
IPSJ SIG Technical Report

Investigation on an autoregressive recurrent mixture
density network for parametric speech synthesis

XinWang1,a) Shinji Takaki1,b) Junichi Yamagishi1,c)

Abstract: Neural-network-based mixture density networks are important tools for acoustic modeling in statistical
parametric speech synthesis. Recently we found that incorporating an autoregressive model in a recurrent mixture
density network, which is referred to as AR-RMDN, enabled the network to generate quite smooth acoustic data
trajectories without using the delta and delta-delta coefficients. More interestingly, the new model generated trajectories
with a dynamic range similar to that of the natural data, thus alleviating over-smoothing effect. In this work, after
explaining the AR-RMDN from the perspective of signal and filter, we compare one AR-RMDN with a modulation-
spectrum-based post-filtering method that also eases the over-smoothing effect. It is demonstrated that the AR-RMDN
also alters the modulation spectrum of the generated data trajectories but in a different way from the post-filtering
method. The AR-RMDN also generates synthetic speech with better perceived quality. Based on the signal and filter
interpretation, we further extend the AR-RMDN so that the inverse AR filter can acquire complex poles and stay stable.

Keywords: Text-to-Speech Synthesis, Recurrent Neural Network, Mixture Density Network, Autoregressive Model

1. Introduction
Statistical parametric speech synthesis (SPSS) uses statistical

models to convert the input textual features into the acoustic
features, based on which a speech waveform can be constructed
using a vocoder. A classical SPSS framework is based on the
hidden Markov model (HMM) [1]. Recently, it was augmented
with various neural-networks-based methods [2]. For example,
neural networks can be directly used to transform the input
textual feature into the target acoustic feature frame by frame
[3], [4], [5], [6]. Alternatively, neural networks can be formulated
as a generative model such as the mixture density network (MDN)
[7], [8]. This type of neural network transforms the input features
into a parameter set of the acoustic feature’s distribution at each
frame. The acoustic feature trajectories then can be generated
from the sequence of distributions in a similar way to the process
after the sequence of HMM state is determined in the HMM-
based SPSS [9].

In either case, an ideal neural-network-based model should
generate the acoustic feature trajectories that are sufficiently
smooth yet not over-smoothed. Unfortunately, the conventional
neural networks cannot easily reproduce the natural evolution
of acoustic feature trajectories. A typical difficulty is on the
temporal correlation across adjacent frames [10], even for some
recurrent neural networks [11]. To generate smooth trajectories,
the delta & delta-delta coefficients of the acoustic feature can
be modeled and used explicitly [3] or implicitly [12]. Another
intrinsic shortcoming of most statistical synthesizers is the

1 National Institute of Informatics, Chiyoda 2-1-2, Tokyo 101–8430, Japan
a) wangxin@nii.ac.jp
b) takaki@nii.ac.jp
c) jyamagis@nii.ac.jp

over-smoothing effect, i.e., the model generates data that are
close to the mean of the distribution. Effective methods to
alleviate the over-smoothing problem include the training or
generation process with the global variance (GV) [12], [13] and
the modulation spectrum (MS) into consideration [14], [15].

Alternatively, we recently found that the recurrent mixture
density network with an autoregressive model, which is referred
to as Autoregressive Recurrent Mixture Density Model (AR-
RMDN), can alleviate the over-smoothing effect without using
GV or MS explicitly. Furthermore, the generated trajectories
can be smooth without using delta & delta-delta coefficients
[8]. In this work, we explain the way that the AR-RMDN
generate the acoustic feature trajectory with its MS enhanced. We
also compare one AR-RMDN with a MS-based poster-filtering
method, and show the better performance of the AR-RMDN.
Besides, we extend the AR-RMDN so that the AR filter in the
synthesis stage can acquire complex poles while be stable.

In the rest of paper, Section 2 defines and explains the AR-
RMDN; Section 3 shows the way to formulate a stable complex
inverse AR filter; Section 4 includes the experiment comparing
AR-RMDN and MS-based post-filtering method, and experiment
on using the extended AR-RMDN for F0 modeling.

