
IPSJ SIG Technical Report

A Simple Algorithm

for r-gather-clusterings on the Line

Shin-ichi Nakano,a)

Abstract: In this paper we study a recently proposed two variants of the facility location problem, called the r-gather-

clustering problem and the r-gathering problem.

Given a set C of n points on the plane an r-gather-clustering is a partition of the points into clusters such that each

cluster has at least r points. The r-gather-clustering problem finds the r-gather-clustering minimizing the maximum

radius among the clusters, where the radius of a cluster is the minimum radius of the disk which can cover the points

in the cluster. A polynomial time 2-approximation algorithm for the problem is known.

When all C are on the line, an O(n log n) time algorithm, based on the matrix search method, to find an r-gather-

clustering is known. In this paper we give an O(n log∗ n) time algorithm to solve the problem.

We also give an algorithm to solve a similar problem, called the r-gathering problem.

1. Introduction

The facility location problem and many of its variants are stud-

ied[5], [6].

In this paper we study recently proposed two variants of

the problem, called the r-gather-clustering problem and the r-

gathering problem [1], [4].

Given a set C of n points on the plane an r-gather-clustering

is a partition of the points into clusters such that each cluster has

at least r points. The cost of an r-gather-clustering is the maxi-

mum radius among the clusters, where the radius of a cluster is

the minimum radius of the disk which can cover the points in the

cluster. The r-gather-clustering problem [1] is the problem to find

the r-gather-clustering minimizing the cost. The problem is NP-

complete in general, however a polynomial time 2-approximation

algorithm for the problem is known[1]. When all C are on the

line, an O(n log n) time algorithm, based on the matrix search

method[2], [7], for the problem is known[3].

In this paper we give an O(n log∗ n) time algorithm to solve

the problem, by reducing the problem to the min-max path prob-

lem[9] in a weighted directed graph.

Assume that C is a set of residents and we wish to locate emer-

gency shelters for the residents so that each shelter serves r or

more residents. Then r-gather clustering problem computes opti-

mal locations for shelters which minimizung the evacuation time

span, where each shelter for a cluster is located at the center of

the cluster.

In this paper we consider one more similar problem. Given

sets C and F of points on the plane an r-gathering of C to

F is an assignment A of C to open facilities F
′

⊂ F such

that r or more customers are assigned to each open facility.

1 Gunma University, Kiryu 376-8515, Japan
a) nakano@cs.gunma-u.ac.jp

The cost of an r-gathering is the maximum distance d(c, f) be-

tween c ∈ C and A(c) ∈ F′ among the assignment, which is

maxc∈C,A(c)∈F
′ {d(c, A(c))}.

Assume that F is a set of possible locations for emergency shel-

ters, and d(c, f) is the time needed for a person c ∈ C to reach a

shelter f ∈ F. Then an r-gathering corresponds to an evacuation

assignment such that each opened shelter serves r or more people,

and the r-gathering problem finds an evacuation plan minimizing

the evacuation time span.

Armon[4] gave a simple 3-approximation algorithm for the

r-gathering problem and proves that with the assumption P ,

NP the problem cannot be approximated within a factor of less

than 3 for any r ≥ 3. When all C and F are on the line an

O((|C| + |F|) log(|C| + |F|)) time algorithm[3] and an O(|C| +

|F| log2 r+ |F| log |F|) time algorithm[10] to solve the r-gathering

problem are known.

In this paper we give an O(|C| + r2|F| log∗ |C|) time algorithm

to solve the problem, where log∗ |C| is the number of times the

log must be iteratively applied before results in less than 1. Since

in typical case r << |F| << |C| holds our new algorithm is faster

than the known algorithms.

The remainder of this paper is organized as follows. Section 2

gives an algorithm for the r-gather-clustering problem. Section 3

gives an algorithm for the r-gathering problem. Finally Section 4

is a conclusion.

2. r-gather-clustering on the line

In this section we give an algorithm for the r-gather-clustering

problem when all points in C are on the line. Let C =

{c1, c2, · · · , cn} be points on the horizontal line and we assume

they are sorted from left to right. Our idea is to reduce the

r-gather-clustering problem to the mix-max path problem in a

weighted directed (acyclic) graph[9]. First we have the follow-

ⓒ 2017 Information Processing Society of Japan 1

Vol.2017-AL-161 No.9
2017/1/17

IPSJ SIG Technical Report

c

(a)

(b)

1

p
0

p
1
p
2
p
3
p
4
p
5

p
6

p
7

p
8

c2 c3 c4 c5 c6 c7 c8

Fig. 1 the weighted directed path D.

c

(a)

(b)

1

p
0

p
1
p
2
p
3
p
4
p
5

p
6

p
7

p
8

c2 c3 c4 c5 c6 c7 c8

Fig. 2 (a)an r-gather clustering (b)its corresponding min-max path of D.

ing two lemmas.

