
IPSJ SIG Technical Report

 1

A Lost Sensor Data Recovery Scheme
 for Faster Data Streams Merging

EI KHAING WIN†1 TOMOKI YOSHIHISA†1 YOSHIMASA ISHI†2

TOMOYA KAWAKAMI†3 YUUICHI TERANISHI†1,4 SHINJI SHIMOJO†1

Abstract: Due to the recent development of sensing technologies, streaming servers deliver sensor data streams such as video
or temperature data streams to many clients. In simple delivery scheme, the servers deliver streams to each client one by one
though the data themselves are the same. When a client encounters data loss because of network disconnections or access
failures, the server delivers a recovery stream to the client. As the number of the delivering streams increases, the server’s
management load such as the computational power, memory usage, communication traffic, etc. increases. To reduce the number
of the delivering streams, in this paper, we propose a lost sensor data recovery scheme for faster data streams merging. Our
proposed scheme reduces the number of the streams managed by the server by merging some of them. To merge streams faster,
the server removes some data from the recovery streams. From our evaluations, we confirmed that our proposed scheme can
faster reduce the number of the streams.

Keywords: sensor data stream delivery, IoT (Internet Of Things), streaming and distribution, sensor network

1. Introduction

 Due to the recent proliferation of sensors such as cameras or
temperature sensors, sensor data stream delivery technology
takes an important role in various applications. For example,
some smartphones request a live camera stream to the server and
the clients check the current trip destination situations. In this
case, the servers deliver video data streams to many clients. In
simple delivery scheme, the servers deliver streams to each
client one by one though the data themselves are the same.
Therefore, when a client encounters data loss, the server delivers
a new recovery stream to the client. Examples follow:
l A client requests a live camera stream to show the current

situation of the area covered by the camera. When the
client loses its network connection because
electromagnetic waves can not reach to the client, the
client loses some data in the stream. In this case, the client
requests the lost data for the recovery to the server.

l Some smartphones receive a real time temperature data
stream to check the climate of their travel destinations. In
cases that one of them moves to underground, it loses
some of the temperature data since the client cannot catch
electromagnetic waves in underground. So, the client
requests the recovery stream. In this case, the server
delivers different streams to each client one by one though
the data themselves are the same.

 In the above cases, the server delivers a new stream to the
client for the recovery. As the number of the delivering streams
increases, the server’s management load such as the
computational power, memory usage, communication traffic, etc.
increases. The servers’ load can be relieved by reducing the
number of streams. Therefore, some methods to reduce the
number of the streams have been proposed in ([1]-[3]). Most of

 †1 Osaka University
 †2 PIAX inc Osaka
 †3 Nara Institute of Science and Technology
 †4 National Institute of Information and Communications Technology
 †3 Nara Institute of Science and Technology
 †4 National Institute of Information and Communications Technology

them adopt the stream merge technique, one of the major
techniques to reduce the number of streams. In the stream merge
technique, some streams that include the same data are merged
to one stream. The clients receive and buffer the merged stream
and use the data included in the merged stream when needed.
Therefore, the key issue for lost data recovery in stream delivery
is how to merge some streams faster. Suppose the case when the
server delivers a same stream to some clients and one of them
encounters data loss. The client requests a recovery stream to
the server and the server delivers the recovery stream to the
client. Although the recovery stream lags behind the original
stream for the other clients that do not encounter data loss, the
data included in the recovery stream and the original stream are
the same. So, by merging the recovery streams to the original
stream, the number of the streams can be reduced.
 Hence, in this paper, we propose a lost sensor data recovery
scheme for faster data streams merging. In our proposed scheme,
the server prepares a recovery stream starting with the next
sensor data from the last data the client received before the
network disconnection. The number of recovery streams is large
when many clients request recovery streams. Instead of
continuously delivering the recovery streams, the server
eliminates some sensor data from recovery streams so that the
recovery streams quickly catch up with the original stream. In
this way, our proposed scheme reduces the number of streams
using faster data streams merging. The number of eliminated
data is a parameter correlated to the client’s desired catch-up
time with the original stream. From our evaluations, we confirm
that our proposed sensor data recovery scheme can faster reduce
the number of the streams.
 The paper is organized as follows. Section II describes related
works. In Section III, our assumed system model is shown
firstly. Then, simple and proposed schemes are explained in
detail. The paper shows evaluation and performance comparison
in Section IV. Finally, we conclude the paper in Section V.