2. Define and Interpret the AR-RMDN
2.1 Review of Recurrent Mixture Density Networks

The basic component of AR-RMDN is the recurrent mixture
density network (RMDN). Similar to the normal recurrent neural
network (RNN), an RMDN uses a recurrent layer to compute the
hidden feature ht at the time t given the input xt to this layer and
the previously extracted hidden feature ht−1:

ht = F (Wixt + Whht−1 + d). (1)

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-SLP-115 No.2
2017/2/17



IPSJ SIG Technical Report

Here, F is the activation function such as the sigmoid or tanh; W∗

denotes the transformation matrix and d is the bias. The extracted
ht can be delivered to the next layer as input until the output layer
where it is transformed into the final output. Note that Equation
(1) can be replaced by the computation flow in a long-short term
memory (LSTM) unit [16].

However, while an RNN directly uses the final output as the
estimated target data {ô1, · · · , ôT }, an RMDN assumes the output
as the value of a parameter set based on which the probability
density function (PDF) of the target data can be fully specified.
For example, an RMDN may use the Gaussian mixture model
(GMM) as the PDF of the target data ot

p(ot;Mt) =

M∑
m=1

ωm
t N(ot;µm

t ,Σ
m
t ). (2)

Here, M is the number of mixture components and Mt =

{ω1
t , · · · , ω

M
t , µ

1
t , · · · ,µ

M
t ,Σ

1
t , · · · ,Σ

M
t } is the parameter set whose

value is given by the output of the RMDN [17].
For the RMDN in a parametric speech synthesis system, the

target sequence o1:T = {o1, · · · , oT } denotes the sequence of
acoustic feature vectors while the input is the sequence of textual
feature vectors. A GMM with diagonal covariance matrix Σm

t is
commonly used. The RNN can be also formulated as an RMDN
that uses a Gaussian distribution with a unity covariance matrix.

2.2 Definition of the AR-RMDN
Based on Equation (2), the likelihood of an acoustic feature

sequence o1:T on an RMDN can be written as

p(o1:T ;M1:T ) =

T∏
t=1

p(ot |Mt). (3)

This equation assumes that ots are statistically independent,
and it ignores the temporal evolution of o1:T . Even for the
RMDN where Mt, t ∈ {1, · · · ,T } are somehow related by the
recurrent computation, statistical correlations are ignored among
o1:T . One remedy is to use the delta coefficients as additional
target data, and then use the ‘maximum likelihood parameter
generation’ (MLPG) method to generate smooth trajectories [9].
Unfortunately, this method yields an invalid statistical model
[18]. A solution is to use the trajectory model [12], which
not only forms normalized model but also reproduces smooth
acoustic feature trajectories.

Different from the above approaches, the AR-RMDN assumes
that acoustic data vectors in the previous K time steps ot−K:t−1 =

{ot−K , · · · , ot−1} affect the component means of the GMM at the
current time t. It accordingly defines the PDF of ot as

p(ot |ot−K:t−1;Mt) =

M∑
m=1

ωm
t N(ot;µm

t + f (ot−K:t−1),Σm
t ), (4)

where f (ot−K:t−1) : RK×D → RD transforms ot−K:t−1 as

f (ot−K:t−1) =

K∑
k=1

ak � ot−k + b. (5)

Here, b ∈ RD is the bias, ak ∈ R
D is a vector that scales ot−k ∈ R

D

by element-wise product � and D is the dimension of the vector.
Note that ot = 0, t ≤ 0.

o1 o2 o3 o4 o5

x1 x2 x3 x4 x5

M3 M4M2M1 M5

predicted 

parameter set

Recurrent 

mixture 
density
network

hidden layer

hidden layer

input features

Probability 

model

output layer

output features

Fig. 1: An autoregressive recurrent mixture density network

In our implementation, ak and b are time-invariant and shared
among mixture components of the GMM. In the training stage,
ak, b and the neural network weight can be tuned using the back-
propagation algorithm under the maximum likelihood criterion.
In the generation stage, the acoustic feature vectors can be
generated sequentially. First, the distribution p(ot |ot−K:t−1;Mt)
can be determined given the previously generated vectors ôt−K:t−1.
Then the vector for time t can be generated as ôt = µm∗

t +

f (ot−K:t−1) where m∗ = arg maxm w
m
t .

