
IPSJ SIG Technical Report

Variants of the dispersion problem

Toshihiro Akagi1,a) Tetsuya Araki2,b) Shin-ichi Nakano1,c)

Abstract:
The dispersion problem is a variant of the facility location problem, which has been extensively studied.
In this paper we design some algorithms for some variants of the dispersion problem.
Given a set P of n points on the horizontal line and an integer k we wish to find a subset S of P such that
|S| = k and maximizing the cost minx∈S cost(x), where cost(x) is the half of the sum of distances to its left
neighbour and right neighbour in S. (For the leftmost point in S its cost is the half of the distance to its
right neighbour. Similar for the rightmost points.) The problem is called the LR-dispersion problem. In this
paper we give a simple O(kn2 logn) time algorithm to solve the LR-dispersion problem.　
Also we give some algorithms to solve some variants of the dispersion problem.

1. Introduction

The facility location problem and many of its variants

have been studied [5], [6]. A typical problem is to find a set

of locations to place facilities with the designated cost mini-

mized. By contrast, in this paper we consider the dispersion

problem(or obnoxious facility location problem), which finds

a set of locations with a certain objective function maxi-

mized.

Given a set P of n possible locations, and the dis-

tance d for each pair of locations, and an integer k with

k ≤ n, we wish to find a subset S ⊂ P with |S| =

k such that some designated objective function is maxi-

mized [3], [4], [8], [9], [10], [11], [12].

The intuition of the problem is as follows. Assume that

we are planning to open several chain stores in a city. We

wish to locate the stores mutually far away from each other

to avoid self-competition. So we wish to find k locations

so that some objective function based on the distance is

maximized. See more applications, including result diversi-

fication, in [9], [10], [11].

In one of basic cases the objective function to be max-

imized is the minimum distance between two points in

S. Then papers [10], [12] show if P is a set of points

on the plane then the problem is NP-hard, and if P is a

set of points on the line then the problem can be solved

in O(max{n logn, pn}) time by dynamic programming ap-

proach, and in O(n log log n) time by the sorted matrix

search method [7].

1 Department of Computer Science, Gunma University, Kiryu,
376–8515, Japan

2 National Institute of Informatics, Chiyoda, Tokyo 101–8430,
Japan

a) akagi@nakano-lab.cs.gunma-u.ac.jp
b) araki@nii.ac.jp
c) nakano@cs.gunma-u.ac.jp

In this paper we define some variants of the dispersion

problem. Let P be a set of n points on the horizontal line,

and we wish to find a subset S ⊂ P with |S| = k maximizing

the following cost cost(S).

Let the cost of a point f in S be the sum of (1) the half of

the distance to its immediate left neighbour point in S and

(2) the half of the distance to its immediate right neighbour

point in S. We denote the cost for f by cost(f). Intuitively

the cost of f ∈ S corresponds to the length of the segment

in which possible customers for f live. (We assume each cus-

tomer go to the nearest point(facility) in S.) Especially for

the leftmost point the cost is consisting of just (2), and for

the rightmost point the cost is consisting of just (1). And the

cost of S, denoted by cost(S), is the minimum cost among

the costs of the points in S, which is minf∈S{cost(f)}. We

call the problem above the LR-dispersion problem.

In this paper we design an algorithm to solve the LR-

dispersion problem in O(kn2 log n) time by dynamic pro-

gramming approach.

The remainder of this paper is organized as follows. Sec-

tion 2 contains our first algorithm for the LR-dispersion

problem. Section 3 gives our second algorithm for the LR-

dispersion problem. In Section 4 and Section 5 we consider

more variants of the dispersion problem. Finally Section 6

is a conclusion.

2. The first algorithm

In this section we design an algorithm to solve the LR-

dispersion problem, based on dynamic programming ap-

proach. We consider the subproblem P (h, i; k) defined be-

low, and systematically solve them.

Let Pi be the subset of the points in P locating on the

left of i ∈ P (including i). Given h ∈ Pi and an integer k,

we wish to find a subset S ⊂ Pi such that (1) |S| = k, (2)

the rightmost two points in S is h and i, with h < i, and (3)

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-161 No.8
2017/1/17

IPSJ SIG Technical Report

maximizing cost(S). We denote by cost(h, i; k) the optimal

cost of a solution of P (h, i; k). This is the LR-dispersion

problem with the rightmost two points in S are designated.

We can assume k ≥ 2 since otherwise we cannot define

the cost. We have the following lemma.

Lemma 1. P (h, i; k) has a solution S containing the left-

most and rightmost points in Pi.

Proof. Assume otherwise. If the leftmost point 1 is not

contained in S then remove the leftmost point in S from S

and append 1 to S, and similarly if the rightmost point i

is not contained in S then remove the rightmost point in

S from S and append i to S. Those modification never

decrease cost(S), so resulting S is also a solution, and it

contains the leftmost and rightmost points in Pi.