ⓒ 2017 Information Processing Society of Japan

Vol.2017-DPS-169 No.9
2017/1/20

IPSJ SIG Technical Report

 2

2. Related Works

 There are some methods to reduce the server’s loads for
sensor data stream delivery. The servers’ loads for sensor data
stream delivery are based on the number of I/O operations. So,
some methods reduce the servers’ loads by reducing the I/O
operations. In [1], batch stream processing system finding I/O
and computation redundancies for optimizations was proposed.
Its effectiveness how I/O operations are reduced was evaluated
by query processing system Comet. However, the system
focuses only on the computational processing with I/O
operations. The system does not adopt the stream merge
technique adopted in our proposed scheme.
 In [2], two stream buffers handling methods were proposed
for graphics processing units stream-based computing platform.
In the first method, stream buffer addresses are stored in
statically allocated memory called pinned memory. Therefore,
graphic processing units (GPU) needs to access those addresses
to perform stream-based computing. In the second method,
buffer addresses are stored on shared memory of (GPU). In this
way, GPU avoids overhead for pinned memory access.
 In [3], optimization algorithm was proposed for distributed
stream delivery. Instead of manually tuning the batch size to
reduce main memory consumption and degree of parallelism for
each node, optimal values are calculated automatically in the
system. As optimal batch size and degree of parallelism is used
for distributed stream delivery, throughput is achieved with
optimization time that is less than one second.
 There are some methods to recover data loss for sensor data
stream delivery. To reduce the servers’ load such as
bandwidth, and I/O overhead, merging schemes [4, 5, 6, 7] have
been proposed for video-on-demand servers. These schemes are
called patching, dynamic skyscraper, and piggybacking.
However, these schemes do not consider the clients’ desired
catch-up time with the earlier stream or real-time sensor data
stream and there is no such scheme.
 The main difference between the conventional methods and
our proposed method is stream merging focusing on recovery
streams. This leads faster reduction of the number of streams.

3. Proposed Method

 In this section, we firstly describe our assumed system model.
Then, lost sensor data delivery in simple scheme and proposed
scheme is also explained in detail.

3.1 Assumed System Model
 Fig. 1 shows our assumed system model. For sensor data
stream delivery, server has three components: sensor data
obtainer, sensor database and sensor data stream generator.
Firstly, sensors sense data from the environment and then
forward them to sensor data obtainer. After sensor data obtainer
obtains the sensed data, it stores them in sensor database. The
task of sensor data stream generator is the generation of new
streams for loss sensor data recovery and dropping of some
streams after successful merging. In Fig. 1, we assume the
data rate of stream delivery is 30 frames per second and the

Fig. 1. Our assumed system model

Fig. 2. An example for the simple scheme

Table 1. The number of the streams in the simple scheme

 1s 2s 3s 4s 5s

Server 30 [fps] 30 [fps] 30 [fps] 30 [fps] 30 [fps]

Client1 30 [fps] 30 [fps] 30 [fps] 30 [fps] 30 [fps]

Client2 (loss) 40 [fps] 40 [fps] 40 [fps] 30 [fps]

Streams 1 2 2 2 1

server delivers some streams like sensor data streams 1 and 2.
For simplicity, the latency for delivering data from the server to
the clients is ignored in our assumed model.

3.2 Simple Scheme
 In this section, we explain a simple scheme for sensor data
stream delivery. In the simple scheme, lost sensor data
retransmission is performed sequentially from the beginning
point of data loss with higher frame rate.
 Fig. 2 shows sensor data stream delivery by assuming that
the server delivers data with 3 frames per second rate. Client2
encounters network disconnection at the second delivery time.
It starts receiving the recovery stream at the third delivery time.
In this simple scheme, the server delivers new recovery stream
with higher frame rate for Client2 to reduce retransmission
times until it catches up with the original stream.
 Based on our assumed system model, the number of the data
stream in simple scheme is shown in Table 1. Suppose the case

