
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

In-vehicle Distributed Time-critical Data Stream
Management System for Advanced Driver Assistance

Akihiro Yamaguchi1,a) YousukeWatanabe2 Kenya Sato3,4 Yukikazu Nakamoto3,5

Yoshiharu Ishikawa1 Shinya Honda1 Hiroaki Takada3,2

Received: March 20, 2016, Accepted: May 11, 2016

Abstract: Data stream management systems (DSMSs) are suitable for managing and processing continuous data at
high input rates with low latency. For advanced driver assistance including autonomous driving, embedded systems
use a variety of onboard sensor data with communications from outside the vehicle. Thus, the software developed
for such systems must be able to handle large volumes of data and complex processing. We develop a platform that
integrates and manages data in an automotive embedded system using a DSMS. However, because automotive data
processing, which is distributed in in-vehicle networks of the embedded system, is time-critical and must be reliable to
reduce sensor noise, it is difficult to identify conventional DSMSs that meet these requirements. To address these new
challenges, we develop an automotive embedded DSMS (AEDSMS). This AEDSMS precompiles high-level queries
into executable query plans when designing automotive systems that demand time-criticality. Data stream processing
is distributed in in-vehicle networks appropriately, where real-time scheduling and senor data fusion are also applied
to meet deadlines and enhance the reliability of sensor data. The main contributions of this paper are as follows: (1)
we establish a clear understanding of the challenges faced when introducing DSMSs into the automotive field; (2) we
propose an AEDSMS to tackle these challenges; and (3) we evaluate the AEDSMS during run-time for advanced driver
assistance.

Keywords: data stream management system (DSMS), distributed stream processing, real-time scheduling, earliest
deadline first (EDF), sensor fusion, automotive system, advanced driver assistance system (ADAS)

1. Introduction

Automotive systems utilize various onboard sensors such as
radar, lasers, cameras, and speed sensors, in order to observe the
status and surroundings of a vehicle. By using these sensors to
provide warnings to the driver or operate the vehicle automati-
cally, automotive applications such as pre-crash safety systems,
adaptive cruise control, and lane departure warning systems have
been demonstrated and commercialized [1]. Research and de-
velop on autonomous driving systems has increased in popularity.
Google and Urban Challenge, which is a competition funded by
the Defense Advanced Research Projects Agency, have demon-
strated that self-driving is possible and safe in urban areas [2], [3].
In such situations, managing and processing automotive sensor
data is quite complicated.

Sensor data processing in these scenarios is time-critical, often
imposing deadlines (i.e., a real-time requirement). For data pro-

1 Graduate School of Information Science, Nagoya University, Nagoya,
Aichi 464–8601, Japan

2 Institute of Innovation for Future Society, Nagoya University, Nagoya,
Aichi 464–8601, Japan

3 Center for Embedded Computing Systems, Nagoya University, Nagoya,
Aichi 464–8603, Japan

4 Mobility Research Center, Doshisha University, Kyotanabe, Kyoto 610–
0321, Japan

5 Graduate School of Applied Informatics, University of Hyogo, Kobe,
Hyogo 650–0047, Japan

a) yamagut.ertl@gmail.com;yamagut@ertl.jp

cessing with a real-time requirement, missed deadlines may lead
to serious accidents. In order to meet deadlines, algorithms for
real-time scheduling have been studied in the field of real-time
systems. On the other hand, because raw sensor data includes
uncertain information, enhanced reliability is a necessity. In or-
der to improve positional accuracy for tracking vehicles and/or
pedestrians, algorithms for sensor data fusion are often used to
enhance reliability by integrating multiple sensors and the Global
Positioning System (GPS).

For advanced driver assistance, developers have been plan-
ning to utilize cooperative intelligent transport systems (C-ITSs)
to improve transport safety and reliability using vehicle-to-
infrastructure *1 (V2I) and vehicle-to-vehicle (V2V) communi-
cations, as well as GPS and onboard sensors. The European
Telecommunications Standards Institute (ETSI) has promoted the
international standardization of C-ITSs. This standardization pro-
cess has included communication protocols and data exchange
formats employed by the protocols [4], [5]. Because V2V/V2I
communications can broadcast to surrounding vehicles in 100 ms
cycles [4], the input-data volumes and arrival-time of the commu-
nications may change while a vehicle is driving.

The configuration of an automotive system is distributed and
complicated. In today’s luxury cars, the system comprises
approximately 70–100 nodes such as electronic control units

*1 Infrastructure has a specific meaning in ITSs, where it comprises the
roads, centers, and facilities around vehicles.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

(ECUs) connected by in-vehicle networks. Application software
and sensors are embedded in a distributed manner in the nodes.
Thus, the complexity of software development has increased for
distributed systems in addition to the growing scale and complex-
ity of the data. In these situations, automotive manufacturers must
address the increased costs of embedded software development
and required software platform.

