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Abstract: In eye-tracking-based reading behavior research, gaze sampling errors often negatively affect gaze-to-word
mapping. In this paper, we propose a method for more accurate mapping by first taking adjacent horizontally pro-
gressive fixations as segments, and then classifying the segments into six classes using a random forest classifier. The
segments are then reconstructed based on the classification, and are associated with a document line using a dynamic
programming algorithm. The combination of segment-to-line mapping and transition classification achieved 87% map-
ping accuracy. We also witnessed a reduction of manual annotation time when the mapping was used as an annotation
guiding tool.
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1. Introduction

Reading is an important language-based activity in our daily
life. Eye movements when reading are useful in a variety of re-
search fields such as prediction of language expertise or docu-
ment layout optimization. Eye-trackers can visualize human eye
movements as a consecutive stream data consisting of fixations
and saccades. Fixations are points where readers concentrate
their gaze to see a specific object. Saccades are quick synchro-
nized eye movements between fixations.

To analyze the reading process using gaze data captured by
eye-trackers, we require an accurate mapping between the fixa-
tion points and the corresponding words in the document. How-
ever, it is difficult to achieve such a mapping under the current
tracking environment. One reason for these misplacements is the
systematic error such as limitations in the accuracy of the tracking
equipment, inaccurate and imprecise calibration, and the sponta-
neous head movements of readers. Another reason is complexity
of human eye movements. Basically, most of the horizontally
written text are read by moving eyes from left to right. Our eyes
lie on the texts and move sequentially to progress the reading ac-
tivity. However, eyes also have several other reading behavior
patterns such as return sweep, re-reading, and skipping. Return
sweep occurs when we transition from the end of the current line
to the beginning of the next line. Re-reading occurs mainly when
we can’t understand the sentence. Skipping occurs when we wish
to skip the current reading area or to search the target object from
the text. We can go back if we understand the content, and skip if
the contents is not for us, so that finding the appropriate fixation-
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to-word mapping is difficult. Human manual annotation guaran-
tees a higher mapping quality, but requires considerable human
resources and time.

In this paper, we propose an approach for vertical error cor-
rection as a preparatory step to automatic fixation-to-word map-
pings [15] *1. Our method considers consecutive horizontally pro-
gressive fixations as a sequential reading segment. We focus
on the transitions between segments, and classify them into six
classes. The machine-learning-based classifier is implemented
with features including segment length, saccade angle, and tran-
sition direction. Segments are reconstructed based on the classi-
fication and are associated with the document line using dynamic
programming algorithm.

The concept of sequential reading segments reflects real human
reading behavior, and thus gives us useful high-level information
applicable to pairing up individual fixations and corresponding
words. The classification is used to adjust for the non-linear read-
ing behaviors and to identify which segments correspond to the
same line of text.

Our results show that we achieved 87% of fixation-to-word
mapping accuracy when we combine the segment-to-line map-
ping method with the transition classification. We also confirmed
significant annotation time reduction when our approach is used
as a guiding tool.

2. Related Work

According to Martı́nez-Gómez et al. [9], natural reading that
normally happens in uncontrolled environments is very hard to
process with current equipment, particularly due to the vertical
error. Increasing line spacing to avoid the vertical error dramati-

*1 This work is based on an earlier work: Fixation-to-Word Mapping with
Classification of Saccades, in Proceedings of the ACM International
Conference on Intelligent User Interfaces (IUI ’16), c© ACM, 2016.
http://dx.doi.org/10.1145/2876456.2879481
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cally increases the accuracy of the measurement, but it forces the
subjects to read unnaturally. There have been several recent at-
tempts to address the alignment problem between gaze and text.
Mishra et al. [10] heuristically used the first sequential fixations to
determine the reading line. Although the results showed improve-
ments in fixation re-mapping, this method does not overcome ac-
cumulated systematic errors. Martı́nez-Gómez et al. [9] proposed
a feature-based image-registration method that spatially trans-
forms the image representation of fixations to match the image
representation of the text. This method uses several optimization
strategies to search for the optimal scaling and translation param-
eters. Although this method achieved feasible accuracy, the pre-
cision of the word-level error correction was relatively less. Our
previous study [16] considered sequential consecutive fixations,
inspired by Carl’s [3] dynamic programming-based approach, and
associated sequential fixations with a text line to reduce the ver-
tical misplacement of the gaze position. Although our previous
study obtained better accuracy compared with manual annotation,
it may not perform well in the presence of long-range regressions
or skimming events.

