送信電力制御により隠れ端末問題による衝突を回避した 無線マルチホップ通信の接続性改善

沼田 直弥^{1,a)} 桧垣 博章^{1,b)}

概要:無線マルチホップ配送経路上をデータメッセージ群が配送されるとき,経路上の中継無線ノードにお ける無線信号の衝突とそれを回避するための競合とがデータメッセージ群のスループットを低下させる.そ のため,隠れ端末の関係にある前後2ホップ隣接する中継無線ノードとの衝突を回避したデータメッセー ジ配送手法が求められる.各無線ノードが送信電力を調節することが可能なディスクモデルに基づく競合 回避方法として RH2SWL が提案されている.ここでは、順次短縮無線リンク列で配送経路を構成するこ とで、前後ホップ中継無線ノードが同時並行に送信する無線信号の衝突を回避している.しかし、広域無線 マルチホップネットワークでは、経路長の延長とともに経路検出率が急速に低下する問題がある.本論文 では、衝突回避に SIR モデルを導入することで、無線リンク列が順次短縮されない場合でも前後2ホップ 隣接する中継無線ノード間の衝突を回避した無線マルチホップ配送を実現する手法を提案する.中継無線 ノード候補の探索範囲を狭めないように優先度を与えて経路探索要求メッセージを送信する手法を提案し、 その有効性を示す.

Improvement of Connectivity in Hidden Terminal Problem Free Wireless Multihop Transmission Power Control

NAOYA NUMATA^{1,a)} Hiroaki HIGAKI^{1,b)}

Abstract: In wireless multihop networks, a sequence of data messages are transmitted along a predetermined wireless multihop transmission route. Collisions among wireless transmission signals from the intermediate wireless nodes cause reduction of end-to-end data message throughput. Hence, avoidance and/or reduction of collisions between 2-hop neighbour intermediate nodes due to the hidden terminal problem is required. For the disk model wireless transmissions in which each intermediate wireless node determines its wireless signal transmission range, RH2SWL is one of the efficient the solutions. Here, a wireless multihop transmission route consists of a sequence of wireless communication links whose length becomes shorter in hop-by-hop manner. However, in a wide-area wireless multihop network where a wireless multihop transmission route tends to be longer, the route detection ratio tends to be lower since it becomes difficult for each intermediate wireless node to detect its next-hop node with its shorter wireless signal transmission range to configure a sequence of hop-by-hop shorter wireless communication links. In order to solve this problem, this paper proposes a novel routing method for a wide-area wireless multihop networks based on the SIR model. The proposed routing method configures a wireless multihop transmission route where each intermediate wireless node receives wireless signal from its previous-hop intermediate wireless node without collisions with that from its next-hop wireless node. The results of simulation experiments show that the proposed method improves the route detection ratio. In addition to achieve higher route detection ratio, this paper mentions that prioritized transmissions of route request control messages supporting stable next-hop detection ratio in each intermediate node might be efficient and the results of preliminary simulation experiments show its potentials.

^{a)} numa@higlab.net

^{b)} hig@higlab.net

1. はじめに

無線アドホックネットワークや無線センサネットワーク

¹ 東京電機大学大学院ロボット・メカトロニクス学専攻 Department of Robotics and Mechatronics, Tokyo Denki University, Adachi Tokyo 120-8551, Japan

における無線マルチホップ通信では、中継無線ノードが転 送するデータメッセージがブロードキャストを基礎とす る無線信号によって伝送されることから、1 ホップ隣接無 線ノードおよび2ホップ隣接無線ノードが送受信する無 線信号との衝突が確率的に発生する.このため,再送信に よるエンドエンド配送遅延の延長や配送スループットの 低下,電力消費等の通信オーバヘッドの拡大が問題となる. IEEE802.11[1] による晒し端末間の衝突回避やRTS/CTS 制御による隠れ端末間の衝突回避などの手法が導入されて いるが、競合状態にある1ホップ隣接無線ノードと2ホッ プ隣接無線ノードの行なう通信との並行性を犠牲にして、 これらの送受信を遅延させる問題がある.これまでに、中 継無線ノードの無線信号送信電力を転送先次ホップ隣接無 線ノードに到達可能な最低限の電力とすることによって、 異なる経路の中継無線ノードとなっている隣接無線ノード との並行性をできるだけ高く保つ手法が提案されている.