2.3 Interpretation on the AR-RMDN
An AR-RMDN with K=2 is illustrated in Fig. 1. Similar to

the Autoregressive HMM [19], AR-RMDN only assumes the
distribution is affected by the past observations. This assumption
is different from the methods using delta coefficients or trajectory
models [12], [18]. This uni-directional dependence makes
the model both efficient in computation and consistent in the
statistical sense [19].

Another interesting angle to interpret the AR-RMDN is based
on the signal and filter theory. As the covariance matrix of the
GMM is diagonal, we can re-write Equation (4) as

p(ot |ot−1;Mt) =

M∑
m=1

wm
t

D∏
d=1

1√
2πσm

t,d
2

exp(−
ot,d −

∑K
k=1 ak,dot−1,d − µ

m
t,d − bd

2σm
t,d

2 ),

(6)

where ot,d, µ
m
t,d, ak,d, and bd are the d-th dimension of ot,µ

m
t , ak,

b, respectively, and σm
t,d is the d-th element of the diagonal Σm

t .
If we define a new variable ct,d = ot,d −

∑K
k=1 ak,dot−1,d, we can

find that the sequence o1:T,d = [o1,d, · · · , oT,d]> and c1:T,d =

[c1,d, · · · , cT,d]> is related by a linear transformation:

c1:T,d = A(d)o1:T,d

=



1 0 0 0 · · · 0 0
−a1,d 1 0 0 · · · 0 0
−a2,d −a1,d 1 0 · · · 0 0
...

...
...

...
...

...
...

0 · · · 0 −aK,d · · · −a1,d 1





o1,d

o2,d

o3,d
...

oT,d


.

(7)

From the perspective of signal and filter, the linear transformation

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-SLP-115 No.2
2017/2/17



IPSJ SIG Technical Report

above is also a filtering operation. It is easy to show that the filter
specified by the matrix A(d) can be written in the z-domain as

Ad(z) = 1 −
K∑

k=1

ak,dz−k. (8)

The input ‘signal’ o1:T,d is filtered by this finite impulse response
(FIR) filter Ad(z). In this work, we refer to Ad(z) as the AR filter.

Based on the interpretation above, we can derive the filtered
‘signal’ c1:T,d for d ∈ [1,D] and then re-write the Equation (4)
with respect to random variable ct:

p(o1:T ;M1:T ) =

T∏
t=1

p(ot |ot−K:t−1;Mt) =

T∏
t=1

p(ct;Mt). (9)

This formulation shows that the parameter set M1:T stays the
same for ct. Besides, it indicates that:
• In the training stage, AR-RMDN uses the AR filter Ad(z), d ∈

[1,D] to filter the original acoustic data o1:T,d in each
dimension d ∈ [1,D]. Then, it uses the RMDN part to
describe the distribution of the filtered data c1:T,d, d ∈ [1,D];

• In the synthesis stage, AR-RMDN uses the RMDN part
to generate the acoustic vector ĉ1:T , and then uses the
inverse AR filter Hd(z) = 1/Ad(z) to de-transform ĉ1:T,d into
ô1:T,d, d ∈ [1,D].

As we found in previous work, the AR filter processes the
training data so that it can be better modeled by the RMDN part,
while the inverse AR filter enhances the trajectories generated
from RMDN sub-network.

3. Extend the AR Filter with Complex Poles
The inverse AR filter H(z) = 1/A(z) in the synthesis stage

should be stable *1. For H(z) in AR-RMDN, our previous method
[8] re-writes the H(z) as a cascade

H(z) =
1

1 −
∑K

k=1 akz−k
(10)

=

K∏
k=1

1
1 − αkz−1 , (11)

and then constrains αk to be the output of a tanh function as

αk = tanh(α̂k). (12)

The use of the tanh function ensures that the poles of H(z) are
located within [-1,1] on the real axis, which makes the filter
stable.

