of the monitoring process. Counters consist of
a list of packet counts and one of byte counts. These lists have
an equal size (which is the number of packet count in the lists,
called counters buffer size S b) that is defined by controller ap-
plications at the initial stage of the monitoring process based on
the applications’ requirements. The packet and byte count lists

Fig. 2 Packet processing for monitoring at SDN-Mon enabled switch.

are buffers that record the historical packet and byte counts of a
monitoring entry at every time interval ΔTu. The counter-buffer-
update time interval ΔTu is calculated by the local control app
based on S b and a query time interval ΔTq, which is also set by
the controller at the initial stage of monitoring, with the fomula:
ΔTu = ΔTq/S b. These counter buffers support fine-grained moni-
toring and help decrease the number of necessary data exchanges
between switches and controller for monitoring statistics. The
hash value in a monitoring entry is calculated from the monitor-
ing match fields of the entry. This hash value together with the
hash table data structure implementation of the monitoring table
support accelerating the lookup process in the monitoring table.

Due to the need of sampling in a variety of existing network
monitoring applications, SDN-Mon provides a sampling mech-
anism in its monitoring process. This sampling mechanism is
processed with the support of a Bloom filter [1], a lightweight
data structure for checking the existence of certain entries. In
SDN-Mon, the Bloom filter is used to mark specific flows cor-
responding to an incoming packet as non-monitoring to ignore
them for monitoring based on the result of the sampling mech-
anism. This sampling mechanism allows the controller to con-
trol the total numbers of monitoring entries in a switch based on
monitoring-based application requirements or to avoid possible
overflow/overloading problems, by setting the sampling ratio in
the SDN-Mon monitoring database via the SDN-Mon monitor-
ing APIs. Figure 2 illustrates in detail the components in the
SDN-Mon switch-side module and how packets are processed in
the module for monitoring.

2.2 Monitoring Process
For monitoring traffic at a switch, the controller first turns on

the monitoring mode by sending a message to the switch to set
the monitoring match fields. The monitoring process in SDN-
Mon is initiated accordingly. When a packet arrives at a switch
(where the monitoring mode is on), the pipeline packet process-
ing of OpenFlow is performed. Concurrently, monitoring match
fields are extracted from the packet-header fields and passed into
the SDN-Mon local control app for monitoring. Based on the
monitoring match fields, this application conducts a lookup pro-
cess in the Bloom filter to verify if a corresponding entry exists in
the Bloom filter. If the verification result is positive (this means
that the entry based on these monitoring match fields is a non-
monitoring entry), the SDN-Mon local control app ignores this
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Fig. 3 Workflow of monitoring process in SDN-Mon switch-side module.

entry, and all following packets matching these monitoring match
fields will not be monitored. If the verifying result is negative, the
application conducts the lookup process in the monitoring table
to find a monitoring entry whose monitoring match fields match
the corresponding match fields in the packet.

If a match occurs, the counters in the matching monitoring-
entry will be updated by increasing the packet count by one, and
increasing the byte count by the number of bytes of the packet. If
no matching entry is found, the SDN-Mon local control app de-
termines whether to monitor this flow based on the sampling ratio
set by the controller. If the flow is determined for monitoring, a
new monitoring entry, in which the values of monitoring match
fields are set by those of corresponding match fields of the flow,
will be created and inserted into the monitoring table. If the flow
is not determined for monitoring, a new entry/element, in which
the values of monitoring match fields are set by the same way,
will be created and inserted into the Bloom filter to mark the flow
as non-monitoring. The workflow of the monitoring process is
illustrated in Fig. 3. In SDN-Mon, the monitoring match fields
are flexible and set by the controller based on the requirements of
the controller applications. The controller can also insert specific
monitoring entries for monitoring by using the SDN-Mon mon-
itoring APIs to send monitoring entry modification requests to a
switch to insert the entries.