As described in the previous section, eye movement when read-
ing has various kinds of complexities. In order to analyze read-
ing behavior, several classification techniques have been studied.
Biedert et al. [2] proposed a robust approach that distinguishes
whether the fixation is reading or skimming using gaze character-
istics. They considered the forward speed and angularity as fea-
tures for machine learning classification. The methodology em-
ployed in their study is helpful to us in using such effective com-
puting features. Hara et al. [4] carried out a skipping word predic-
tion task on the Dundee corpus [5], a large eye movement dataset.
They choose a conditional random field model and extract a num-
ber of features from gaze and text data. Although the model is
capable of estimating texts that are fixated, re-reading eye move-
ment is removed and never used in their analysis. Nilsson and
Nivre [11] tackled this problem using a machine-learning tech-
nique on the Dundee corpus. They used some of gaze features
like length, frequency class and saccade distance. Kunze et al. [8]
took into account what types of documents a user read solely from
gaze data. They asked users to read several types of documents

Fig. 1 Structural overview of gaze-to-text alignment.

including comics, textbooks, magazines, novels, and newspapers.
They selected angle, direction, and slope as the features and mod-
eled each eye movement. This work was done for the application
of a reading life log which is how many words people read and
what is read by a user in their life. Based on these studies, we
implemented the classifier that classifies the transitions between
consecutive reading segments.

3. Proposed Method

Figure 1 illustrates the overview of our approach. We iden-
tify the text lines by simply extracting the set of Y-coordinates of
each line from the text data. Our method processes gaze and text
data into segments and text lines, and subsequently applies dy-
namic programming to determine the optimal alignment between
the segments and the lines.

Raw gaze data represents the time stream sequences based on
the capturing timing of eye-tracker. Because such gaze data is too
complicated to use directly, we first detect fixations from the raw
gaze stream. We used Dispersion-Threshold Identification (I-DT)
algorithm [13] for detecting fixations from the raw input.

3.1 Segmentation
We convert a series of valid fixation points into sequential read-

ing segments. Although the classification of the reading and
skimming scanpath has been studied in the past [1], these meth-
ods are not directly applicable here, because our objective is to
identify a scanpath that belongs to a single line of text, with back-
ward saccades allowed if they occur on the same line. In order
to satisfy such a requirement, we implement a segment detec-
tion scheme based on the Kimura’s return sweep detection algo-
rithm [6]. Segments are detected when the size of the bounding
box of consecutive translations is above a threshold.

3.2 Classification of Segment Transitions
If a user reads a document from top to bottom with no re-

reading or skipping, the number of sequential reading segments
should agree exactly with the number of lines of text. However,
this will not match the actual number of eye movements, because
re-readings and skippings are bound to occur. To solve this issue,

c© 2017 Information Processing Society of Japan
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Fig. 2 Transition types between segments.

we focus on the transition between consecutive segments.
We first categorized the transitions into the six types described

in Fig. 2, which we defined empirically based on the observed
gaze patterns, and then constructed a classifier that labels the tran-
sitions. The features we employed for modeling the classifier are
based on previous studies [2], [7]. The features are mainly gaze-,
segment-, and transition-oriented geometrical characteristics, and
not only extracted from a transition that is focused on, but also
from two transitions before and after the current one.
1. Return Sweep

Return Sweep is the right-to-left horizontal eye movement
that moves from the end of one line to the beginning of the
next.