However, the above assumption ignores the fact that a filter
could acquire one or more pairs of conjugate complex poles.
Although a complex-valued neural network could be a potential
solution to handle complex numbers, here we stick to the real-
valued network and propose a method to constrain the location of
complex poles. This method assumes that a K-order filter H(z)
can be written as

H(z) =


1∏K/2

k=1 (1−αkz−1−βkz−2)
if K is even

1
(1−α0z−1)

∏(K−1)/2
k=1 (1−αkz−1−βkz−2)

if K is odd.
(13)

Similar to the previous method, the pole α0 can be constrained

*1 To simplify the notation, the dimension index d is dropped

by a tanh function. For the other sub-filters, we assume that

their poles [
αk+
√
α2

k +4βk

2 ,
αk−
√
α2

k +4βk

2 ] must be a pair of conjugated
complex poles inside the unit circle, which means that the
parameters αk and βk must satisfy the conditions

α2
k + 4βk ∈ (−∞, 0), (14)∣∣∣∣∣∣

∣∣∣∣∣∣αk ±

√
α2

k + 4βk

2

∣∣∣∣∣∣
∣∣∣∣∣∣2
2
∈ (0, 1). (15)

The first condition constrains the poles to be complex numbers
while the second condition constrains the location of the poles.
Based on the first condition, the left-hand side of the second
condition can be written as∣∣∣∣∣∣

∣∣∣∣∣∣αk

2
±

√
−(α2

k + 4βk)

2
i

∣∣∣∣∣∣
∣∣∣∣∣∣2
2

=
α2

k

4
−
α2

k + 4βk

4
= −βk, (16)

where i =
√
−1. Then the conditions can be re-written as

αk ∈ (−2
√
−βk, 2

√
−βk), (17)

βk ∈ (−1, 0). (18)

In the neural network, the above condition can be met by setting

βk = −sigmoid(β̂k), (19)

αk = 2
√

sigmoid(β̂k)tanh(α̂k). (20)

Now, instead of the ak in Equation (10), β̂k and α̂k becomes
the parameter of the AR filter that will be learned from the
training data. In the back-propagation stage, the gradient with
respect to β̂k and α̂k can be computed using the chain rule in a
straightforward way.

4. Experiments
4.1 Corpus and Systems

The corpus and configuration were the same as our previous
work [8]. The corpus is the Blizzard Challenge 2011 corpus
that has 12072 English utterances [20]. Both the test and
validation set contained 500 randomly selected utterances. Mel-
generalized cepstral coefficients (MGCs) of order 60, continuous
F0 trajectory, voiced/unvoiced (V/U) condition, and band
aperiodicities (BAP) of order 25 were extracted for each speech
frame by using the STRAIGHT vocoder [21]. The Flite toolkit
[22] conducted the text analysis for the entire corpus. The output
of Flite was converted into a vector of dimension 382 as the input
to the neural network.

Two systems were investigated: RMDN and AR-RMDN. Neither
system used the delta-coefficients and the MLPG generation
algorithm. Both RMDN and AR-RMDN included 2 feedforward
layers with 512 nodes, 2 bi-directional LSTM layers with 256
nodes, and an output MDN layer. This MDN layer contained a
binomial distribution for the V/U condition, three GMMs for the
MGC, F0, and BAP with the number of mixture components as
2, 2, 1, respectively.

The training recipe include 3 steps. First, a conventional RNN
network was trained; then, RMDN was initialized using the trained
RNN and fine-tuned on the corpus; finally, the AR-RMDNwas fine-
tuned after being initialized by the trained RMDN.

3ⓒ 2017 Information Processing Society of Japan

Vol.2017-SLP-115 No.2
2017/2/17



IPSJ SIG Technical Report

100 200 300 400 500 600 700 800 1000
-2

0

2

4

6

8
M

G
C

 (
1

s
t 

d
im

)

NAT

RMDN

RMDN-MS

AR-RMDN

100 200 300 400 500 600 700 800 1000

-0.2

0

0.2

M
G

C
 (

3
0

th
 d

im
)

50 100 150 200 250 300 350

100

200

300

400

F
0

 (
H

z
)

Fig. 2: Predicted MGC (1st and 30th order) and F0 trajectories against the natural data (NAT). The x-axis is the frame index. The plotted
F0 was obtained using the predicted continuous F0 and U/V condition.