Now we explain how to solve P (h, i; k). We have three

cases.

Case 1: (Base case) k = 2.

By the lemma above we only consider the case h = 1.

Then the solution is S = {1, i}, and its cost is cost(1, i; 2) =

d(1, i)/2.

Case 2: (Inductive case) k > 3.

We can assume we have already computed the solutions

of smaller problems P (h′, h; k−1) for h′ = k−1, k, ..., h−1.

By appending i to a solution of a smaller problem we can

construct a solution of P (h, i; k), as follows.

Note that in the solution of P (h, i; k), cost(i) is d(h, i)/2,

and cost(h), which is d(h′, i)/2 for some h′, is greater than

cost(i).

We need one more subproblem. Let P ′(h′, h; k − 1)

be the problem to find a subset S of Pi such that (1)

|S| = k − 1, (2) the rightmost two points in S is h′ and

h > h′, and (3) maximizing the cost cost′(h′, h; k − 1) de-

fined by minx∈S−{h}{cost(x)}.
Appending i to the solution S′ of problem P (h′, h; k− 1)

for some h′ is a solution S of P (h, i; k). We have two sub-

cases.

Subcase 2a: cost(h, i; k) is cost(i).

Then cost′(h′, h; k − 1) with some h′ < h is greater than

or equal to cost(i).

In the solution S cost(h) > cost(i) holds since cost(h) =

d(h′, i)/2 and cost(i) = d(h, i)/2. In this subcase the mini-

mum cost of the points in S−{h, i}, which is cost′(h′, h; k−
1), is greater than cost(i).

Thus if cost′(h′, h; k − 1) > cost(i) for some h′ ≥ k − 2

then this case occurs and cost(h, i; k) is cost(i).

Subcase 2b: cost(h, i; k) is not cost(i).

Then cost(h, i; k) is cost(x) for some x ∈ S−{h, i}, which
is smaller than cost(i). Note that since cost(h) > cost(i)

holds cost(h) is not the minimum.

Then if cost′(h′, h; k−1) < cost(i) for all h′ then this case

occurs and cost(h, i; k) is the maximum of cost′(h′, h; k−1)

for h′ = k − 2, k − 1, · · · , h− 1.

Case 3: (Inductive case) k = 3.

Similar to Case 2. However we only refer to the solution

of sub problem P ′(h′, h; 2)with h′ = 1 by Lemma 1.

Thus cost(h, i; k) is maxh′=1,2,···,h−1 min{cost′(h′, h; k−
1), d(h, i)/2}.
Note that cost(h) in a solution of P (h, i; k) is larger than

cost(h) in a solution of P (h′, h; k − 1).

Thus cost(h, i; k) = maxh′=1,2,···,h−1{min{cost′(h′, h; k−
1), d(h, i)/2}} and we can compute it in O(n) time. Since

the number of subproblems P (h, i; k) is at most kn2 the

total time to solve them is O(kn3).

Finally the cost of a solution of the given problem is

maxh=1,2,···,n−1{cost(h, n; k)} and we can compute it in

O(n) time.

The entire algorithm find-LR-dispersion(P, n, k) is

shown below.

Algorithm 1 find-LR-dispersion(P, n, k)

% Compute P (1, i; 2) (Case k = 2)

for i = 2, 3, · · · , n do

cost(1, i; 2) = d(1, i)/2

cost′(1, i; 2) = d(1, i)/2

end for

% Compute P (h, i; 3) (Case k = 3)

for i = 3, 4, · · · , n do

for h = 2, 3, · · · , i− 1 do

cost(h, i; 3) = min{cost′(1, h; 2), d(h, i)/2}
cost′(h, i; 3) = cost′(1, h; 2)

end for

end for

% Compute P (h, i; k) (Case k > 3)

for k′ = 4, 5, · · · , k do

for i = k′, k′ + 1, · · · , n do

for h = k′ − 1, k′, · · · , i− 1 do

cost(h, i; k′) = 0

cost′(h, i; k′) = 0

% Compute the maximum cost

for h′ = k′ − 2, k′ − 1, · · · , h− 1 do

if min{cost′(h′, h; k′ − 1), d(h, i)/2} > cost(h, i; k′)

then

cost(h, i; k′) = min{cost′(h′, h; k′ − 1), d(h, i)/2}
end if

if min{cost′(h′, h; k′ − 1), d(h′, i)/2} > cost′(h, i; k′)

then

cost′(h, i; k′) = min{cost′(h′, h; k′ − 1), d(h′, i)/2}
end if

end for

end for

end for

end for

% Compute the optimal cost

cost = 0

for h = k − 1, k, · · · , n− 1 do

if cost(h, n; k) > cost then

cost = cost(h, n; k)

end if

end for

Output cost

Theorem 1. One can solve the LR-dispersion problem in

O(kn3) time.