2. Progressing
Progressing is the left-to-right horizontal eye movement
used to read the next area of interest. This occurs when seg-
ments are divided on one line.

3. Short Re-reading
Short Re-reading refers to re-reading on the same line. This
occurs when the user cannot adequately understand the sen-
tence, and so reads again from the beginning or halfway
along the same line, or when the user’s saccade exceeds its
expected position and goes backward.

4. Long Re-reading
Long Re-reading refers to multi-line re-reading. This is char-
acterized by upward eye movement with the possibility of
going back continuously. Long Re-reading occurs when the
reader wishes to refer to a sentence, phrase, or word that has
already been read.

5. Skipping
Skipping is when the next landing target is ignored and the
gaze jumps to a new position. In particular, we observe this
when users change the line they are reading, even though
they have not read all of the current line.

6. Resuming
Resuming occurs when the user returns to the latest reading
point following a period of Long Re-reading or Skipping.

3.3 Segment Reconstruction
After the classification of transitions, the segments are rean-

alyzed. Each transition represents either a breaking point or a
concatenation point of the two segments, as shown in Fig. 3. The
general procedure of the algorithm consists of two steps: 1) divide
or concatenate segments based on the transition label, and 2) sep-
arately re-map the re-reading or skipping segments. If the transi-
tion is a Return Sweep, the segments are divided. If the transition

Fig. 3 Segment re-construction based on transition types.

indicates Progressing or Short Re-reading, then the segments are
concatenated. In the case of Long Re-reading or Skipping, the
following segment is temporarily stored. If Resuming is detected
before the next Return Sweep, the preceding segment is concate-
nated with the following segments of Resuming, otherwise the
previous segment is not concatenated to any other segment. Af-
ter the division or concatenation, stored segments are mapped to
their spatially closest preceding segment.

3.4 Segment-to-line Mapping
After reconstruction, the segments are used to find appropriate

lines in the document. We extended both the similarity function
and the penalty score of our previous study [16] to enhance the
accuracy and robustness.

Let S = {s1, s2, · · · , sN} be a sequence of reading segments,
and L = {l1, l2, · · · , lM} be the lines of text. Suppose the mapping
functionσ assigns a text line to the reading segment: i.e., ∀si ∈ S ,
∃l j ∈ L such that σ(si) = l j. Our segment-to-line alignment prob-
lem can then be formulated as the problem of finding the optimal
σ between S and L.

The optimal alignment is found by completing a scoring matrix
with N+1 columns and M+1 rows. To find the maximum score of
each cell D(i, j), we select the maximum score from the assumed
values from adding the match or mismatch score to the diagonal
value D(i − 1, j − 1), or the insertion or deletion gap score to the
left-hand cell D(i, j− 1) and top cell D(i− 1, j). These values are
formulated as follows:

D(i, j) = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D(i − 1, j − 1) + Sim(si, l j)
D(i, j − 1) + inPen( j)
D(i − 1, j) + delPen

(1)

where Sim(sn, lm) represents a similarity score that measures the
matching degree between the segment and the line, and inPen,
delPen are gap penalties for insertion (adding a gap between
lines) and deletion (adding a gap between segments), respectively.
After filling the matrix, the optimal alignment is obtained by fol-
lowing the immediate predecessors from the last cell (N,M) to
the original cell (0, 0).