2.3 SDN-Mon Monitoring APIs
The SDN-Mon monitoring APIs provide functions that the

SDN-Mon controller-side and switch-side modules can use to ex-
change messages containing monitoring control instructions or
monitoring data between each other in the OpenFlow commu-
nication channel. These functions allow the controller to define
the set of monitoring match fields for the monitoring table in the
switches, manage the monitoring table by setting a sampling ra-
tio based on its requirements or monitoring table status, and query
statistics of monitoring entries in switch-side monitoring tables.
For the switches and the controller, SDN-Mon provides functions
for adding a new monitoring entry into the monitoring table of
a switch and removing an entry from the monitoring table. The
functions of the SDN-Mon monitoring APIs are as follows.

sendToController (SDN-Mon message): This allows the
switch-side module to send SDN-Mon messages to its controller.
These messages include the Monitoring Statistics Reply Message
and Overflow Notification Message.

sendToSwitch (SDN-Mon message, Switch ID): This allows
the controller-side module to send SDN-Mon messages to a spe-
cific switch. These messages include the Monitoring Statistics
Request Message, Set Monitoring Match Fields Message, Set
Sampling Ratio Message, Add Monitoring Entry Message, and
Remove Monitoring Entry Message.

setMonitoringModeOn (Monitoring Match Fields,
Counter Buffer Size, Query Time Interval, Switch ID):
This function turns on the monitoring mode on a switch. It
initiates the SDN-Mon switch-side module with the specified
monitoring match fields, counter buffer size S b, and query
time interval ΔTq. The query time interval ΔTq can be flexibly
adjusted at a later time based on the controller’s requirements, by
using the setQueryTimeInterval function as described below.

setMonitoringModeOff (Switch ID): This function turns off
the monitoring mode on a switch. All data structures of SDN-
Mon switch-side module will be cleaned up accordingly.

addMonitoringEntry (Monitoring Match Fields Pattern,
Switch ID): This function adds a new monitoring entry into the
switch-side monitoring table. For monitoring a specific flow, the
controller uses this function to insert a new monitoring entry into
the switch-side monitoring table for monitoring. The controller-
side module encapsulates the monitoring match fields pattern into
an Add Monitoring Entry Message and sends it to the switch
specified by its switch ID.

removeMonitoringEntry (Monitoring Match Fields Pat-
tern, Switch ID): This function removes an existing monitoring
entry from the switch-side monitoring table, when the controller
determines not to keep monitoring a specific flow/entry. The
switch processes this command by removing the corresponding
monitoring entry from the monitoring table and by concurrently
creating a new Bloom filter element corresponding to the entry to
add into the Bloom filter for marking the flow as non-monitoring.

resetMonitoringTable (Monitoring Match Fields, Counter
Buffer Zize, Query Time Interval, Switch ID): This function
cleans up the existing monitoring table and resets it with the spec-
ified monitoring match fields, counter buffer size S b, and query
time interval ΔTq.

setSamplingRatio (Sampling Ratio Value, Switch ID): This
function sets a sampling ratio for the switch-side monitoring
database. It can be reused subsequently to adjust the sampling
ratio and control the monitoring table size to avoid the overflow
or overload problem.

setQueryTimeInterval (Query Time Interval, Switch ID):
This function sets a new query time interval ΔTq. The controller
uses this function to notify the monitoring switch each time it
changes the query time interval. The switch then calculates and
updates the counter-buffer-update time interval ΔTu based on this
new query time interval. The counter buffers on the switch will
be updated based on the new value of ΔTu accordingly.

setOverflowNotificationThreshold (Threshold Value,
Switch ID): This function supports setting a threshold for the
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monitoring switch to pre-alert the controller concerning the
overflow of the monitoring table. When the number of existing
monitoring entries exceeds this threshold, which can be set
based on the switch capacity, the switch will send an Overflow
Notification Message to its controller to notify the controller. The
ontroller can reuse this function at subsequent times to adjust the
threshold to avoid the overflow problem.