RH2SWL(Routing Protocol for Multihop Transmission along a Sequence of Hop-by-Hop Shortening Wireless Links)では順次短縮無線通信リンク列で無線マルチホップ 配送経路を構成することによって,経路内の隠れ端末間の 衝突/競合を回避することを可能とした[14].ただし,近隣 無線ノード間の衝突/競合の発生条件をディスクモデル[11] を基礎として定めていることから,順次短縮無線通信リン ク列によって送信元無線ノードから送信先無線ノードまで の無線マルチホップ配送経路を構成するためには,比較的 高い密度で無線ノードが分布する環境を適用対象とするこ とが求められる.また,経路長が延長する傾向にある広域 無線マルチホップネットワークでは,送信先無線ノードに 近付くにつれて次ホップ無線ノードの探索領域が縮小する ことにより,経路検出率が低下する問題がある.

本論文では、隣接無線ノードから受信する無線信号間の 衝突条件をSIR モデルに基づいて定めることによって、必 ずしも順次短縮無線通信リンク列ではなくても、前後2ホッ プ隣接する中継無線ノードとの隠れ端末問題を解消するこ とが可能な無線マルチホップ配送経路を構成する手法を提 案する.これによって隠れ端末間の経路内衝突/競合を回避 し、データメッセージ配送遅延を短縮し、配送スループット を拡大するとともに、比較的低い無線ノード分布密度の広 域無線マルチホップネットワークにおいてもより高い接続 性を提供することが可能となる.

2. 関連研究

2.1 経路内衝突回避

無線マルチホップネットワークにおける送信元無線ノード N_0 から送信先無線ノード N_n までのn ホップ無線マルチホップ配送は、配送経路 $||N_0 \dots N_n\rangle\rangle$ の中継無線ノード $N_i(0 < i < n)$ によるデータメッセージの転送によって実現される.このとき、この配送経路をデータメッセージ配

送に先立って検出する AODV[9], DSR[3], TORA[8] 等の ルーティングプロトコルを適用する場合には, 経路探索の ための制御メッセージをフラッディングによって広域に拡 散させる通信オーバヘッドを要する.このため, 検出経路 を多数のデータメッセージからなるデータメッセージ群 の配送に用いることで, 各データメッセージあたりの通信 オーバヘッドを低減することが好ましい.逆に, ひとつある いは少数のデータメッセージ配送には, フラッディングの ような全域的な制御メッセージ交換を要さない GEDIR[7], FACE[2, 5, 12] 等の各メッセージについて次ホップ無線 ノードを局所的かつ動的に決定する手法が有効である.

無線マルチホップ配送経路に沿ったデータメッセージ群 の配送においては、単一経路上を複数のデータメッセージ が順次配送されることから、経路に含まれる複数の中継無 線ノードが同時並行にデータメッセージを送信することに よる無線信号間の衝突, すなわち, 経路内衝突による配送性 能低下の問題を解消あるいは低減することが必要である. 必ずしも無線基地局を介することなく隣接無線ノード間で データメッセージ転送が可能な無線アドホックネットワー クにおいては、晒し端末の関係にある隣接無線ノード間では IEEE802.11 等の無線 LAN プロトコルのもつ CSMA/CA による衝突回避手法が適用される.また,隠れ端末の関係 にある2 ホップ隣接無線ノードによる無線信号の同時並行 送信によって発生する衝突の回避には RTS/CTS 制御が適 用される. 各無線ノードの無線信号送信電力が一定で等し い場合、すなわち、各無線ノードの無線信号到達距離が一定 で等しいユニットディスクモデル[6]に基づく無線マルチ ホップネットワークにおけるデータメッセージ群配送では、 図1に示すように、これらの衝突回避手法の働きによって 前後2ホップの中継無線ノードとは互いに競合し,同時並 行にデータメッセージ転送を行なうことができない. これ は、各中継無線ノード N_i からその無線信号到達距離内に N_{i+1} のみならず N_{i-1} が必ず含まれるためである. このた め、 N_{i-1} は N_{i-2} と N_i の無線信号到達範囲内に含まれる こととなり、これらの間の隠れ端末問題から衝突/競合の発 生を余儀なくされる.この結果、各中継無線ノードの通信 容量を C とすると, 無線マルチホップ配送のエンドエンド の通信容量は高々 C/3 となる (図 2)[13].

図 1 前後 2 ホップ中継無線ノードとの競合.

なお,ここではユニットディスクモデルに基づいた隣接 無線ノード間のデータメッセージ配送を対象としている.

図 2 無線マルチホップ配送の通信容量.

ユニットディスクモデルでは、送信無線ノード N_s が送信した無線信号を受信無線ノード N_r が受信できる条件をノード間距離 $|N_sN_r|$ が一定値R以下であることとしている.

$$|N_s N_r| \le R \tag{1}$$

この *R* を *N*_s の無線信号到達距離といい,上の議論では *R* が各無線ノードで一定かつすべての無線ノードにおいて等しいことを仮定している.