Whether a segment represents a match or mismatch is deter-
mined by comparing the similarity between a segment and a
line. Given a reading segment si, the set of neighboring text
lines, denoted as Neighbor(si), is defined based on the average Y-
coordinate of that segment. In our case, we consider three neigh-
bors: 1) the nearest line to si; 2) one line above the nearest line;
and 3) one line below the nearest line.

c© 2017 Information Processing Society of Japan
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(si, l j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

match abs
(
1 − Len(si)

Len(l j)

)
< α

∧l j ∈ Neighbor(si)
mismatch otherwise

(2)

We assume that the segment length should be roughly equal to
the corresponding line length. The similarity function Sim(si, l j)
is then formulated as:

Sim(si, l j) = z · Len(si)
Len(l j)

· MedLen(L)
Len(l j)

, (3)

where z = 1 for a match and z = −1 for a mismatch. Len(si) and
Len(l j) represent the length of a segment and text line, respec-
tively. MedLen(L) is the median of the entire text line, and the
parameter α determines whether the segment-to-line alignment
is a match or mismatch. In our experiments, we set α = 0.4.
MedLen(L) is used to place extra weight on shorter lines at the
end of a paragraph. This is motivated by our observation that
such lines often serve as strong alignment clues.

We set inPen( j) = 0 if the segment represents a match with the
line, and set inPen( j) to the segment id j if it represents a mis-
match. This is mainly because we consider segment insertions to
be less important if we have a match, whereas insertions may be
critical if there is a mismatch. That heuristic using the segment id
is based on the consideration that the more users proceed to read,
the more segment insertions, such as re-readings and skippings,
are likely to occur. We empirically set delPen to a high value of
β = 100, because skipping lines is unnatural during sequential
reading.

4. Experiments

We used a part of the dataset in Ref. [9] because it features nat-
ural reading activity. Eleven participants read three English doc-
uments each, for the total of 33 gaze datasets. The participants
were a mix of native and non-native speakers. The Tobii TX300,
a screen-based remote eye-tracker, was used with default settings
throughout the experiments. According to Ref. [9], participants
read the text naturally, and did not use any equipment to fix their
head position.

4.1 Experiment 1: Classification Performance
To assess the classification performance, a human annotator

determined the label for each transition. The experiment was
conducted under leave-one-out cross-validation. A random for-
est classifier was adopted, with optimal parameters found by a
grid search.

Table 1 represents the result of the manual labeling, showing
ratios of six transitions. There are 1,606 transitions in the 33 gaze
dataset. We confirmed that the Return Sweep has about 58.5% of

Table 1 Transition ratio and classification performance.

Label Num. Ratio Precision Recall F1-score
Return Sweep 940 0.585 0.85 0.97 0.91
Progressing 99 0.062 0.67 0.66 0.66
Short Re-reading 133 0.083 0.68 0.35 0.47
Long Re-reading 180 0.112 0.77 0.85 0.81
Skipping 52 0.032 0.46 0.23 0.31
Resuming 202 0.126 0.64 0.46 0.53

1,606 1 0.78 0.80 0.78

all transitions. The Progressing and Skipping barely appear be-
cause Progressing is false positive activity of the segmentation,
it should be a piece of the sequential reading segment, and Skip-

ping is a rare event when people naturally read a document from
top to bottom. The Short Re-reading and Long Re-reading tran-
sitions accounted for a combined 19%, which is slightly higher
than the 10–15% suggested by Rayner’s report [12] due to fre-
quent re-reading by some of our non-native participants.

Table 1 also presents the classification report in terms of the
precision, recall, and F1-score of each label. An average F1-score
of 0.78 (and 84% accuracy) was achieved by the classifier, with
the Return Sweep and Long Re-reading transitions particularly
well characterized. Although some of the labels showed higher
error rates, the impact to the subsequent mapping step is limited,
as these easily misclassified transition categories are significantly
outnumbered by the more clearly recognizable ones. However,
it should be emphasized that our classifier still has room for im-
provement.

Figure 4 shows the confusion matrix of our classifier. As
shown by the red dot circle in Fig. 4, Short Re-reading and Re-

suming have a higher tendency of wrong prediction. They are
mostly mislabeled as Return Sweeps. These results show that
Short Re-reading and Resuming are geometrically similar to a
Return Sweep. Indeed, eye movements of these reading behav-
iors include long right to left movement. Further investigation is
needed for more robust and accurate classification.