ⓒ 2017 Information Processing Society of Japan

Vol.2017-DPS-169 No.9
2017/1/20

IPSJ SIG Technical Report

 3

Fig. 3. The idea of our proposed scheme

Table 2. The number of the streams in our proposed scheme

 1s 2s 3s 4s 5s

Server 30 [fps] 30 [fps] 30 [fps] 30 [fps] 30 [fps]

Client1 30 [fps] 30 [fps] 30 [fps] 30 [fps] 30 [fps]

Client2 (loss) 20 [fps] 20 [fps] 30 [fps] 30 [fps]

Streams 1 2 2 1 1

that Client2 encounters network disconnection for the first 30
frames. The recovery stream includes data for missing 30 frames.
The server sends the recovery stream with faster frame rate (40
frames per second) so that the recovery stream approaches to the
original stream by 10 frames per second. That rate (40 frames
per second) continues as the server delivers the recovery stream.
 As a result, there are two streams for the server to deliver the
original stream to Client1 and the recovery stream to Client2.
The total number of the streams delivered by the server is
(1+2+2+2+1=8). When there are so many clients requesting
different lost data, then it will result large number of data
streams for server. Thus, the server's load increases as the
number of the streams increases.

3.3 Proposed Scheme
 In our proposed scheme, the server delivers the recovery
streams according to the timestamps at which the clients
received the last sensor data. In addition to redundant recovery
streams avoidance, the server eliminates some lost sensor data
to merge recovery streams faster. In this way, recovery streams
quickly catch up with the original stream. Here, the original
streams mean the sensor data streams that the clients without
encountering data losses receive. When the recovery streams
catch up with the original stream, the server can deliver the
same original stream to the clients that were receiving the lost
sensor data. Therefore, the server does not need to generate the
recovery stream and the number of the streams is reduced.
 Fig. 3 shows the situation in which the proposed scheme uses
lower sensor data delivery rate by eliminating some sensor data.
If the server delivers the lost sensor data with the data rate of 20
frames per second that is the reduced rate of 45 frames, the

Fig. 4. Parameter values for the simple scheme

recovery stream approaches to the original stream by 15 frames
per second. So, the recovery stream catches up with the
original stream after 2 [s] recovery duration. It is shown in
Table 2.
 The quantity the server eliminates the data from the recovery
stream is a parameter and depends on the importance of the
data. As the eliminated data increases, the recovery stream can
faster catch up with the original stream. But, the quantity of the
lost sensor data that the clients obtained decreases.

3.4 Calculating New Delivery Rate for Recovery Stream
The idea of our proposed scheme is shown in Fig. 3. According
to the client’s preferred time to catch up with the original stream,
server calculates the sensor data delivery rate, NR for recovery
streams. The delivery rate will vary according to client’s desired
catch-up time.

NR = (Ts−Tc+T −1)R
T

+ L

Where
NR: new data delivery rate for recovery stream
Ts: the timestamp of the last data that the server delivers
Tc: the timestamp of the last data that each client
receives
R: normal data delivery rate
T: catch-up time desired by the client from the current
time
L: latency for data delivery

 The situation of NR calculation is shown in Fig. 4. Suppose
the case that the server delivers the frames with data rate of 3
[fps]. The current server timestamp is 2 (Ts=2). The client
encounters network disconnection at the beginning of the
original stream. Therefore, there are no received frames (Tc=0).
The client wants to catch up with the original stream after 2 [s]
recovery duration (T=2). By using the NR formula, new frame
rate is 4.5 [fps]. However, sensor data delivery rate (5 [fps]) is
used for the recovery stream. Stream merging point begins at the
Time4 that is 2 [s] from the client’s recovery time. As delivery
rate value is increased from 4.5 to 5, at the last time before
merging point, sensor data delivery rate is reduced to (4 [fps]).
 To decide whether delivery rate should be reduced or not, it is
necessary to check whether the last frame number for the loss

ⓒ 2017 Information Processing Society of Japan

Vol.2017-DPS-169 No.9
2017/1/20

IPSJ SIG Technical Report

 4

Fig. 5. Parameter values for a higher frame rate

encountered clients exceeds the server’s last frame number or
not.