2.4 SDN-Mon Messages
The SDN-Mon messages are designed to allow the SDN-Mon

controller-side and switch-side modules to communicate with
each other to process SDN-Mon functionalities. We leverage
the Experimenter Message Type of the OpenFlow protocol [12]
in defining SDN-Mon messages. This allows SDN-Mon to use
the existing OpenFlow protocol for its controller-side module and
switch-side module communication, which makes it easy for de-
ployment and avoiding any possible conflict or incompatibility
in the communication channel. Experimenter extensions provide
a standard way for OpenFlow switches to implement additional
functionality within the OpenFlow message type space. This is
a staging area for features meant for future OpenFlow revisions.
A typical experimenter message is composed of an experimenter
ID, an experimenter type, and experimenter arbitrary data. In
SDN-Mon messages, the experimenter ID is set to a unique 32-bit
constant, which allows the SDN-Mon modules to differentiate be-
tween SDN-Mon messages and other experimenter messages that
may exist in the communication channel. The Experimenter Type
field in SDN-Mon is set with the 32-bit ID of the module send-
ing the message (note that both of the SDN-Mon switch-side and
controller-side modules are assigned with a unique ID for man-
agement purposes). With these settings, each SDN-Mon message
includes: an OpenFlow header, a SDN-Mon experimenter ID (32-
bit), a SDN-Mon module ID (32-bit), and a message content.

3. Implementation

Our implementation of SDN-Mon consists of the switch-side
and controller-side modules. The current implementation of
the switch-side module works on a Lagopus switch [9] and the
controller-side module works on a Ryu controller [17]. The Lago-
pus switch is a software OpenFlow switch that exhibits a high
performance, is easy to deploy, and has been used widely in the
research community recently. The switch-side module is im-
plemented using C programming language and the controller-
side module is implemented using Python. In our implementa-
tion, only about 1,500 lines of C code is added into the Lago-
pus switch for the SDN-Mon switch-side module and only a few
hundred lines of Python code is added to the Ryu controller for
the SDN-Mon controller-side module, which requires only a lim-
ited amount of processing power for the SDN-Mon monitoring
mechanism. Although SDN-Mon extends switches, it remains
deployable since it runs on the general-purpose processors of the
switches.

4. Evaluation

4.1 Experiment Environment
We conducted experiments with a real SDN network as illus-

Fig. 4 Experimental setup.

Table 1 Hardware configuration of experimental network.

CPU Memory
size

NIC type

PC-1 (SDN-
Mon switch)

Intel Xeon E5-1603
2.8 GHz (4 cores)

8 GB Intel 10-Gb X540-
AT2 (eth1, eth2), In-
tel I217-LM (eth0)

PC-2
(Sender)

Intel core i7
3.4 GHz

8 GB Intel 10-Gb X540-
AT2

PC-3 (Re-
ceiver)

Intel Xeon CPU
W3530 2.80 GHz

12 GB Intel 10-Gb X540-
AT2

PC-4 (Ryu
controller)

Intel core 2 Duo
2.66 GHz (2 cores)

3 GB Intel 82562V-2
10/100

trated in Fig. 4. This network is composed of an SDN software
switch, a controller and two hosts connecting to the switch (a
sender and a receiver). The software switch is a Lagopus soft-
ware switch version v0.2.0 with the SDN-Mon switch-side mod-
ule, and the controller is the Ryu controller version v3.26 with
the SDN-Mon controller-sided module. We ran a SDN-Mon sup-
ported Lagopus switch and a default/unmodified Lagopus switch
to evaluate the performance overhead.

The hardware configuration of the experimental network is
summarized in Table 1. The software switches in our exper-
iments run with DPDK v2.2.0 [6] for increasing the speed of
packet processing. The switch in each experiment worked on
the server PC-1, a physical computer with a 2.8-GHz CPU (4
cores with 256 KB of L2 cache, 10 MB of L3 cache) and 8-GB
RAM. The Ryu controller worked on a separate computer (PC-
4) and connected to a switch through a LAN. Two Intel 10-
Gigabit X540-AT2 NICs were installed in PC-1 to handle switch
ports (represented by interfaces ‘eth1’ and ‘eth2’ of the switch,
as shown in Fig. 4). An Intel 10-Gigabit X540-AT2 NIC was also
installed in each host, which was connected to the corresponding
NIC of the switch.