Table 2 lists the 10 features with largest impact to our classi-
fier. According to Refs. [2] and [7], saccade angularity and its di-
rection are useful features for forecasting reading behavior. Our
results confirmed similar trends. Additionally, our results show
that the transition distance of X coordinate is the most character-

Fig. 4 Actual and predicted classifications of transitions.

Table 2 Contributing features.

Rank Feature Name
1 X-distance of Transition
2 Saccade Angle
3 Direction of Transition
4 Short Reread Sign
5 Y-distance of Re-reading
6 Length of Previous Segment
7 Difference of Nearest Text Line Between Segments
8 Euclidean Distance of Transition
9 Length of Previous Segment[-1:]
10 X-distance Between Segments

c© 2017 Information Processing Society of Japan
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Table 3 Performance of fixation-to-word mapping.

Document 1 Document 2 Document 3

User Baseline DP
DP +

Classifier Baseline DP
DP +

Classifier Baseline DP
DP +

Classifier
A 55.2 61.3 92.4 75.9 94.6 96.8 50.8 95.5 95.8
B 69.3 65.8 91.7 57.2 60.8 86.9 58.3 83.5 84.8
C 88.1 19.7 85.2 79.2 90.1 92.9 76.3 57.2 92.4
D 75.1 44.6 73.1 84.4 74.4 93.8 53.4 41.0 68.2
E 60.3 84.3 86.9 56.9 64.9 78.7 57.6 64.4 91.7
F 77.0 63.0 80.2 78.7 93.4 94.0 63.3 90.6 94.9
G 62.1 96.7 85.1 71.8 25.1 92.9 78.0 94.6 94.9
H 56.5 90.9 90.6 59.5 91.1 92.4 77.4 95.5 96.0
I 78.4 86.2 84.7 85.2 96.5 92.4 68.3 93.9 94.6
J 63.7 96.2 96.2 60.4 11.8 44.4 71.9 55.3 90.7
K 80.5 57.1 70.4 72.8 85.5 86.1 74.2 62.2 80.8

average 69.0 72.3 87.0

istic feature. Further improvement may be possible if we use not
only geometrical features, but also linguistic or temporal features.

4.2 Experiment 2: Accuracy of Fixation-to-Word Mapping
The golden fixation-to-word mapping dataset is created using

FixFix [14]. We employed four annotators, one to map all of gaze
data and the other three to map gaze data corresponding to each
document. We confirmed that 84.4% of mappings agreed on av-
erage: evaluation measure of its agreement is ratio of exactly
matching of annotators’ fixation-to-word mappings in the total
number of fixations.

As mentioned above, manually creating the fixation-to-word
mapping guarantees high quality at the expense of the human an-
notation load. To assess the reliability of the mapping method, we
compared the differences in offset word position with the manual
mapping. As an evaluation index, Accuracy(%) was calculated as
Correctly Mapped Fixations/Total Fixations × 100.

We compared three mapping methods. Baseline is the naı̈ve
mapping produced by each fixation immediately shifting to the
closest word. DP uses the dynamic programming-based segment-
to-line mapping (described in our previous work [16]) as a pre-
step to the naı̈ve mapping. DP+Classifier uses our proposed map-
ping technique with transition classification as a pre-step to naı̈ve
mapping.

Table 3 compares the accuracy of each mapping method. To
assess the reliability of the automatic mapping method, we com-
pared the differences in offset word position with the manual
mapping. While the mapping accuracy of DP only, without tran-
sition classification, is 72.3%, our method DP+Classifier exhibits
a significant improvement, with an average accuracy of 87.0%.
These results confirmed the effectiveness of using transition clas-
sification. Although we achieved reasonably high mapping ac-
curacy, in several cases our method was less effective than the
naı̈ve method (C, D and K in document 1 and J in document 2).
A detailed examination suggests these errors mainly occur when
readers re-read a large portion of text or do not read the whole
document.