2.2 RH2SWL

前節では、すべての中継無線ノードの無線信号到達距離 が一定で同一であることを前提とすると、無線マルチホッ プ配送のエンドエンド通信容量は高々C/3であることを示 した.これに対して RH2SWL[14] では、各中継無線ノード の送信電力が変更可能であり、中継無線ノードごとに異な る無線信号到達距離を持つことが可能であることを前提と して無線マルチホップ配送のエンドエンド通信容量を最大 C/2とすることができる.ここでは、図3に示すように無 線マルチホップ配送経路 $||N_0 \dots N_n\rangle\rangle$ を順次短縮する無線 通信リンク列、すなわち以下の条件を満足する無線通信リ ンク列によって構成する.

$$|N_{i-1}N_i| > |N_iN_{i+1}| \tag{2}$$

そして、各中継無線ノード N_i は自身の次ホップ隣接無線 ノードに無線信号が到達可能な最小の無線信号送信電力に よってデータメッセージを転送する。これによって、 N_i が N_{i+1} ヘデータメッセージを転送する場合にも、このデー タメッセージ転送に用いられる無線信号は N_{i-1} には到達 しない、つまり、 N_{i-2} から N_{i-1} へ転送されるデータメッ セージのための無線信号と N_i から N_{i+1} へ転送されるデー タメッセージのための無線信号が N_{i-1} で衝突するという 互いに隠れ端末の位置にある N_{i-2} と N_i によって発生す る N_{i-1} における衝突は、順次短縮無線通信リンク列による 無線マルチホップ配送経路に沿った次ホップ隣接無線ノー ドへの最小無線信号送信電力を用いた配送によって回避す ることができる.

図 3 ディスクモデルに基づく無衝突無線マルチホップ配送経路.

これによって、図4に示すように、すべての中継無線ノードの無線信号到達距離が一定で同一であるユニットディスクモデルに基づく場合とは異なり、各中継無線ノードの無線信号送信電力を個別に変更可能なディスクモデルに基づく場合には、 N_i は前後2ホップ隣接中継無線ノードとの間で隠れ端末問題による衝突を回避することから、 N_i は N_{i-2}, N_{i+2} とは互いに競合することなく、同時並行にデータメッセージを転送することが可能である。その結果、各中継無線ノードの通信容量をCとするとき、エンドエンドの通信容量は最大C/2となり、無線信号到達距離が一定で同一である場合のC/3を拡大することができる。

図 4 RH2SWL による無線マルチホップ配送の通信容量.

このように、RH2SWL では、ディスクモデルに基づいて 各中継無線ノードが次ホップ中継無線ノードにデータメッ セージを転送することが可能となる最小の送信電力を用い ることを前提に、中継無線ノード N_i が前ホップ中継無線 ノード N_{i-1} の無線信号到達距離内にありながら、N_{i+1} の 無線信号到達距離外にあるようにすることで N_i における 衝突を回避する.しかし、順次短縮する無線通信リンク列 によって無線マルチホップ配送経路を構成する場合には、 送信先無線ノードに近づくほど中継無線ノードの送信電力 を低減させる必要があることから、次ホップ隣接無線ノー ドの探索対象範囲が縮小する。これによって次ホップ隣 接無線ノードの検出確率が低下することから,送信元無線 ノードと送信先無線ノードとの距離が長くなる広域無線マ ルチホップネットワークにおける適用には困難がある. 論 文[15]では、一時的に異なる無線通信チャネルを用いる中 継無線ノードを導入することによって短縮された無線マル チホップ配送経路上の無線通信リンク長を拡大する手法を 提案している.これによって広域無線マルチホップネット ワークにおいても前後2ホップの中継無線ノードとの隠れ 端末問題による衝突/競合を回避することが可能である.た だし、データメッセージの無線マルチホップ配送において は,他の中継無線ノードとは異なる通信チャネルを用いて データメッセージを転送する中継無線ノード間で同期的に 送受信に用いる通信チャネルを切替える必要があるなどの 通信オーバヘッドが大きい. このため, 単一通信チャネル だけを用いてこの問題を解決する手法が求められる.