A data stream management system (DSMS) is suitable for pro-
cessing and managing continuous data. It is relatively easy to
design data processing in the form of query descriptions. More-
over, DSMSs can often be applied in distributed systems. DSMSs
manage data as a stream, which is a sequence of tuples. For
this reason, data stream processing is low-latency and suitable for
use with changing data rates. In the past, DSMSs were applied
mainly in networking fields (traffic engineering, intrusion detec-
tion, and sensor networks) and finance (arbitrage and financial
monitoring). We have been researching and developing a data-
centric software architecture for automotive embedded systems
by DSMSs [6].

However, we have encountered new challenges when apply-
ing DSMSs to automotive data processing. In particular, because
deadlines are required rather than reduced average latency or im-
proved throughput, a DSMS should have architecture suitable for
time-critical purposes and should meet deadlines in distributed
stream processing. Furthermore, stream processing is distributed
in in-vehicle networks, where previous methods cannot be di-
rectly applied. In addition, a DSMS must provide reliable sen-
sor data using sensor fusion, where the arrival-timing of input-
data from V2V communications is out-of-order. Previous DSMSs
have difficulties handling these challenges.

1.1 Contributions and Roadmap
To address these challenges, we developed an Automotive

Embedded Data Stream Management System (AEDSMS) at the
Center for Embedded Computing Systems of Nagoya University
(NCES), which is an organization that acts as a center for re-
search and education in automotive embedded systems technol-
ogy based on industrial-university cooperation *2. We promoted
this research by establishing a consortium with seven companies,
including Toyota, Hitachi, and Denso, and three additional orga-
nizations, including the National Institute for Land and Infras-
tructure Management and the Japan Digital Road Map Associa-
tion.

The main contributions of this paper are as follows:
(A) Clarifying the challenges of applying DSMSs to automotive

data processing.
(B) Developing an AEDSMS to overcome these challenges,

which is a DSMS with the following features:
(a) The DSMS architecture precompiles high-level queries into

an executable query plan in the design of automotive sys-
tems;

(b) Distributed stream processing for in-vehicle networks;
(c) Real-time scheduling for distributed stream processing;
(d) A sensor fusion operator for out-of-order input-streams.

*2 Project URL: http://www.nces.is.nagoya-u.ac.jp/project/
DataInteg 2010.pdf (in Japanese)

(C) Evaluating the feasibility of the AEDSMS during runtime
for advanced driver assistance, according to ETSI specifica-
tions.

This paper is the extended version of Ref. [7] and includes addi-
tional evaluations and explanations. In particular, regarding con-
tribution (B.c), this paper extends [8], which proposes a method
of stream processing on a single node into distributed stream pro-
cessing.

The remainder of this paper is organized as follows. Section 2
provides an overview of related work. Section 3 presents a brief
summary of the research field and our motivation for applying a
DSMS to automotive systems. Section 4 considers the important
challenges that must be addressed when applying DSMSs to the
field of interest. Section 5 introduces the AEDSMS. Section 6
presents an evaluation of the effectiveness of the AEDSMS based
on its application to an advanced driver assistance system. Sec-
tion 7 summarizes how the AEDSMS overcomes various chal-
lenges, finally, and our conclusions are provided in Section 8.

2. Related Work

2.1 Automotive Software Platforms without Data Streams
The AUTomotive Open System ARchitecture (AUTOSAR) is

a major component-based, automotive control software platform
and software development methodology that facilitates software
reusability and production [9]. The partners in the consortium in-
clude many automotive companies; carmakers use AUTOSAR as
the foundation of their commercial automotive systems. How-
ever, AUTOSAR does not provide a solution to data management
problems, as described in Section 3.2.

The SAFESPOT project developed a platform of automotive
systems for managing data obtained from onboard sensors and
V2V/V2I communications using a relational database (RDB),
where the members of the consortium, including Bosch and
Volvo, performed demonstration experiments [10]. In addition,
[11], [12] developed an RDB to satisfy the real-time requirements
of automotive data management, where deadlines must be met.
However, RDBs are not suitable for automotive sensor data be-
cause their update frequency is high, and it is necessary to process
data continuously at low-latency in driver assistance systems.