4.2 Comparing AR-RMDN with MS-based post-filtering
In this experiment, we focuses on the comparison between AR-

RMDN and a related post-filtering approach, and only consider
the AR filter with one real pole. The AR-RMDN network set the
order of the AR filter as K = 1 for both MGC and F0 streams.
The AR-RMDN is formulated without the constraint on the inverse
AR filter according to Equation (10). The parameter {ak, b} was
initialized as zero. In the generation stage, RMDN and AR-RMDN
used the mean of the most probable mixture component as the
output for each frame. *2

We plotted the trajectories for the 1st and 15th dimension of the
MGC and F0 in Fig. 2. Comparing only the RMDN and AR-RMDN,
we can see that, while the trajectories of both AR-RMDN and RMDN
follows the natural data, the AR-RMDN one has a dynamic range
that is closer to the natural (NAT) variance. If the global variance
(GV) is used to measure the dynamic range of the generated
features, the generated data from AR-RMDN acquires a higher GV.
As researchers argued that the sum of linear-scaled modulation
spectrum (MS) except bias is equivalent to GV [14], we analyzed
the MS of the generated trajectories from AR-RMDN and RMDN.
The results are plotted in Fig. 3. This feature clearly shows that
the trajectory given by AR-RMDN has higher energy than RMDN
in the low-frequency region. This is consistent with what the
trajectories show in Fig. 2, namely the trajectory of AR-RMDN is
dynamic yet smooth.

What contributes to the performance of AR-RMDN is the
inverse AR filter Hd(z), d ∈ [1, 60]. Fig. 4 plots the frequency
response of Hd(z) for certain dimensions of the MGC and F0.
Clearly, the trained Hd(z) enhances the low-frequency variation
of the generated trajectories given by the RMDN sub-network
of AR-RMDN. Due to this enhancement, the energy of the low-
frequency region in the modulation spectrum of the AR-RMDN’s

*2 The toolkit is a modified version of CURRENNT [23]. This toolkit,
implementation details of AR-RMDN, and speech samples can be found at
http://tonywangx.github.io

0 500 1000 1500 2000

Frequency Index (:/2048)

-10

-5

0

5

M
S

 o
f 

M
G

C
 (

d
B

)

RMDN

RMDN-MS

NAT

AR-RMDN

Fig. 3: Modulation spectrum of the 30th dim MGC.

250 500 750 1000

Frequency bin (: /1024)

-5

0

5

10

M
a

g
n

it
u

d
e

 (
d

B
) H

1
(z)

H
15

(z)

H
30

(z)

H
60

(z)

1 250 500 750 1000

Frequency bin (: /1024)

-10

-5

0

5

M
a

g
n

it
u

d
e

 (
d

B
)

H
1
(z)

Fig. 4: Frequency responses of Hd(z) in the trained AR-RMDN
for the MGC (left) and F0 (right).

output can be larger than RMDN.
The results above show that AR-RMDN suffers less from the

over-smoothing problem than RMDN. To deal with the over-
smoothing problem, the modulation-spectrum (MS)-based post-
filtering method has been proposed and achieved good results.
Because MS-based post-filtering method directly manipulates the
MS of the generated feature trajectories in the whole modulation
frequency domain, it is different from what AR-RMDN does.
Thus, we compared the two. For the MS-based systems, we
trained the post-filter on the training data and then used it to
enhance the output from the RMDN. Experiment groups were
constructed according to Table 1. A subjective evaluation based
on MUSHRA method with 10 paid native English listeners was
conducted at the University of Edinburgh.

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-SLP-115 No.2
2017/2/17



IPSJ SIG Technical Report

RMDN

RMDN-M
S F

RMDN-M
S M

RMDN-M
S

RMDN-A
R F

RMDN-A
R M

AR-R
MDN

35

40

45

50

55

60

R
a
te

d
 q

u
a
lit

y
 (

fr
o
m

 0
 (

m
in

) 
to

 1
0
0
 (

m
a
x
))

Fig. 5: Results of a MUSHRA test comparing AR-RMDN and
MS-based post-filtering method (notation defined in Table 1).