We ran the SDN-Mon-supported Lagopus switch and the Ryu
controller for the experiments. We set monitoring match fields to
5 tuples consisting of a source IP address, source port, destina-
tion IP address, destination port, and protocol, which are popular
matching fields used in a variety of monitoring applications. The
S b was set to 5 and the ΔTq was set to 10 seconds, which results
in packet and byte counters being updated in every 2 seconds. We
injected a stream of packets from host 1 to host 2. We measured
the throughput, then repeated the same experiments for the de-
fault Lagopus switch to evaluate the performance overhead of the
SDN-Mon modules. We used bmon [2] for throughput measure-
ment at both the sender and the receiver sides to measure the exact
packet-injecting rate at the sending host and packet-receiving rate
at the receiving host. For injecting packets, we used the tcpreplay
tool [23], which supports the high-speed injection of packets.
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Fig. 5 Overhead of SDN-Mon at various traffic input rate.

4.2 SDN-Mon Switch Overhead Evaluation
We evaluated the performance of the SDN-Mon-supported

Lagopus switch based on two aspects: the overhead of the SDN-
Mon-supported Lagopus switch compared to the original Lago-
pus switch, and the impact of the sampling mechanism on the
scalability of SDN-Mon. The evaluations were conducted us-
ing a pcap trace, which consists of 254,022 packets with a fixed
packet size of 64 bytes and was looped 10 times in each exper-
iment. In the experiments for SDN-Mon overhead, we set the
sampling ratio of SDN-Mon to 0.5 and measured the packet out-
put rates in kpps through differrent packet-injecting rates from 0
to 400 kpps. We measured the sending/input rates Ris at the net-
work interface eth1 of the sender, as shown in Fig. 4, which is
connected to the network interface eth1 (receiving interface) of
the SDN-Mon-supported Lagopus switch. The receiving/output
rates Ros were measured at network interface eth1 of the receiver,
which is connected to the network interface eth2 (sending inter-
face) of the switch. Each experiment was repeated 5 times and
the sample means and standard deviations of the measured values
were calculated for the final results.

Figure 5 shows the Ros of SDN-Mon-supported and
vanilla/default Lagopus switches. The experimental results
show that with those experimental setups, SDN-Mon performed
ideally at Ri from 0 to 300 kpps, with the ratio of Ro to Ri (RoT )
almost 100% and without any packet loss. The RoT started to
decrease when the input traffic rate increased over 300 kpps. The
SDN-Mon-supported Lagopus switch still resulted in a minor
performance overhead for Ri from 300 kpps to 350 kpps.

Although the RoT decreased rather quickly from Ri of
350 kpps, it is still reasonable because we injected a large number
of monitoring entries for a worst case evaluation. Every switch
has a certain limit of memory and processing capacity to handle a
certain threshold of packet injecting speed. The pcap file we used
has about 180,000 5-tuple-based flows, which results in about
9,000 monitoring entries created in the monitoring table (since
the sampling ratio was 0.5). This is a large number of monitoring
entries compared to only a few tens of flow entries created in the
flow tables of the orginal Lagopus switch. This results in a rather
large difference in the performance of the SDN-Mon-supported
Lagopus switch compared to the original Lagopus switch from
Ri of 350 kpps. Even though our implementation of the moni-
toring table is based on the hash table data structure, which pro-

Fig. 6 Impact of sampling ratio on the overhead of SDN-Mon-supported
switch.

cesses faster than the linear search table as in the current Lago-
pus implementation, and the SDN-Mon Bloom filter processing
is lightweight. In practical cases, the monitoring functionality of
a controller application may require a smaller number of mon-
itoring entries, which can be handled properly by the memory
and processing capability of a normal switch, than that in our
experiments. In this case, the controller application can balance
between the number of flow entries and the number of monitor-
ing entries (e.g., it can set general rules with wildcards to control
the number of stored flow entries) for efficiently handling packet
forwarding and SDN-Mon-based fine-grained monitoring.