3. 提案手法

3.1 SIR モデルに基づく経路内衝突回避

無線ノード N から送信電力 P で送信された無線信号の 隣接無線ノードN'における受信電力は,d = |NN'|とす ると $\beta P/d^{\alpha}$ で与えられる. N' において, この無線信号を 正しく受信するためには、受信電力が閾値 P 以上であるこ と、すなわち、 $\beta P/d^{\alpha} > \bar{P}$ を満足することが必要である. この観点で、RS2SWL を用いた無線マルチホップ配送にお ける隣接無線ノード間距離と受信電力の関係を示したもの が図5である. 中継無線ノード N_i における, その前ホッ プ隣接無線ノード N_{i-1} から送信された無線信号の N_i に おける受信電力が P に等しく,その次ホップ隣接無線ノー ド N_{i+1} から送信された無線信号の受信電力が \bar{P} と等し くなる N_{i+1} からの距離よりも $|N_iN_{i+1}|$ の方が長くなる ような N_{i+1} を次ホップ隣接無線ノードとする. したがっ $|\tau, |N_{i-1}N_i| > |N_iN_{i+1}|$ が任意の *i* において成り立つ, す なわち、順次短縮無線リンク列で無線マルチホップ配送経 路を構成する.

図 5 RH2SWL における隣接無線ノード間距離と受信電力.

SIR モデル [4] もしくは物理モデル [10] では、無線ノード N_r が隣接無線ノード N_s からの無線信号を衝突なく受信するための条件は、無線ノード N_i の無線信号送信電力を

 $P_i, N_i \ge N_r \ge 0$ 距離 $|N_iN_r| \ge d_i, N_r$ の周辺ノイズ強度 $\mathbb{P}_r^n \ge 0$ ま。以下の式で表すことができる.

$$P_s/d_s^{\alpha} \ge \beta (P_r^n + \sum_{i \neq s} P_i/d_i^{\alpha}) \tag{3}$$

簡単のため $P_r^n = 0$ とし、無線マルチホップ配送経路上に おいて 2 ホップ隣接無線ノードの送信する無線信号による 影響がその距離によって十分に減衰すると仮定する.送信 元無線ノード N_0 から送信先無線ノード N_n までの n ホッ プ無線マルチホップ配送経路 $||N_0...N_n\rangle\rangle$ においては、中 継無線ノード N_i が前ホップ中継無線ノード N_{i-1} の送信 する無線信号を衝突なく受信するためには、 $d_i := |N_{i-1}N_i|$ として以下を満たすことが求められる.

$$P_{i-1}/d_i^{\alpha} \ge \beta P_{i+1}/d_{i+1}^{\alpha} \tag{4}$$

 N_{i+1} が次ホップ中継無線ノード N_{i+2} を検出する確率を より高くするためには P_{i+1} をより大きく定めることが望 ましい. したがって $P_{i+1} = (P_{i-1}/\beta)(d_{i+1}/d_i)^{\alpha}$ とする.

RH2SWL と同様に AODV[9], DSR[3] 等を含む多くのア ドホックルーティングプロトコルを基礎として,経路探索 要求メッセージ Rreg のフラッディングによって経路探索 を送信元無線ノードから送信先無線ノードに向けて順次次 ホップ中継無線ノードを検出することで実現する. これを想 定すると, N_0 から i+1 ホップ目の中継無線ノード N_{i+1} を 検出する時点では直前ホップ中継無線ノード N_i までは検出 済みである.そのため、 $P_i(0 \le j < i)$ および $d_i(1 \le j < i)$ は決定しており, N_{i+1} は P_{i+1} を計算することが可能であ る.したがって, N_i の隣接無線ノード, すなわち, N_i が送信 電力 P_i で送信した無線信号の受信電力が $ar{P}$ 以上である無 線ノード N_{i+1} であれば, N_i からの距離 $d_{i+1} = |N_i N_{i+1}|$ に応じて自信の送信電力を $P_{i+1} = (P_i/\beta)(d_{i+1}/d_i)^{\alpha}$ とし て定めればよい. N_{i+1} が次ホップ中継無線ノードへデータ メッセージを転送する際に、ここで求めた無線信号送信電 カ P_{i+1} を用いるのであれば、 d_i と d_{i+1} の大小関係とは無 関係に N_{i+1} が N_i の次ホップ中継無線ノードとなること が可能である. つまり, 図 6 に示すように $d_i > d_{i+1}$ とな る N_{i+1} が N_i の次ホップ中継無線ノードとなっても, 図 7 に示すように $d_i < d_{i+1}$ となる N_{i+1} が N_i の次ホップ中 継無線ノードとなっても $, N_i$ において N_{i-1} と N_{i+1} が同 時にデータメッセージを送信しても N_i で衝突することな く N_{i-1} から N_i へのデータメッセージ転送を行うことが できる. これは, ディスクモデルに基づく RH2SWL におい ては, N_i における N_{i-1} と N_{i+1} による隠れ端末間の衝突 を回避するために順次短縮無線リンク列によって無線マル チホップ配送経路を構成することができる隣接無線ノード、 すなわち, $d_i > d_{i+1}$ を満たす N_{i+1} のみが N_i の次ホップ 中継無線ノードとなることができる RH2SWL と比較して 経路内衝突を回避した無線マルチホップ配送経路を構成す る機会が増加することを意味している(図8).