Table 1: Experimental groups to compare AR-RMDN with MS-
based post-filtering method in Fig.5

Notation Description
RMDN baseline samples from RMDN

RMDN-MSF RMDN with F0 enhanced by MS-based post-filter
RMDN-MSM RMDN with MGC enhanced by MS-based post-filter
RMDN-MS RMDN with F0 and MGC enhanced by MS-based post-filter
RMDN-ARF baseline samples yet with F0 generated by AR-RMDN
RMDN-ARM baseline samples yet with MGC generated by AR-RMDN
AR-RMDN samples from AR-RMDN

The results are shown in Fig. 5. The subjective evaluation
shows that the AR-RMDN achieved better quality than the MS-
based method. A particular artifact in the MS-enhanced speech
is ‘click’ sounds. This type of click sound may come from
the high-frequency noise introduced by the MS-based post-
filtering. This can be seen by the trajectory of RMDN-MS plotted in
Fig. 2. Another possible reason is that the ‘phase’ of the original
trajectory was used to reconstruct the enhanced trajectory in the
MS-based method. AR-RMDN may avoid these two problems
as it only focuses on the low-frequency region and enhances
the trajectory in the ‘time domain’ without transforming the
trajectories in and from the modulation spectrum domain.

4.3 High-order inverse AR filter on F0 modeling
In the previous section, we showed the performance of the

AR-RMDN with K = 1 for both MGC and F0. In this section,
we explore its performance when K > 1. Because the dimension
of MGC is much higher than F0, we only focus on F0 modeling
for this initial trial. The AR-RMDN networks adopted the same
configuration in previous section except the order and form of the
AR filter. The networks are listed in Table 2.

Figure 6 shows the pole locations for networks C6, R6 and U6.
As expected, while R6’s poles located between (-1,1) on the real-
axis, C6 acquired complex poles within the unit circle. On the
other hand, U6 had one pole outside the unit-circle, which means
the inverse AR filter H(z) is unstable. This result shows that the
proposed method is useful to constrain the pole locations.

The generated F0 trajectories are shown in Fig. 7. An informal
subjective evaluation showed that higher order AR doesn’t
improve the F0 over the U1. On one hand, the high order

0 0.05 0.1

real axis

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

im
a

g
in

a
ry

 a
x
is

6

(a) Poles of R6

-1 0 1

real axis

-1

-0.5

0

0.5

1

im
a

g
in

a
ry

 a
x
is

6

(b) Poles of C6

-1 0 1

real axis

-1

-0.5

0

0.5

1

im
a

g
 a

x
is

6

(c) Poles of U6

1 250 500 750 1000

Frequency bin (: /1024)

-10

-5

0

5

10

15

20

M
a
g
n
it
u
d
e
 (

d
B

) U6
R6
C6

(d) Frequency response of filters

Fig. 6: Pole locations (marked by ×) and frequency responses of
Hd(z) for F0. Note that the three pairs of poles in (b) locates very
close to each other.

Table 2: Notation of AR-RMDN in Section 4.3. All the networks
used the same configuration as in Section 4.2 except the order and
form of the AR filter for F0 (Eq. means equation).

Order of AR filter
1 2 4 6 Form Constraints
- C2 C4 C6 Eq.(13) Complex poles, stable (Eqs. (19)(20))
- R2 R4 R6 Eq.(11) Real poles, stable (Eq. (12))
U1 - - U6 Eq.(10) Unconstrained

inverse AR with real poles (R6) is just a cascade of multiple
1st order filters, which performed similarly to the 1st order’s
case (U1). On the other hand, the AR with complex roles
(C6) generated F0 with unnatural ripples, which can be clearly
seen from Fig. 7. This can be explained that, as R6 acquires
complex poles, it can enhance the power of certain frequency
components as a resonator. According to the frequency response
in Fig. 7(d), we can see the boosted frequency component near
the 400th frequency bin. For F0 of read speech, the ripple may be
unnecessary. However, this property of AR-RMDN can be used for
modeling the vibrato in singing voice [24].