We also conducted experiments to evaluate the impact of the
SDN-Mon sampling mechanism. We injected packets at Ri of
350 kpps and 400 kpps and measured the output traffic. We set
differrent sampling ratios in SDN-Mon from 0 to 1 to observe the
effect of the sampling ratio on the overhead of the SDN-Mon-
supported Lagopus switch. We repeated each experiment 5 times
and calculated the sample means and standard deviations of the
measured values for the final results. Figure 6 shows the posi-
tive effect of the sampling mechanism on the scalability of SDN-
Mon. The sampling ratio of K% represents the case in which K%
of the total number of packets is processed at the monitoring ta-
ble of SDN-Mon, and the rest are processed at the Bloom filter.
The experimental results show that when the sampling ratio de-
creased, the output traffic rate increased correspondingly. More-
over, the impact of the SDN-Mon’s sampling mechanism on the
system scalability is more significant for higher packet-injecting
rates (400 kpps in Fig. 6). This shows that the efficient sampling
mechanism of SDN-Mon is beneficial regarding scalability to be
able to adapt to various network scales.

4.3 SDN-Mon System Overhead Evaluation
We evaluated the system overhead of SDN-Mon from two as-

pects: (1) the system overhead in various monitoring-table sizes
(the number of active monitoring entries in the monitoring table)
without background traffic, and (2) the system overhead at var-
ious Ri of background traffic. To evaluate the system overhead
of SDN-Mon, we built a controller program that leverages the
SDN-Mon monitoring APIs to query monitoring statistics in the
SDN-Mon-supported Lagopus switch from the controller. The
system overhead is represented by the elapsed time of a round

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 7 System overhead at various SDN-Mon monitoring-table sizes.

trip since the controller sends a monitoring-statistics request to
the switch until it completes receiving all statistical data from the
switch. This elapsed time consists of the time for the monitoring-
statistics request to reach the controller since it was sent, the time
for processing in the switch to collect the requested data and cre-
ate a monitoring statistics reply message, and the time since the
reply message was sent until it reaches the controller. In this ex-
periment, the sampling ratio of SDN-Mon was set to 0.5. The
controller program in our experiment sent a monitoring-statistics
request to the switch every 10 seconds periodically, and the times-
tamps were marked to observe the exact time when the controller
sent the request and when it received reply data from the switch.

For the performance evaluation (1), we used pcap traces con-
taining different numbers of 5-tuple-based flows from 0 to 15,900,
which resulted in 0 to 7,950 5-tuple entries in the monitoring table
of the SDN-Mon supported Lagopus switch. In each experiment,
we injected the packets in the pcap file and started to observe the
system elapsed time when the sending host completed injecting
the packets. We observed the system elapsed time 5 times and
calculated the sample means and standard deviations. Figure 7
shows the observed system eplapsed time. We observed that the
elapsed time increased from 1.6 to 158.4 ms when the number of
entries in the monitoring table increased from 0 to 7,950. This
is reasonable because for a larger number of monitoring entries,
the switch consumes more time for collecting the statistics from
all entries, and transfering a larger amount of statistical data also
results in a greater delay time in the communication channel be-
tween the switch and controller. The experimental results show
that the system elapsed time of SDN-Mon-based monitoring is
very small, even for pulling statistical data of thousands of moni-
toring entries.

We conducted the performance evaluation (2) by using a pcap
trace containing 15,900 5-tuple-based flows (205,000 packets),
which creates 7,950 5-tuples entries in the monitoring table of
the SDN-Mon-supported Lagopus switch accordingly at a sam-
pling ratio of 0.5. We injected the packets at varios Ri from 0
to 250 kpps to create the background traffic in the experiments.
We observed the elapsed time of the system 5 times and calcu-
lated the sample means and standard deviations. Figure 8 shows
the elapsed time of the monitoring system in different Ri from 0
to 250 kpps. The experimental results show that the overhead of
background traffic was negligible compared with the cases of no

Fig. 8 System overhead at various packet input rates.

background traffic.