3.5 Reduced Frame Rate and Recovery Ratio
 Firstly, the amount of eliminated (skipped) frames per one
frame fetching SM is calculated using new data delivery rate for
recovery stream. Then, reduced frame rate RNR can be
calculated using NR and SM values. The formulas for
calculating SM and RNR are as follows:

SM =
NR
R

Where
SM: eliminated frames per one frame fetching

RNR = NR
SM

Where
RNR: reduced frame rate

 Instead of higher frame rate, NR for recovery streams
delivery, reduced frame rate is used in our proposed scheme.
Stream delivery using reduced frame rate is shown in Fig. 5.
For simplicity, the latency for stream delivery from server to
client (L) is eliminated in calculation. In comparison with Fig.
4, the server delivers lost data stream using 2 [fps] for Time2
and Time3 using skip amount value SM=2. Moreover, recovery
ratio and distortion ratio can be calculated as follows:

RR = RNR
NR

DR = (NR− RNR)
NR

Where
RR: recovery ratio
DR: distortion ratio

 An example of higher frame rate is shown in Fig. 5. In the
figure, the recovery percentage will be 44% as the ratio of
RNR=2 and NR=4.5 is 0.44:1. Distortion percentage will be 56%
because the ratio of NR-RNR=2.5 and NR=4.5 gives 0.56:1.
 The server can deliver the recovery streams using three

different delivery rates: the faster rate (FR) which is higher than
the original stream delivery rate, the same rate (SR) with the
original delivery rate, and the variable rate which is calculated
depending on the client’s desired catch-up time and the amount
of lost data that the client missed.

3.6 Merits and Demerits
 Our proposed method can faster reduce the number of the
streams for lost sensor data stream delivery. One of the main
merits of the method is the server's load reduction. To make the
stream for lost data catch up with the original stream, the server
eliminates some sensor data from missing data.
 One of the main demerits of the method is that the clients lack
some data. But, the number of the eliminated data is a parameter
for our proposed method and this is not a large problem. Clients
may have different criteria for determining what is important
and interesting. Depending on the clients’ preferences, the same
data may have different importance levels. For some clients, not
all sensor data may be useful or important. For example, some
clients focus on less communication traffic while others prefers
to better data quality.

4. Evaluation and Performance Comparison

 In this section, we explain the simulation evaluations for our
proposed scheme. Total simulation time is 100 [msec] and client
arrival rate is 2.
 For simple scheme, the recovery streams have the delivery
rate of 60. For proposed scheme, the recovery streams are
delivered using three different lost sensor data delivery rates: the
faster rate (FR=60 [fps]), the same rate (SR=30 [fps]) and the
variable rate (VR) which is the reduced frame rate obtained
using catch-up time (1 [s]).

4.1 Simulation for the Cases with Constant Rate
Disconnection
 First, we assume that some clients who arrive later than the
original stream delivery time encounter data loss. In the
simulation, 25%, 50%, 75%, or 100% of all late arrival clients
become data loss encountered clients. For each case, a client
arriving earlier encounters data loss earlier.
 The amount of lost sensor data is proportional to the duration
for the loss of the network connection. When the loss duration is
1 [s], the lost sensor data amount is 30 frames. If loss duration is
2 [s], then the lost sensor data amount is 60 frames. The loss
duration is defined as the subtracted value from client arrival
time to original stream delivery time. For example, the client
who arrives after 2 [s] from the beginning time of the original
stream will have 2 [s] loss duration. All data loss encountered
clients disconnect the system at a time after starting recovery.
We use the term disconnection time to refer to this time. The
same value with loss duration time is assigned for disconnection
time. For example, the client who arrives after 2 s from the
beginning time of the original stream will disconnect the system
at 2 [s] after starting the recovery stream delivery.