Figure 5 shows an example of the captured gaze and read-
ing text data. It has been observed that the complexity of
fixation-to-word mapping is increased by noisy tracking envi-
ronments such as narrow line spacing, low-precision sampling,
or re-reading/skipping activities. Figure 6 illustrates one of the

Fig. 5 Example of raw fixation data (Doc 2, User H).

successful mapping cases. The DP+Classifier fixation-to-word
mapping performance is 92.4% (see Table 3), a significant im-
provement over 59.5% of Baseline mapping. Our method seems
to give a reliable estimation compared with the original position,
because the shorter reading segments shift to the shorter reading
line.

4.3 Experiment 3: Measurement of Annotation Time
As a supplementary experiment, we utilized our automatically

created mapping results as a guiding tool for the manual anno-
tation. We have implemented the guiding function on the web-
based manual annotation tool FixFix [14], which provides an
easy-to-use interface for adjusting the fixation positions. Figure 7
shows the use case of the function. This function enables the link-
ing of both original and aligned gaze fixations at the same time
stamps. We asked six participants to annotate four gaze datasets,
a smaller version of text in the interest of time, with and without
the function. Each participant conducted eight annotations in to-
tal, then the annotation order is randomized. In order to assess
the efficiency, we measured both annotation time reduction and
annotation agreement.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 6 Example of mapped fixation data (Doc 2, User H).

Fig. 7 Application use case: guiding tool for the manual annotation.

Table 4 Time reduction ratio of manual annotation.

Participant a b c d e f average
Ratio 6.3 5.9 10.4 12.7 8.4 14.6 9.7

Table 5 Annotation agreement between annotators.

Doc : User 2 : G 2 : H 2 : I 2 : K average
Without guidance 84.2 82.1 89.7 89.7 86.4
With guidance 90.5 90.1 92.6 90.9 91.2

Table 4 shows time reduction from six participants who con-
ducted four gaze annotations. Time reduction ratio is calculated
as 1 − Time with guidance/Time without guidance. We observed
an 9.7% reduction in annotation time. Table 5 shows annotation
agreement of the six participants with or without the function. We
confirm an increase in agreement by using the guiding function.
Since this experiment is still in its preliminary stage due to the
lack of sufficient data quantity, it is difficult to state the signifi-
cance of the result. However, it suggests the potential of using
our mapping method to assist with the annotation task, and fur-
ther discussion for future works.

5. Conclusion

In this paper, we have proposed an alignment methodology
that reduces the vertical misplacement of noisy gaze data. Our
method regards horizontally progressing temporally consecutive
fixations as a sequential reading segment. We focus on the tran-
sition between the segments, and classify it into six classes.
Machine-learning-based classifier characterizes the transition by
both transition- and fixation- oriented features such as segment
length, saccade angle, and transition direction. Segments are re-
constructed based on classified labels, and associated with a doc-

ument line. The dynamic programming is applied to determine
the best global alignment across the entire stream of gaze data
samples. The cost function is based on the length of reading seg-
ments and document text lines to determine whether a reading
line matches a document line. Our experiments demonstrate that
the proposed method, as a preparatory step, yields 87% accuracy
in naı̈ve distance-based fixation-to-word mapping (up from 69%
of pure naı̈ve method, and 72.3% of the previous method with-
out transition classification [16]). Based on this result, we believe
our method to be a potentially valuable instrument in the process-
ing of gaze data from reading activities. We also confirmed that
manual annotation time can be reduced by using our approach
as a guiding tool. Future work for this topic involves refining
our method to make it more robust to the presence of frequent
and large regressions in the dataset. Moreover, we will consider
horizontal errors, to produce better overall fixation-to-word map-
pings. It can be said that our method provides sufficiently good
accuracy to warrant future analysis.
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