5. Related Work

Existing approaches proposed monitoring platforms or mech-
anisms to support the requirements of monitoring-based appli-
cations in SDN (e.g., anomaly detection, QoS, network link uti-
lization, throughput measurement). The most closely related ap-
proach to ours is UMON [26], which proposes a mechanism for
traffic monitoring in Open vSwitch [13]. UMON is aimed at pro-
viding flexible and fine-grained monitoring by supporting traf-
fic monitoring based on non-routing fields, subflow monitoring,
and decoupling monitoring from the forwarding functionality in
the switches. Although the idea of UMON may benefit for more
fine-grained traffic monitoring in SDN networks, it does not pro-
vide an architectural design. Thus, the current design mainly fit
for only Open vSwitch. Moreover, UMON does not support any
sampling mechanism, which can result in a lack of scalability for
monitoring, especially when the number of flows that switches
require to process in reality can be easily in the millions, larger
than the supported processing capability of current SDN hard-
ware switches.

Other studies proposed changes to the SDN data plane to im-
prove the performance of SDN monitoring. Avant-Guard [19]
outlines the challenge of the inherent communication bottle-
neck that arises between the data and control planes in SDN.
It extends the OpenFlow data plane to reduce the amount of
switch-controller interactions and delays in the control channel.
OFX [20] proposes an OpenFlow extension similar to Avant-
Guard, but simplifies the deployment since it runs on unmodified
hardware switches. DevoFlow [5] proposes triggers and reports,
and approximate counter mechanisms for reducing the amount of
switch-controller interactions. These approaches basically rely
on existing flow tables in switches for monitoring and do not
support any efficient sampling mechanism. Thus, they are not
well-supported for fine-grained monitoring and lack flexibility
and scalability, especially for networks that process a large num-
ber of flows.

Toward reducing the controller-switch communication over-
head in SDN-based monitoring, other approaches support adap-
tive polling-switches selection mechanisms and flow-statistics
aggregation mechanisms to reduce the communication cost of
monitoring globally [4], [21]. Others propose a similar switches
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selection scheme for querying flow statistics for estimating traffic
matrix with a low overhead [24], or prediction based flow count-
ing mechanism that dynamically changes the aggregation of mon-
itoring flows to balance the monitoring overhead and the anomaly
detection accuracy [29]. These proposals differ from ours since
their idea is basically distributing and balancing the load or over-
head over switches to reduce the overall overhead of the network,
and their monitoring functionality mainly relies on unmodified
flow tables in switches, which remain inflexible and unscalable
in handling a large number of flows in networks. However, these
distributed approaches can be leveraged in deploying SDN-Mon
framework for monitoring over multiple switches.

Other approaches use existing solutions (e.g., sFlow [15]) in
handling the monitoring functionality in SDN networks instead of
using SDN switches [22], [28]. These studies present sampling-
based approaches that use the sFlow agent at switches to capture
packet-header samples from the network. The drawbacks of these
approaches are that they strictly require additional hardware-
device deployment for the flow-collecting system, and are not
integrated with the OpenFlow platform. Thus, they may not be
applicable in some practical cases. Moreover, they add more pos-
sible delay and overhead in the processing of a network since ev-
ery packet-header sample needs to be transmitted to an external
device.

Other related studies support accurate monitoring of per-flow
throughput, packet loss, and delay metrics [25], or uncovering
forwarding problems due to hardware or software failures in SDN
switches [14]. Other approaches have been proposed for mea-
suring link utilization by capturing and analyzing control mes-
sages between switches and the controller [27], or dynamic provi-
sioning of network resources with guaranteed QoS upon changes
in the application requirements [3]. These works are mainly for
measuring quality of service and reliability in SDN, and basically
differ from our approach since they are not aimed at providing
a monitoring framework that is beneficial for various monitoring
purposes of controller applications.