4.4 Discussion
The extended AR-RMDN allows the inverse AR filter to have

complex poles. However, it also puts strong assumption on the
location of the poles. For example, a filter with more than one real
pole and one pair of complex poles is not supported. Besides, as
the filter’s parameters are learned through back-propagation, the
initial value should be different for different sub-filter. Otherwise,
all sub-filters will acquire the poles at the same location in each
iteration of the training. Currently, we use a random Gaussian
noise to initialize β̂k and α̂k. But it needs further investigation on
the initial value for the parameters.

Because an ideal generative model is expected to generate
natural data by drawing samples from the model, we also tested
AR-RMDN’s performance on this point. The sampling process

5ⓒ 2017 Information Processing Society of Japan

Vol.2017-SLP-115 No.2
2017/2/17



IPSJ SIG Technical Report

100 150 200 250 300 350 400
0

100

200

300

400

F
0

 (
H

z
) NAT

U
1

R
6

C
6

Fig. 7: F0 generated by AR-RMDN with different constraints in Table 2. The x-axis is the frame index and the frame shift is 5 ms. U6 is
not shown as the unstable inverse AR filter generated some very large and divergent F0 values.

was conducted in two steps: first, feature vectors c1:T were
sampled from the model

∏T
t=1 p(ct;Mt); second, acoustic feature

vectors were computed by

o1:T,d = A(d)−1c1:T,d, where d ∈ [1,D]. (21)

However, the generated trajectories were still noisy and not
perceptually convincing. One possible reason is that the AR
model is not powerful enough in reproducing the temporal
correlation by using linear transformation in Equation (21).
Future work will look into the non-linear approach, e.g., moving
the AR model to the hidden layers of the neural network.

4.5 Conclusion
This work first explained the AR-RMDN from the perspective

of signal and filter. Based on the explanation, we found that
the AR filter in a AR-RMDN learns to whiten the modulation
spectrum of the acoustic feature trajectory in the training
stage, and its inverse filter tries to de-whiten the modulation
spectrum of the generated acoustic feature trajectory. This
interpretation on the AR-RMDN shows its difference from
the MS-based post-filtering approach, i.e., while the MS-based
method directly manipulates the whole modulation spectrum
towards the estimated statistics on natural data, the AR filter
processes the data in ‘time’ domain and enhanced the energy
of the low-frequency part of the modulation spectrum. Possibly
due to that difference, the AR-RMDN generated better perceived
speech in our experiments.

Originally, the implemented AR-RMDN can only acquire real
poles for the inverse AR filter. Thus, the second part of this
work extended AR-RMDN so that the inverse AR filter can have
complex poles and be stable. This method simply constrains the
parametric form of the filter’s poles and works with the standard
real-valued neural network. Experiments showed that this method
is able to constrain the pole location accordingly. Although
experiments on modeling F0 didn’t show any improvement when
the complex inverse AR filter is used, this method could be useful
for other types of acoustic data with natural vibrato.

References
[1] Tokuda, K., Nankaku, Y., Toda, T., Zen, H., Yamagishi, J. and Oura,

K.: Speech synthesis based on hidden Markov models, Proceedings of
the IEEE, Vol. 101, No. 5, pp. 1234–1252 (2013).

[2] Ling, Z.-H., Kang, S.-Y., Zen, H., Senior, A., Schuster, M., Qian, X.-
J., Meng, H. M. and Deng, L.: Deep learning for acoustic modeling
in parametric speech generation: A systematic review of existing
techniques and future trends, IEEE Signal Processing Magazine,
Vol. 32, No. 3, pp. 35–52 (2015).

[3] Zen, H., Senior, A. and Schuster, M.: Statistical parametric speech
synthesis using deep neural networks, Proc. ICASSP, pp. 7962–7966

(2013).
[4] Fan, Y., Qian, Y., Xie, F. and Soong, F. K.: TTS Synthesis

with Bidirectional LSTM Based Recurrent Neural Networks, Proc.
INTERSPEECH, pp. 1964–1968 (2014).

[5] Takaki, S. and Yamagishi, J.: A deep auto-encoder based low-
dimensional feature extraction from FFT spectral envelopes for
statistical parametric speech synthesis, Proc. ICASSP, pp. 5535–5539
(2016).