図 6 SIR モデルに基づく拡張 RH2SWL における隣接無線ノード 間距離と受信電力 (1).

図 7 SIR モデルに基づく拡張 RH2SWL における隣接無線ノード 間距離と受信電力 (2).

図 8 提案手法による無衝突無線マルチホップ配送経路

以上により, *N_i* の次ホップ中継無線ノードの *N_{i+1}* の位置が満たすべき条件とその送信電力についてまとめると以下のようになる.

$$\beta P_i/d_{i+1}^{\alpha} \ge \bar{P} \tag{5}$$

$$P_{i+1} = (P_{i-1}/\beta)(d_{i+1}/d_i)^{\alpha} \tag{6}$$

さて、 N_i の次ホップ中継無線ノード N_{i+1} の検出におい ては、 P_{i+1} の条件を与える(6)式から、 d_{i+1} が大きいほど P_{i+1} を大きくすることができることが分かる.すなわち、 N_i における隠れ端末間の衝突回避という条件のみに注目 すると、 N_i からより離れた無線ノードを N_{i+1} とすること によって P_{i+1} を大きくすることが可能となり、 N_{i+2} の探 索範囲を拡大することができる.しかし、その一方で(6) 式に示した N_{i+1} における隠れ端末間の衝突回避という条 件に注目すると、 d_{i+1} が大きくなることによって P_i/d_{i+1}^{α} は小さくなる.これによって、 P_{i+2}/d_{i+2}^{α} に対する制約条 件が厳しくなり、 P_{i+2} をより小さくすることが求められる。 これは、 N_{i+3} の探索範囲を縮小することを意味しており、 無線マルチホップ配送経路の検出率を低下させる原因とな り得る.以上により、 N_{i+1} の検出には P_{i+1} と d_{i+1} との間 のトレードオフを考慮する必要があることが分かる. 3.2 経路探索手法

前節で述べた中継無線ノード N_i における無線信号送 信電力 P_i に対する条件に従って送信元無線ノード N_0 か ら送信先無線ノード N_n までの無線マルチホップ配送経 路 $||N_0...N_n\rangle\rangle$ を探索する手法を提案する. ここでは, RH2SWL と同様に N_0 から経路探索要求メッセージ Rreqをフラッディングすることによって行なう. このとき,中 継無線ノード N_i は送信する Rreq メッセージに次ホップ 中継無線ノード N_i は送信する Rreq メッセージに次ホップ 中継無線ノードの候補 N_{i+1} が無線信号送信電力 P_{i+1} を 決定するために必要な情報をピギーバックする. すなわち, (6) 式によって N_{i-1} と N_i が決定したそれぞれの無線信号 送信電力 P_{i-1} と P_i およびこれらの中継無線ノード間の距 離の推定値 d_i が Rreq メッセージにピギーバックされる.

本論文では、各無線ノードが GPS 受信機のような自身の 位置情報を取得するためのデバイスを備えていることを仮 定しない. そのため、隣接無線ノードとの距離は *Rreq* メッ セージの無線信号受信電力によって推定する. 上に述べた ように *Rreq* メッセージをブロードキャスト送信する無線 ノードのデータメッセージ送信電力は既に決定済みであり、 *Rreq* メッセージにピギーバックされることから、*N_i* はこ の送信電力を用いて *Rreq* メッセージをブロードキャスト 送信する. これを受信した *N_{i+1}* は、以下の式に従って隣 接無線ノード間距離を推定する.

$$d_{i+1} = \frac{\lambda}{4\pi} \left(\frac{P_i}{P_{rec}} g_t g_r\right)^{1/\alpha} \tag{7}$$

ただし、送信する無線信号の波長を λ 、送受信ゲインをそ れぞれ g_t , g_r , Rreq メッセージの受信電力を P_{rec} とする^{*1}. 受信した Rreq メッセージの受信電力に基づいて d_{i+1} を推 定した中継無線ノード N_{i+1} は、このRreq メッセージが無 線マルチホップ配送されてきた経路を延長した送信先無 線ノードまでの経路探索を継続する.このとき、 N_{i+1} は 自身がこの無線マルチホップ配送経路の中継無線ノード となった場合の無線信号送信電力 P_{i+1} を定め、送信する Rreq メッセージにピギーバックする必要がある.