6. Discussion

For scalability of the monitoring functionality, SDN-Mon sup-
ports an efficient sampling-based mechanism to control the pro-
cessing and memory overhead in network switches. The frame-
work allows the controller to control and limit the total number of
monitoring entries to avoid the monitoring-related overflow prob-
lem in networks. With the controller-side monitoring APIs, the
controller can easily check the total number of existing monitor-
ing entries in the monitoring table to avoid the overflow issue in
the table. When the number of monitoring entries reaches a cer-
tain threshold, which is set by the controller based on the capabil-
ity of the switch, the controller can increase the current sampling
ratio to limit or control the increase in the number of monitoring
entries in the monitoring database.

The SDN-Mon framework is designed with a high priority for
minor overhead in the processing of switches and for lowering the
frequency of monitoring-based controller-switch communication,
while providing flexible monitoring functionality for controller
applications. With the support of a Bloom filter for marking ig-

nored or non-monitoring flows, switches query the controller only
once for every new flow. If the sampling mechanism ignores a
new incoming flow from monitoring, a new Bloom filter element,
which corresponds to the flow, will be added to the Bloom filter
to mark that flow as ‘non-monitoring’. The following incoming
packets of the same flow will be checked with the Bloom filter
first and then be ignored since this flow is marked in the Bloom
filter by its first incoming packet. This mechanism prevents the
switches from conducting table lookups for the following pack-
ets of non-monitoring flows and from sending improper packet-
in messages to query the controller for processing these pack-
ets. This saves the processing power for the switch and annuls
the overhead in the controller-switches communication channel
caused by improper queries by the following incoming packets of
non-monitoring flows. We will consider supporting reliably re-
moving exisiting bloom filter elements with the Cuckoo filter [7],
in the next version of our implementation. This supports the case
in which controller applications want to add monitoring entries
that were decided as non-monitoring to the monitoring table.

The processing and memory overheads of the additional data
structures in a SDN-Mon-supported switch can be balanced be-
cause the SDN-Mon switch-side module can be used to handle the
monitoring functionality, allowing the control plane to focus on
only the forwarding functionality. With this support, the control
plane can determine forwarding rules flexibly to balance the cost
of its forwarding functionality and SDN-Mon-supported monitor-
ing functionality. For instance, it can use more general forward-
ing rules with wildcards inserted into switches for forwarding.
This results in maintaining proper forwarding functionality of the
switch, while leaving more processing and memory for the SDN-
Mon switch-side module to process its fine-grained monitoring
functionality. Moreover, the Bloom filter used in SDN-Mon is
scalable since it is a lightweight data structure that consumes very
little processing and memory power in the switch. Therefore,
the trade-off between the performance and the benefits of SDN-
Mon for monitoring is reasonable. The SDN-Mon framework
supports both TCP-based and non-TCP flow monitoring, which
would benefit the majority of network systems and applications.

7. Conclusion and Future Work

We proposed SDN-Mon, a new framework for fine-grained ef-
ficient traffic monitoring in SDN. This framework separates mon-
itoring functionality from forwarding to support flexible moni-
toring to serve a variety of monitoring-based applications. With
SDN-Mon support for monitoring, the control plane can deter-
mine more proper forwarding rules to handle the forwarding
functionality of the switches to avoid overflow in the switches’
flow tables in balance with the cost of overhead for monitoring
in the switches. The monitoring modules in SDN-Mon are also
scalable since its efficient sampling-based monitoring mechanism
helps prevent switches from frequent queries to the control plane,
which may cause unnecessary overhead in the controller-switch
communication channel and limit the number of monitoring en-
tries to adapt with the supported capacity of switches. We imple-
mented SDN-Mon on the Lagopus switch and evaluated its per-
formance to show that its overhead is acceptable while providing
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more efficient fine-grained and flexible monitoring in SDN net-
works. In the future, we plan to leverage SDN-Mon for develop-
ing various monitoring-based solutions for network management
in SDN.
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