ⓒ 2017 Information Processing Society of Japan

Vol.2017-DPS-169 No.9
2017/1/20

IPSJ SIG Technical Report

 5

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

30 300 600 900 1200 1500 1800 2100 2400 2700 3000

N
u
m
b
e
r

o
f

S
t
r
e
a
m
s

Frame Number

Simple Scheme
Proposed Scheme (FR)
Proposed Scheme (SR)
Proposed Scheme (VR)

Fig. 6. The number of the streams and the frame number

 10

 20

 30

 40

 50

 60

25% 50% 75% 100%

M
a
x
i
m
u
m

N
u
m
b
e
r

o
f

S
t
r
e
a
m
s

Disconnection Ratio

Simple Scheme
Proposed Scheme (FR)
Proposed Scheme (SR)
Proposed Scheme (VR)

Fig. 7. The maximum number of the streams and the disconnection
ratio

4.1.1 Number of Streams
 Simple scheme and proposed scheme are compared in terms
of the number of streams and the maximum number of streams.
Fig. 6 shows the number of streams required by the server. To
show the easily understandable evaluation result, we show the
result only for the case that 25% of all later arrival clients
encounters data losses. In the figure, the horizontal axis is the
frame number. This corresponds to the time and the duration for
one frame is 1/30 [s]. The vertical axis is the number of the
streams that the server delivers for each time. From the figure,
we can see that the number of the stream increases in the early
stage of the simulation and decreases after that. This is because
25% of earlier arrival clients encounter data losses. However,
the number of the streams becomes less after those clients catch
up with the original stream or disconnect the system.
4.1.2 Maximum Number of Streams
 The maximum number of the streams for different
percentages 25%, 50%, 75%, or 100% is shown in Fig. 7. The
horizontal axis is the disconnection ratio and the vertical axis is
the maximum number of the streams. If there are more data
loss encountered clients, the maximum number of the streams

 10

 20

 30

 40

 50

 60

30 90 270 450 630 810 990 1170 1350 1530 1710 1890 2070 2250 2430 2610 2790 2970 3000

N
u
m
b
e
r

o
f

S
t
r
e
a
m
s

Frame Number

Simple Scheme
Proposed Scheme (FR)
Proposed Scheme (SR)
Proposed Scheme (VR)

Fig. 8. The number of the streams and the frame number
(disconnection time is 2 [s])

 10

 20

 30

 40

 50

 60

30 90 270 450 630 810 990 1170 1350 1530 1710 1890 2070 2250 2430 2610 2790 2970 3000

N
u
m
b
e
r

o
f

S
t
r
e
a
m
s

Frame Number

Simple Scheme
Proposed Scheme (FR)
Proposed Scheme (SR)
Proposed Scheme (VR)

Fig. 9. The number of the streams and the frame number
(disconnection time is 3 [s])

becomes larger.
 Simulation results show that the number of the streams in
our proposed scheme is less than that of the simple scheme.
Our proposed scheme reduces the maximum number of the
streams by providing faster stream merging.

4.2 Simulation for the Cases with Constant Time
Disconnection
 Next, we assume all clients who arrive after 1 [s] from the
start time of the original stream delivery encounter data loss.
 The loss duration is the subtracted value from client arrival
time to the original stream delivery time. If the client arrives
after 2 [s] from the beginning time of the original stream, then it
will have 2 [s] loss duration.
 In this simulation, some of all data loss encountered clients
disconnects the system and assume 25%, 50%, 75%, or 100% of
all data loss encountered clients disconnect the system. Different
from the previous simulation, the disconnection time is constant
in this simulation. For example, 25%, 50%, 75%, or 100% of all
data loss encountered clients disconnect the system at 2 [s] after
starting delivering the recovery stream.

ⓒ 2017 Information Processing Society of Japan

Vol.2017-DPS-169 No.9
2017/1/20

IPSJ SIG Technical Report

 6

 10

 20

 30

 40

 50

 60

25% 50% 75% 100%

M
a
x
i
m
u
m

N
u
m
b
e
r

o
f

S
t
r
e
a
m
s

Disconnection Ratio

Simple Scheme
Proposed Scheme (FR)
Proposed Scheme (SR)
Proposed Scheme (VR)

Fig. 10. The maximum number of the streams and the disconnection
ratio (disconnection time 2 [s])

 10

 20

 30

 40

 50

 60

25% 50% 75% 100%

M
a
x
i
m
u
m

N
u
m
b
e
r

o
f

S
t
r
e
a
m
s

Disconnection Ratio

Simple Scheme
Proposed Scheme (FR)
Proposed Scheme (SR)
Proposed Scheme (VR)