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-161 No.8
2017/1/17

IPSJ SIG Technical Report

3. Second Algorithm

In this section we give a faster algorithm to solve the LR-

dispersion problem.

In algorithm find-LR-dispersion(P, n, k) we compute

min{cost′(h′, h; k−1), d(h, i)/2} for each h′ = 1, 2, · · · , h−1

and find the minimum one.

We have the following lemma.

Lemma 2. cost′(h′, h; k− 1) is a non-decreasing function

with respect to h′.

Proof. Assume otherwise. Then for some hL, hR in P with

hL < hR, cost
′(hL, h; k − 1) > cost′(hR, h; k − 1) holds.

Note that cost′(h′, h; k − 1) is minx∈S−{h}{cost(x)}.
Let SL be the solution of P (hL, h; k − 1) and S′ be the

set of points derived from SL by removing hL then append-

ing hR. Also let hx be the left neighbour of hL in SL.

Then cost(hL) in SL is d(hx, h)/2 and cost(hR) in S′ is also

d(hx, h)/2. And cost(hx) in SL is smaller than cost(hx) in

S′. Thus cost′(hL, h; k − 1) ≤ minx∈S′−{h}{cost(x)} ≤
cost′(hR, h; k − 1) holds. A contradiction.

Thus maxh′{min{cost′(h′, h; k − 1), d(h, i)/2}} = min

{cost′(h′′, h; k − 1), d(h, i)/2} , where h′′ is the left neigh-

bour of h in P , and we can compute it in constant time.

By Lemma 2 minh′{cost′(h′, h; k′−1), d(h′, i)/2} is a non-
decreasing function with respect to h′ up to some points,

then it is a decreasing linear function with respect to h′, so

we can find the maximum one by binary search in O(logn)

time.

We have the following theorem.

Theorem 2. One can solve the LR-dispersion problem in

O(kn2 log n) time.

4. PS2-dispersion

In this section we consider one more variant of the disper-

sion problem, then design an algorithm to solve the problem.

First define another cost for a set S of points with |S| ≥ 3.

Given a subset S of P , let the cost cost(f) of a point f

in S be the sum of (1) the distance to the nearest point of

f in S and (2) the distance to the 2nd nearest point of f in

S. Intuitively this cost models competition to the nearest

two stores. Then the cost cost(S) of S is the minimum cost

among the costs of the points in S.

Given a set P of n points on the horizontal line and an

integer k we wish to find a subset S ⊂ P with |S| = k

maximizing cost(S). The problem is called PS2-dispersion

problem, here PS2 means partial sum of the two nearest

points in S. Some experimental results (for more general

problems) are known. See [9].

We consider the subproblem PS2(h, i; k) defined below.

Let Pi be the subset of the points in P locating on the left

of i ∈ P (including i). Given h ∈ Pi and an integer k ≥ 3,

we wish to find a subset S ⊂ Pi such that (1) |S| = k and

(2) the rightmost two points in S is h and i, with h < i, (3)

maximizing cost(S). We denote by cost(h, i; k) the optimal

cost of a solution of PS2(h, i; k). This is the PS2-dispersion

problem with the rightmost two points in S are designated.

Similar to Lemma 1 PS2(h, i; k) has a solution S contain-

ing the leftmost and rightmost points in Pi. Thus we can

assume 1, i ∈ S.

We have the following lemma.

Lemma 3. Let S be a solution of PS2(h, i; k), and h, i

the rightmost two points in S. Then the following (a)–(c)

holds. (a) The two nearest points of i ∈ S are located on

the left of i, (b) The two nearest points of h ∈ S are located

either on the left of h, or one on the left and one on the

right (it is i), (c) cost(h) < cost(i).

Proof. (a)(b) Immediately. (c) Let h′ be the 3rd right-

most point in S. Then cost(h) ≤ d(h′, h) + d(h, i) <

d(h′, i) + d(h, i) = cost(i).

Thus when we compute cost(h, i; k) which is the mini-

mum over cost(x) for x ∈ S, we can ignore i since cost(i) >

cost(h).

Now we explain how to solve PS2(h, i; k). We have two

cases.

Case 1: (Base case) k = 3.

If h=1 then no solution exists. Otherwise the solution is

S = {1, h, i} for some h, and its cost is cost(h) = d(1, i).

Case 2: (Inductive case) k > 3.

Now we compute the solution of PS2(h, i; k). We can

assume we have already computed the solutions of smaller

problems PS2(h′, h; k − 1) for h′ = 1, 2, ..., h − 1. By ap-

pending i to a solution of a smaller problem PS2(h′, h; k−1)

for some h′. we can construct a solution S of PS2(h, i; k),

as follows. We have four subcases.