[6] Wang, X., Takaki, S. and Yamagishi, J.: Investigating Very Deep
Highway Networks for Parametric Speech Synthesis, Proc. SSW9, pp.
181–186 (2016).

[7] Zen, H. and Senior, A.: Deep mixture density networks for acoustic
modeling in statistical parametric speech synthesis, Proc. ICASSP, pp.
3844–3848 (2014).

[8] Wang, X., Takaki, S. and Yamagishi, J.: An autoregressive recurrent
mixture density network for parametric speech synthesis, Proc.
ICASSP, p. to appear (2017).

[9] Keiichi, T., , Takayoshi, Y., Takashi, M., Takao, K. and Tadashi,
K.: Speech parameter generation algorithms for HMM-based speech
synthesis, Proc. ICASSP, pp. 936–939 (2000).

[10] Hashimoto, K., Oura, K., Nankaku, Y. and Tokuda, K.: The effect
of neural networks in statistical parametric speech synthesis, Proc.
ICASSP, pp. 4455–4459 (2015).

[11] Zen, H. and Sak, H.: Unidirectional long short-term memory recurrent
neural network with recurrent output layer for low-latency speech
synthesis, Proc. ICASSP, pp. 4470–4474 (2015).

[12] Hashimoto, K., Oura, K., Nankaku, Y. and Tokuda, K.: Trajectory
training considering global variance for speech synthesis based on
neural networks, Proc. ICASSP, pp. 5600–5604 (2016).

[13] Toda, T. and Tokuda, K.: A speech parameter generation algorithm
considering global variance for HMM-based speech synthesis, IEICE
Transactions on Information and Systems, Vol. 90, No. 5, pp. 816–824
(2007).

[14] Takamichi, S., Toda, T., Neubig, G., Sakti, S. and Nakamura, S.: A
postfilter to modify the modulation spectrum in HMM-based speech
synthesis, Proc. ICASSP, pp. 290–294 (2014).

[15] Takamichi, S.: Acoustic modeling and speech parameter generation
for high-quality statistical parametric speech synthesis, PhD Thesis,
Nara Institute of Science and Technology (2016).

[16] Graves, A.: Supervised Sequence Labelling with Recurrent Neural
Networks, PhD Thesis, Technische Universität München (2008).

[17] Bishop, C. M.: Mixture Density Networks, Technical report, Aston
University (2004, http://eprints.aston.ac.uk/373/).

[18] Zen, H., Tokuda, K. and Kitamura, T.: Reformulating the HMM as
a trajectory model by imposing explicit relationships between static
and dynamic feature vector sequences, Computer Speech& Language,
Vol. 21, No. 1, pp. 153–173 (2007).

[19] Shannon, M., Zen, H. and Byrne, W.: Autoregressive models for
statistical parametric speech synthesis, IEEE Transactions on Audio,
Speech, and Language Processing, Vol. 21, No. 3, pp. 587–597
(2013).

[20] King, S. and Karaiskos, V.: The Blizzard Challenge 2011, Proc.
Blizzard Challenge 2011, pp. 1–10 (2011).

[21] Kawahara, H., Masuda-Katsuse, I. and Cheveigne, A. d.:
Restructuring speech representations using a pitch-adaptive time-
frequency smoothing and an instantaneous-frequency-based F0
extraction: Possible role of a repetitive structure in sounds, Speech
Communication, Vol. 27, pp. 187–207 (1999).

[22] HTS Working Group: The English TTS System Flite+HTS engine
(2014).

[23] Weninger, F., Bergmann, J. and Schuller, B.: Introducing CURRENT:
The Munich open-source CUDA recurrent neural network toolkit, The
Journal of Machine Learning Research, Vol. 16, No. 1, pp. 547–551
(2015).

[24] Saitou, T., Goto, M., Unoki, M. and Akagi, M.: Vocal conversion
from speaking voice to singing voice using STRAIGHT, Proc.
INTERSPEECH, pp. 4005–4006 (2007).

6ⓒ 2017 Information Processing Society of Japan

Vol.2017-SLP-115 No.2
2017/2/17