Fig. 11. The maximum number of the streams and the disconnection
ratio (disconnection time 3 [s])

4.2.1 Number of Streams
 The number of the streams for this case is shown in Fig. 8.
The horizontal axis is the frame number and the vertical axis is
the number of the streams. From the figure, we can see that the
number of the streams increases as the time proceeds since the
number of the clients increases. However, the increasing rate
differs based on the delivery rate of simple scheme and
proposed scheme. The simple scheme gives the largest number
of the streams as the server delivers lost data continuously. The
simple scheme and SR may have the same number of the
streams although SR is lower than delivery rate of the simple
scheme. This is because the server delivers some lost data but
not for all in SR. FR gives the number of the streams lower than
that of SR and simple scheme because the server not only
delivers lost data with faster frame rate but also eliminates some
data. VR gives the smallest number of the streams. This is
because VR focuses on the client’s desired catch-up time. If the
catch-up time is short, data delivery rate will be high. If the
catch-up time is long, data delivery rate will be low. In this
simulation, FR has higher number of the streams because VR
uses short catch-up time.

 For the case when the disconnection ratio is 25% and
disconnection time 3 [s], the number of the streams required by
the server is shown in Fig. 9. In the simple scheme, the server
delivers more streams than that of Fig. 8 since the clients’
disconnection time is longer. Other features are the same reason
as that for Fig. 8.
4.2.2 Maximum Number of Streams
 The maximum number of the streams is shown in Fig. 11. In
comparison with Fig. 10, the maximum number of streams in
simple scheme and proposed scheme with SR and FR is a little
bit larger than VR because the number of streams and the
maximum number of the streams depends on the disconnection
time and disconnection ratio.

5. Conclusion

We proposed a lost sensor data delivery scheme to reduce
the server's load. In our proposed system, to faster merge the
streams, the server eliminates some lost sensor data so that
different recovery streams can be merged into one quickly.
When the recovery stream catches up with the original stream,
the number of streams becomes less. We evaluated the
performance in two simulation situations in terms of the
number of streams and the maximum number of streams.
According to the evaluation results, our proposed scheme faster
reduces the number of streams for the server.
 In the future, we are planning to adopt P2P streaming
technique to recovery streams delivery. And also, we will
develop an actual system and evaluate our proposed scheme
using this.

Acknowledgments This work is supported in part by
Scientific Research (B)(15H02702) and Challenging
Exploratory Research (26540045) of the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan.

Reference
[1] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou,

"Comet: Batched Stream Processing for Data Intensive
Distributed Computing," in Proc. of the ACM Symposium on
Cloud Computing, pp. 63-74, 2010.

[2] S. Yamagiwa, M. Arai and K. Wada, "Efficient Handling of
Stream Buffers in GPU Stream-based Computing Platform," in
Proc. of the IEEE Pacific Rim Conference, pp. 286-291, 2011.

[3] M.J. Sax, M. Castellanos, Q. Chen, M. Hsu, "Performance
optimization for distributed intra-node-parallel streaming
systems," in International Conference on Data Engineering
Workshops, pp. 62-69, 2013.

[4] K. A. Hua, Y. Cai, and S. Sheu, "Patching: A multicast technique
for true video-on-demand services," in Proc. of the ACM
International Conference on Multimedia, pp. 191-200, 1998.

[5] S. W. Carter and D. D. E. Long, "Improving Video-onDemand
Server Efficiency Through Stream Tapping," in Proc. of the
International Conference on Computer Communications and
Networks, pp. 1095-2055, 1997.

[6] D. L. Eager and M. K. Vernon, "Dynamic Skyscraper Broadcasts
for Video-on-Demand," in International Workshop on Advances
in Multimedia Information Systems, pp. 18-32, 1998.

[7] L. Golubchik, J. C. S. Lui, and R. Muntz, "Reducing I/O Demand
in Video-on-Demand Storage Servers," in Proc. of the ACM
SIGMETRICS Joint International Conference on Measurement
and modeling of computer systems, pp. 25-36, 1995.

ⓒ 2017 Information Processing Society of Japan

Vol.2017-DPS-169 No.9
2017/1/20