2.2 Data Stream Management Systems
A data stream management system is a suitable platform

for managing continuous data such as sensor data and network
packets at a low-latency. Many DSMSs have been developed
for general-purpose stream processing systems, which include
STREAM, Aurora, Gigascope, InfoSphere Streams, as well as
complex event processing systems such as Oracle CEP and Es-
per [13]. Recently, platforms for scalable, distributed, and paral-
lel stream processing have been developed using cloud comput-
ing, such as MillWheel and Muppet [14], [15]. However, these
platforms do not meet the requirements of the automotive field,
as described in Section 4, and their software sizes are too large
for embedded deployment.

In the sensor networks field, DSMSs have been developed with
sufficiently small footprints to install in embedded systems, as
well as the automotive field. For example, [16] proposed an on-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

board stream processing method for engineering testing and diag-
nosis in vehicle systems. The Vehicle Data Stream Mining Sys-
tem (VEDAS) [17] and Minefleet [18] are distributed data stream
mining platforms for use in mobile computing devices or au-
tomotive systems. StreamCars is a stream processing platform
for driver assistance systems, which shares a similar objective as
our research [19]. This method provides sensor fusion operators
to enhance the reliability of sensor data. However, the perfor-
mance and implementation have not been described in detail. In
addition, previous studies have not considered either distributed
stream processing systems in in-vehicle networks or their real-
time requirement, although they are important in automotive data
processing, which means that they do not satisfy the requirements
described in Section 4.

2.3 Real-time Scheduling of Data Stream Processing
In order to satisfy the real-time requirements, many studies

have used real-time scheduling to determine the order of pro-
cessing to meet deadlines [20]. Some studies have also addressed
stream processing in the real-time community and database com-
munity. In particular, most of the proposed methods have been
based on earliest deadline first (EDF), which is an algorithm for
real-time scheduling that can handle cases where the input-data
rate changes [21], [22], [23]. In these methods, users specify the
End-to-End deadline, which is the maximum allowable end-to-
end latency between when the data is read from a sensor as tuples
and when it is processed, for each output-stream. However, these
methods have limited applicability in stream processing, and it is
difficult to apply them directly to automotive data processing.

Zhengyu et al. [21] and Yuan et al. [22] implicitly considered
a query as a scheduling task and required a one-to-one relation-
ship between a query and an End-to-End deadline. As a result,
they were unable to deal with a multiquery, which shares part
of data processing and delivers multiple output-streams. The
method proposed by Xin et al. [23] is less limited than other
methods [21], [22], and it can deal with multiqueries by divid-
ing the query graph so that each task includes one output-stream.
In contrast, there may exist tasks without End-to-End deadlines
in distributed stream processing because the query plan is di-
vided and distributed among nodes. Therefore, previous meth-
ods cannot be used with distributed stream processing with mul-
tiqueries. Based on previous research [22], [23], some studies
have addressed Quality of Service (QoS) management and load
shedding to meet End-to-End deadlines [24], [25], [26]. How-
ever, this method cannot operate in distributed stream processing
with multiqueries for the aforementioned reasons.

2.4 Operator Placement of Distributed Stream Processing
The operator placement problem is the key issues of distributed

stream processing because it is important for improving perfor-
mance. It is NP-hard because it has combinatorial complex-
ity where operators and streams are allocated in nodes and net-
works [27]. For this reason, various heuristic methods of opera-
tor placement have been proposed to reduce network usage and
balance the load among nodes [28]. A method that formulates
the operator placement problem as mixed-integer linear program-

ming (MILP) has also been proposed [29]. However, these pre-
vious methods assume overlay (mainly peer-to-peer) networks.
There are no existing methods that apply to in-vehicle networks,
which have a hybrid network topology of mainly bus networks
and gateways.

3. Background and Motivation

In this section, we explain the features of automotive data pro-
cessing and the reason for introducing DSMSs into automotive
embedded systems.

3.1 Automotive Data Processing
The applications of an automotive embedded system often

has a lot of data processing because the process flow of the
application involves three steps: (1) obtaining input-data from
input-devices such as sensors and communication equipment dis-
tributed among many nodes, (2) processing and combining the
data, and (3) controlling the requisite actuators, which are also
distributed among many nodes.