Lemma 2.1 One can assume the points in each cluster in a

solution are consecutive.

Proof. Otherwise repeat swapping some points between the

clusters until the condition holds, which never increase the cost.

Q.E.D.

Lemma 2.2 One can assume the number of points in each

cluster in a solution is at most 2r − 1.

Proof. Otherwise devide such clusters into two (or more) clus-

ters, respectively, which never increase the cost. Q.E.D.

Then we difine the directed (acyclic) graph D(V, E) and the

weight of each edge, as follows.

V = {p0, p1, p2, · · · , pn}

E = {(pi, p j)|i + r ≤ j ≤ i + 2r − 1}

See Fig. 1. Note that the number of edges is at most rn. The

weight w of an edge w(pi, p j) is the half of the distance between

ci+1 and c j, and denoted by w(pi, p j).

The cost of a directed path from p0 to pn is defined by the

weight of the edge having the maximum weight in the directed

path. The min-max path from p0 to pn is the directed path from

p0 to pn with the minimum cost.

Now C has an r-gather-clustering with cost k iff D(V, E) has a

directed path from p0 to pn with cost k. See Fig. 2.

Thus if we can compute the min-max path in D then it corre-

sponds to the solution of the r-gather-clustering problem. Intu-

itively, each (directed) edge in the min-max path corresponds to

a cluster of an r-gather-clustering.

We can construct the D(V, E) in O(rn) time. Then compute

the min-max path from p0 to pn in O(rn log∗ n) time, since an

O(|E| log∗ |V |) time algorithm for the min-max path problem for a

directed graph D = (V, E) is known [9].

Thus we have the following theorem.

Theorem 2.3 One can solve the r-gather-clustering problem

in O(rn log∗ n) time, when all points in C are on the line.

3. r-gathering

In this section we give an algorithm for the r-gathering prob-

lem when all points in C and F are on the line, by reducing the

problem to the min-max path problem for a weighted directed

graph.

Let C = {c1, c2, · · · , cn} and F = { f1, f2, · · · , fm} be points on

the horizontal line and we assume they are sorted from left to

right, respectively. Similar to Lemma 2.1 we can assume the

points assigned to a facility are consecutive in a solution.

For consecutive three facilities f j−1, f j and f j+1 in F let mL be

the midpoints of f j−1 and f j, and mR the midpoints of f j and f j+1.

We have the following two lemma.

Lemma 3.1 If C has 2r or more points on the left of mL,

then ci′ with i′ < i is never assigned to f j in a solution of the

r-gathering problem, where ci is the 2r-th point in C on or left of

mL.

Proof. Assume for a contradiction such ci′ is assigned to f j.

We have two cases.

If the rightmost point assigned to f j is on the left of mL then

reassigning the points assigned to f j to f j−1 results in a new r-

gathering and since it does not increase the cost the resulting r-

gathering is also a solution of the given r-gatheing problem.

Otherwise, the rightmost point assigned to f j is on or right of

mL. Then at least 2r points on or left of mL are assigned to f j (pos-

sibly with other points on the right of mL) Let C′ be the subset of

C consisting of the points (1) assigned to f j, (2) on or left of mL,

and (3) but not the rightmost r points on or left of mL. Note that

|C′| ≥ r holds and C′ contains ci′ . Reassigning the points in C′ to

f j−1 results in a new r-gathering and the resulting r-gathering is

also a solution since it does not increase the cost. Q.E.D.

Intuitively if ci′ is too far form f j then ci′ is never assigned to

f j. Symmetrically we have the following lemma.

Lemma 3.2 If C has 2r or more points on the right of mR,

then ci′ with i′ > i is never assigned to f j, where ci is the 2r-th

point in C on or right of mR.

We have more lemma. Let C′ be the set of points between mL

and mR except the leftmost 2r points and the rightmost 2r points.

Lemma 3.3 If C has 5r or more points between mL and mR,

then the customers in C′ are assigned to f j in a solution of the

r-gathering problem.

Proof. Immediate from the two lemmas above. Q.E.D.

Thus if we can compute the solution for C−C′ then appending

the assignment from points in C′ to f j results in the solution for

C. From now on we assume we have removed every such C′ from

C.

We have more lemmas for the boundary case. Let m be the

midpoints of f1 and f2 in F.