[ルーティングプロトコル]

- 送信元無線ノード N₀は、経路探索要求メッセージ Rreq を最大送信電力でブロードキャスト送信する.このと き、自身の無線信号送信電力を Rreq にピギーバック する.
- (2) N_0 から送信された Rreq メッセージを受信した N_0 の 隣接無線ノード N_1 は, Rreq メッセージを最大送信電 力を用いて Rreq メッセージをブロードキャスト送信 する. Rreq メッセージには N_0 と N_1 の無線信号送信 電力, すなわち最大送信電力と Rreq メッセージの受信 電力から推定した $d_1 = |N_0N_1|$ をピギーバックする.
- (3) N_{i-1}から送信された Rreq メッセージを受信した N_{i-1}
 の隣接無線ノード N_i は, Rreq メッセージをブロード

^{*1} $P_{rec} \geq \overline{P}$ \mathcal{C} \mathcal{B} \mathcal{B} .

キャスト送信済みである場合には受信した Rreq メッ セージに対しては何も処理をしない. N_i がまだ Rreqメッセージをブロードキャスト送信していない場合に は、受信した Rreq メッセージにピギーバックされた $P_{i-2}, P_{i-1}, d_{i-1}$ および Rreq の受信電力から推定され る d_i から自身のデータメッセージ送信時に用いる無 線信号送信電力 P_i を算出し、これを用いて Rreq メッ セージをブロードキャスト送信する. このとき、 N_i は 自身のデータメッセージ送信時の無線信号送信電力 P_i を定め、送信する Rreq メッセージには、 P_i に加えて 受信した Rreq メッセージにピギーバックされていた P_{i-1} および推定済みの d_i をピギーバックする.

(4) 送信先無線ノード N_n が N_{n-1} からブロードキャスト 送信された Rreq メッセージを受信することによって, N₀ から N_n までの n ホップ無線マルチホップ配送経 路が検出される.このとき,各中継無線ノードがデー タメッセージを次ホップ中継無線ノードに転送する 際に用いる無線信号送信電力が決定しており,この送 信電力で各中継無線ノードがデータメッセージを次 ホップ中継無線ノードへ転送することによって,経路 内衝突を回避した配送が実現できる.なお,各中継無 線ノードへの無線マルチホップ配送経路検出の通知 には,AODV,RH2SWL等と同様に経路探索応答メッ セージ Rrep の検出経路に沿ったユニキャスト配送を 用いる.□

4. 評価

本論文で提案した SIR 衝突モデルに基づいた RH2SWL の拡張手法による,接続性の改善効果,すなわち,経路 検出率の改善を評価する.ここでは、図9に示すように, 1,000m×1,000mの正方形シミュレーション領域に無線信 号到達範囲が100mの無線ノード100-1,000 台を一様分布 乱数を用いてランダムに配置する.送信元無線ノードはシ ミュレーション領域境界である正方形の1辺の中点に固 定し,送信先無線ノードは送信元無線ノードは送信元無線 ノード位置である正方形の1辺の中点とその対辺の中点を 結ぶ直線上とし,これらのノード間距離を200-1,000m と する.それぞれのノード数,送信元/送信先無線ノード間 距離に対して500通りの異なる無線ノード配置を行ない, 無線マルチホップ配送経路の検出率を求める.シミュレー ション実験の結果を図10に示す.

従来の RH2SWL 手法と本論文で提案した SIR 衝突モデ ルによる拡張手法のいずれにおいても、無線ノード数が多 いほど検出率が高く、また、送信元/送信先無線ノード間距 離が長くなるにしたがって経路検出率が低下する.ただし、 従来手法が順次短縮無線リンク列の適用によって次ホップ 中継無線ノード候補の存在可能領域が単調に狭くなるのに 対して、提案手法では SIR 衝突モデルの導入によって必ず しも無線リンク列が順次短縮する必要がないことから,経路検出率が改善され,より長距離の無線マルチホップ配送経路が検出できるようになっている.経路検出率は全体として20%改善している.また,経路検出率が90%となる距離は,提案手法によって従来手法から108.3%延長しており,50%となる距離は250.0%,0%となる距離は7%の延長であった.

図 9 シミュレーション実験の送信元/送信先無線ノード配置.

図 10 接続性評価結果 (1).