Subcase 2a: cost(h, i; k) is cost(h′, h; k− 1) for some h′.

Subcase 2b: cost(h, i; k) is cost(h) and the two nearest

neighbors of h is located on the left of h.

Since cost(h) > cost(h′) holds where h’ is the left neigh-

bour of h this case does not occur.

Subcase 2c: cost(h, i; k) is cost(h) and the two nearest

neighbors of h is located on the left and right of h.

In this case cost(h, i; k) is cost(h) = d(h′, i).

Subcase 2d: cost(h, i; k) is cost(i).

Since cost(i) > cost(h) this case does not occur.

Thus cost(h, i; k) is maxh′=1,2,···,h−1 min{cost(h′, h; k −
1), d(h′, i)} and we can compute it in O(n) time. The num-

ber of the subproblems is at most kn2 and we can solve each

subproblem in O(n) time.

Theorem 3. One can solve the PS2-dispersion problem

in O(kn3) time.

Similar to Lemma 2 we can prove that cost(h′, h; k − 1)

is a non-decreasing function with respect to h′. Then

min{cost(h′, h; k − 1), d(h′, i)} is a non-decreasing function

with respect to h′ up to some points, then it is a decreas-

ing linear function with respect to h′, so we can find the

maximum one by binary search in O(logn) time.

We have the following thorem.

Theorem 4. One can solve the PS2-dispersion problem

in O(kn2 logn) time.

3ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-161 No.8
2017/1/17

IPSJ SIG Technical Report

5. PSc-dispersion

We can naturally generalize PS2 problem to PSc problem

for any integer c ≥ 3 as follows.

Given a set P of n points on the horizontal line and an

integer k, we wish to find a subset S ⊂ P with |S| = k

maximizing the cost minx∈S{ the sum of the distances to

the nearest (constant) c points in S from x }. We call the

problem PSc-dispersion problem.

Then we can design subproblem PSc(hc−1, hc−2, · · · , h1,

i; k). The number of the subproblems is at most knc and we

can solve each subproblem in O(c2n) = O(n) time. Thus

we can solve the PSc-dispersion problem in O(knc+1) time.

Theorem 5. One can solve the PSc-dispersion problem in

O(knc+1) time.

6. Conclusion

In this paper we defined the LR-dispersion problem and

gave an algorithm to solve the problem.

In this paper we gave an algorithm for the LR-dispersion

problem. The running time of the algorithm is O(kn2 logn).

Also we gave some algorithms to solve some variants of the

dispersion problem.

Can we apply the matrix search method [7] to solve those

problem?

References

[1] T. Akagi and S. Nakano, On r-Gatherings on the Line, Proc.
of FAW 2015, LNCS 9130, pp. 25-32 (2015).

[2] T. Akagi and S. Nakano, Dispersion on the Line, Technical
Report, 2016-AL-158-3, IPSJ (2016)

[3] C. Baur and S.P. Feketee, Approximation of Geometric Dis-
persion Problems, Pro. of APPROX ’98, Pages 63-75 (1998).

[4] B. Chandra and M. M. Halldorsson, Approximation Algo-
rithms for Dispersion Problems, J. of Algorithms, 38, pp.438-
465 (2001).

[5] Z. Drezner, Facility Location: A Survey of Applications and
Methods, Springer (1995).

[6] Z. Drezner and H.W. Hamacher, Facility Location: Applica-
tions and Theory, Springer (2004).

[7] G. Frederickson, Optimal Algorithms for Tree Partitioning,
Proc. of SODA ’91 Pages 168-177 (1991).

[8] R. Hassin, S. Rubinstein and A. Tamir, Approximation Algo-
rithms for Maximum Dispersion, Operation Research Letters,
21, pp.133-137 (1997).

[9] T. L. Lei and R. L. Church, On the unified dispersion prob-
lem: Efficient formulations and exact algorithms, European
Journal of Operational Research, 241, pp.622-630 (2015).

[10] S. S. Ravi, D.J. Rosenkrantz and G. K. Tayi, Heuristic and
Special Case Algorithms for Dispersion Problems, Operations
Research, 42, pp.299-310 (1994).

[11] M. Sydow, Approximation Guarantees for Max Sum and
Max Min Facility Dispersion with Parameterised Triangle In-
equality and Applications in Result Diversification, Mathe-
matica Applicanda, 42, pp.241-257 (2014).

[12] D. W. Wang and Yue-Sun Kuo, A study on Two Geomet-
ric Location Problems, Information Processing Letters, 28,
pp.281-286 (1988).

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-161 No.8
2017/1/17