Lemma 3.4 If C has 2r or more points on the left of m, then

each ci′ with i′ < i is assigned to f1 in a solution of the r-gathering

ⓒ 2017 Information Processing Society of Japan 2

Vol.2017-AL-161 No.9
2017/1/17

IPSJ SIG Technical Report

problem, where ci is the 2r-th customer in C on the left of m.

Proof. Immediate from Lemma 3.1. Q.E.D.

Let m be the midpoints of fm−1 and fm in F.

Lemma 3.5 If C has 2r or more points on the right of m, then

each ci′ with i′ > i is assigned to fm in a solution of the r-gathering

problem, where ci is the 2r-th customer in C on the right of m.

Thus we have the following lemma.

Lemma 3.6 The number of points in C possibly assignning

to each facility f ∈ F is at most 9r.

Proof. For each f j with 1 < j < m define mL and mR as above.

The number of points possibly assigning to f j is (1) at most 2r on

the left of mL, (2) at most 2r on the right of mR, and (3) at most

5r between mL and mR, by the lemmas above. Similar for f1 and

fm. Q.E.D.

Now we are going to define a weighted directed graph D(V, E)

for F and C, and the weight of each edge.

The set of vertices is defined as follows.

V = {p0, p1, p2, · · · , pn}

For each facility fh with h = 2, 3, · · · ,m−1 and its possible cluster

consisting of points {ci+1, ci+2, · · · c j} we define an edge (pi, p j).

So (pi, p j) is an edge iff

(1) i + r ≤ j ≤ i + 2r − 1

(2) i ≥ i′ where i′ is the 2r-th customer on the left of mL, and

(3) j ≤ j′ where j′ is the 2r-th customer on the right of mR,

where mL and mR are defined for fh as in Section 2. Let E j be

the set of edges consisting of edges defined above. Simillary we

define E1 and Em.

Finally,

E = E1 ∪ E2 ∪ · · · Em

Note that G may contain many multi-edges.

The weight w of an edge (pi, p j) for fh is the maximum of (1)

the distance between pi and fh, and (2) the distance between p j

and fh.

The cost of a directed path from p0 to pn is defined by the

weight of the edge having the maximum weight in the directed

path. The min-max path from p0 to pn is the directed path from

p0 to pn with the minimum cost.

We need to compute for each fh the 2r-th customer on the left

of mL and the 2r-th customer on the right of mR. By scanning the

line we can compute them for all fh in O(|F| + |C|) time in toal.

Note that each edge in E corresponds to a pair of customers possi-

bly assigning to a common facility. Thus the number of the edges

in E is at most 81r2|F| by Lemma 3.6. Thus we can construct

D(V, E) in O(|F| + |C| + 81r2|F|) time in toal.

Similar to Section 2 we have reduced the r-gathering problem

to the min-max path problem, and have the following theorem.

Theorem 3.7 When all C and F are on the line one can solve

the r-gathering problem in O(n + r2m log∗ n) time, where n = |C|

and m = |F|.

4. Conclusion

In this paper we have presented an algorithm to solve the r-

gather clustering problem when all C are on the line. The running

time of the algorithm is O(rn log∗ n), where n = |C|. We also pre-

sented an algorithm to solve the r-gathering problem, which runs

in time O(n + r2m log∗ n), where n = |C| and m = |F|.

Can we design a linear time algorithm for the r-gathering prob-

lem when all C and F are on the line?

References

[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D.
Thomas and A. Zhu, Achieving anonymity via clustering, Transactions
on Algorithms, 6, Article No.49 (2010).

[2] P. Agarwal and M. Sharir, Efficient Algorithms for Geometric Opti-
mization, Computing Surveys, 30, pp.412-458 (1998).

[3] T. Akagi and S. Nakano, On r-gatherings on the Line, Proc.of FAW
2015, LNCS 9130, pp.25-32 (2015).

[4] A Armon, On min-max r-gatherings, Theoretical Computer Science,
412, pp.573-582 (2011).

[5] Z. Drezner, Facility Location: A Survey of Applications and Methods,
Springer (1995).

[6] Z. Drezner and H.W. Hamacher, Facility Location: Applications and
Theory, Springer (2004).

[7] G. Frederickson and D. Johnson, Generalized Selection and Ranking:
Sorted Matrices, SIAM Journal on Computing, 13, pp.14-30 (1984).

[9] H. Gabow and R. Tarjan, Algorithms for Two Bottleneck Optimization
Problems, J. of Algorithms, 9, pp.411-417 (1988).

[10] Y. Han and S. Nakano, On r-Gatherings on the Line, Proc. of
FCS2016, pp.99-104 (2016).

ⓒ 2017 Information Processing Society of Japan 3

Vol.2017-AL-161 No.9
2017/1/17