このように、提案手法の適用によって無線マルチホップ 配送経路の検出率が改善されたが、経路検出率が0%となる 距離については7%の改善にとどまった.そこで、提案手法 の経路検出率をさらに改善する手法について考察する.提 案手法では、無線マルチホップ配送経路の検出を経路探索 要求メッセージのフラッディングを用いて行なっている. 一般に、フラッディングによって経路を検出する手法では、 複数の無線ノードが同時並行に経路探索要求メッセージを ブロードキャスト送信することによって発生する衝突によ る経路探索要求メッセージの紛失による影響を考えないな らば、経路検出は各無線ノードのブロードキャスト送信順 序には依存しない*2.しかし,提案手法では中継無線ノー ドの候補無線ノード N_i の隣接無線ノード N が次ホップ中 継無線ノードの候補無線ノードとなることができるか否か は N_iの前ホップ中継無線ノードの候補ノードがどの隣接 無線ノードであるかに依存する.たとえば、図 11 に示すよ うに、隣接無線ノード N_{i-1} がブロードキャスト送信した 検出される無線マルチホップ配送経路の経路長は送信順序に依存 する.

経路探索要求メッセージを最初に受信してブロードキャス ト送信を行なった場合にはN は N_i の次ホップ中継無線 ノードの候補無線ノードとなって経路探索を継続するが, 別の隣接無線ノード N'_{i-1} がブロードキャスト送信した経 路探索要求メッセージを最初に受信してブロードキャスト 送信を行なった場合にはN が N_i の次ホップ中継無線ノー ドの候補ノードとはなれない場合がある. これは、ブロー ドキャスト送信した経路探索要求メッセージを受信した無 線ノードが次ホップ中継無線ノードの候補ノードとなるこ とができるか否かが前ホップ中継無線ノードに依存するに もかかわらず、各無線ノードが経路探索メッセージを直ち に送信しなければならず、かつ一度だけした送信できない ためである. そこで, 各無線ノードにおけるブロードキャ スト順序を最適化した場合の経路検出率のシミュレーショ ン実験結果を図 12 に示す.ここでは、経路検出率が 90%、 50%,0%となる送信元/送信先無線ノード間距離が提案手 法に対してそれぞれ 19.5%, 32.8%, 34%延長している. こ の最適化されたブロードキャスト送信順序を実現すること は不可能である.より適切な前ホップ中継無線ノードとつ ぎホップ中継無線ノードの対を選択するために、単一の経 路探索要求メッセージを受信してもただちに経路探索要求 メッセージをブロードキャスト送信を行なわない方法や複 数回の経路探索要求メッセージのブロードキャスト送信を 各無線ノードが行なう方法が考えられるが、経路探索に要 する時間が延長する、経路探索により多くの制御メッセー ジ交換が必要となり、各無線ノードにおける処理が複雑に なる、という問題を解決しなければならない.

図 11 ブロードキャスト送信順序による経路検出の可否の違い.

ここで, 各中継無線ノード N_i のデータメッセージ送信電 力 P_i は (6) 式で与えられるが, これを変形すると以下のようになる.

$$P_{i} = D_{i}P_{1}/d\beta^{(i-1)/2} (i は奇数)$$

$$P_{i} = D_{i}P_{0}/d\beta^{i/2} (i は偶数)$$
(8)
ただし $D_{1} = d_{1}$ $D_{i+1} = d_{i+1}/D_{i}$

各中継無線ノード N_iは,経路探索要求メッセージをデー

図 12 接続性評価結果 (2).

タメッセージ転送に用いる電力 Pi で送信することから, Pi をより大きく維持することによって送信元/送信先無線ノー ド間距離が長い場合でも経路検出率を低下させにくくする ことができる. ここで, D_i が (8) 式の漸化式で与えられる ことから, D_i を大きくすると D_{i+1} は小さくなることから, 各中継無線ノードにおけるつぎホップ中継無線ノードの候 補ノードの検出率を安定させるために、*D_i*を一定値に保つ ことは,送信元/送信先無線ノード間距離が長い場合にも高 い経路検出率を実現するために有効な手法であると考えら れる. そこで D_i が 1 に近くなる隣接無線 ノードに対して 優先的に経路探索要求メッセージをデータメッセージを転 送する手法を用いて,経路検出率をシミュレーション実験 によって求めた結果を図13に示す.この改善手法によっ て得られた経路検出率は、最適化したものには及ばないも のの,提案手法の経路検出率を改善しており,経路検出率が 90%, 50%, 0%となる送信元/送信先無線ノード間距離を提 案手法に対してそれぞれ7.6%,8.5%,5%改善している.

図 13 接続性評価結果 (3).

5. まとめ

本論文では、データメッセージ群の無線マルチホップ配送において、経路内衝突/競合を回避する SIR モデルに基づいた新しい経路探索手法を提案した. RH2SWL が示したように、中継無線ノードのデータメッセージ送信電力を

制御することによって中継無線ノード N_i が N_{i+1} が無線 信号を送信している場合でも N_{i-1} から送信された無線信 号を受信することができれば, 隠れ端末問題による衝突を 競合なしに回避することができる.提案手法では, SIR モ デルに基づいて各中継無線ノードの送信電力を定めること でこれを実現している.従来のディスクモデルに基づいた RH2SWL 手法では, 順次短縮する無線通信リンク列で無線 マルチホップ配送経路を実現していたため, 経路長が長く なる傾向にある広域無線マルチホップネットワークへの適 用が困難である問題があったが,提案手法ではこれを解決 している.それは, 各無線通信リンクに課されていた順次短 縮という制約条件を緩和することによって実現されている.

シミュレーション実験により,提案手法が従来手法の接 続性を改善することが確認されたが,経路探索時の制御メッ セージのフラッディングを工夫することで,さらに改善で きることを明らかにした.提案手法で計算される送信電力 の大きさが次ホップ無線ノードの検出しやすさと符号する ことから,送信電力が中継無線ノードごとに大きく変動し ないように,優先度を付して経路探索時の制御メッセージ を送信する手法を考案し,これが有効である見込みを得た. 今後は,この手法の正当性を検証し,さらにその性能の実験 評価を行なう.

参考文献

- "Local and Metropolitan Area Network Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," Standard IEEE 802.11 (1997).
- [2] Bose, P., Morin, P., Stojmenovic, I. and Urrutia, J., "Routing with Guaranteed Delivery in Ad Hoc Wireless Networks," Wireless Networks, Vol. 7, pp. 609–616 (2001).
- [3] David, B., David, A. and Hu, Y.C., "The Dynamic Source Routing Protocol," Internet Draft, draft-ietfmanet-dsr-09.txt (2003).
- [4] Gupta, P. and Kumar, P.R., "The Capacity of Wireless Netoworks," IEEE Transactions on Information Theory, Vol. 46, pp. 388–404 (2000).
- [5] Higaki, H., "NB-FACE: No-Beacom FACE Ad-hoc Routing Protocol for Reduction of Location Acquisition Overhead," Proceedings of the 7th IEEE International Information and Telecommunication Technologies Symposium, pp. 81–84 (2008).
- [6] Kranakis, E., Singh, H. and Urrutia, J., "Compass Routing on Geometric Networks," Proceedings of the 11th Canadian Conference on Computational Geometry, pp. 51–54 (1999).
- [7] Lin, X. and Stojmenovic, I., "Geographic Distance Routing in Ad Hoc Networks," Technical Report in University Ottawa, TR-98-10 (1998).
- [8] Park, V. and Corson, S., "Temporally-Ordered Routing Algorithm (TORA) Version 1 Functional Specification," Internet Draft, draft-ietf-manet-tora-spec-04.txt (2001).
- [9] Perkins, C.E. and Royer, E.M., "Ad hoc On–Demand Distance Vector Routing," RFC 3561 (2003).
- [10] Shi, Y., Hou, Y., Liu, J. and Kompella, S., "How to Correctly Use the Protool Interference Model for Multi-hop

Wireless Networks," Proceedings of the 10th ACM international Symposium on Mobile Ad Hoc Networking and Computing, pp. 239–248 (2009).

- [11] Urrutia, J., "Two Problems on Discrete and Computational Geometry," Proceedings of Japan Conference on Discrete and Computational Geometry, pp. 42–52 (1999).
- [12] 江崎, 桧垣, "低信頼無線アドホックネットワークのため の Face プロトコルの拡張," 情報処理学会論文誌, Vol. 53, No. 8, pp. 1991–2000 (2012).
- [13] 沼田, 桧垣, "順次短縮リンクによる広帯域無線マルチホップ配送,"情処研報, Vol. 2006, No. 98, pp. 17-24 (2006).
- [14] 沼田, 桧垣, "順次短縮リンクによる広帯域無線マルチ ホップ配送とその評価," 情処研報, Vol. 2006, No. 120, pp. 125-132 (2006).
- [15] 松村, 桧垣, "2 チャネルを用いた順次短縮無線リンク列による無線マルチホップ通信経路内隠れ端末問題解決手法," 信学技報, Vol. 110, No. 224, pp. 51–56 (2010).