We now describe the features and requirements of automotive
data processing.
Real-time Requirement
Data processing has End-to-End deadlines, which is specified by
users according to the specifications of applications when design-
ing automotive systems. For example, ETSI specifies the End-to-
End deadline for vehicle collision warnings to be 300 ms [30].
For vehicle control, the End-to-End deadlines are approximately
10–100 ms, depending on the application. This feature is required
for driver assistance systems, which are safety-critical.
Reliability Requirement
The error between the value observed from an input-device and
the true value must be minimal to provide accurate information
such as vehicle position. ETSI has defined the data dictionary
used in C-ITS communications, which requires that confidence
information be attached to sensing data, such as the latitude, lon-
gitude, and velocity [5]. Confidence information is generally rep-
resented as a symmetric 95% confidence interval [4], [5]. There-
fore, it is recommended that each vehicle broadcast its confidence
information outside the vehicle, as required by ETSI.
Variation of Input-data Volumes
Automotive embedded systems are equipped with a number of
sensors, where the input-data are updated every 10–100 ms. In
contrast, V2V/V2I communications can broadcast to surrounding
vehicles within a range of 100–500 m in 100 ms cycles [4]. The
number of messages received by automotive embedded systems
increases at intersections because many vehicles broadcast V2V
communications at these points. ETSI specifies that a vehicle can
receive a maximum of 1000 vehicle messages per second [30].
This requirement means that it is possible to input information
for a maximum of 1000 vehicles per second because one mes-
sage only includes information for one vehicle in V2V commu-
nications [4], [5]. However, it is difficult to process all of this
input-data and meet End-to-End deadlines. Therefore, in some
situations, the input-data obtained from outside the vehicle must
be filtered to meet deadlines unlike input-data from onboard sen-
sors that cannot always be filtered.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 Example of an intersection with collision warnings.

Fig. 2 Order of data processing based on V2V communications.

Out-of-order Arrival
Each vehicle that uses V2V communications broadcasts a mes-
sage in the interval of 100 ms at the timing of the vehicle. As a
result, it is possible for a vehicle to receive messages via V2V
communications with a maximum difference of 100 ms between
when the data are read by a sensor and when the sensor data are
transmitted by the sender, even if communication delays are ig-
nored. In other words, input-data from V2V communications is
out-of-order.
3.1.1 Example of Real-time Scheduling

Intersection collisions are one of the most common types of
accidents that account for approximately 50% of all reported
crashes [31]. In particular, the use of C-ITS is expected to be ben-
eficial at intersections with poor visibility because the use of on-
board sensors, such as radar and cameras, on a vehicle cannot ac-
curately detect other vehicles. By using the application scenario,
we explain the importance of introducing real-time scheduling.

Figure 1 shows an example of a collision warning system for
subject vehicle A at an intersection with poor visibility via V2V
communications. Vehicles A and X approach the intersection. A
does not know that X is approaching because of poor visibility.
However, vehicle E can detect vehicle X using E’s onboard sen-
sors. The End-to-End deadline for collision warnings is 300 ms
according to ETSI specifications [30]. If vehicle A cannot pro-
vide a collision warning for vehicle X within 300 ms after vehicle
E detects X using its onboard sensors, A will collide with X. Vehi-
cles A, B, C, D, and E broadcast the information sensed by their
onboard sensors to other vehicles using V2V communications.
However, vehicles X and F cannot use V2V communications. YZ

is the message that vehicle Z broadcasts by sensing vehicle Y.
In Fig. 2, subject vehicle A receives message XE regarding ve-

hicle X from vehicle E at the current time t and waits to process
the messages broadcast from vehicles B, C, and D, according to
the situation shown in Fig. 1. To simplify the discussion in this
example, we assume that each vehicle senses the surrounding ve-

Fig. 3 DSMS in an automotive embedded system.

hicles at the same time, where E broadcasts information regarding
X via V2V communications at 95 ms after sensing it, whereas B,
C, and D broadcast their information at 5 ms after sensing. We
assume that it takes 30 ms to process a message that has arrived
from V2V communications.

Figure 2 (a) shows the case where the messages are processed
using first in, first out (FIFO), where the latency required to pro-
cess XE is 95+ 30+ 7× 30 = 335 ms because seven messages are
waiting to be processed before XE . As a result, the End-to-End
deadline of 300 ms is missed, and the subject vehicle collides with
X. This shows that it is important to meet End-to-End deadlines
in automotive data processing.

On the other hand, Fig. 2 (b) shows an example using real-time
scheduling based on EDF [20], which determines the processing
order required to prioritize the input-data with early deadlines. In
this case, XE is processed first because the deadline of XE is the
earliest. As a result, subject vehicle A processes XE and the re-
maining messages within the End-to-End deadline and stops be-
fore colliding with vehicle X. Therefore, the application of real-
time scheduling to automotive data processing is useful for avoid-
ing vehicle crashes.

3.2 Reenergizing the Software Architecture Based on DSMS
In automotive systems that include a variety of sensors, the

scale and complexity of the software and the volumes of data are
expected to grow [32]. Traditional automotive software imposes
a high degree of coupling among application programs, sensors,
and their data. Automotive component suppliers provide prod-
ucts that satisfy the following: data processing is embedded in
application programs, and the application programs use the re-
lated sensors individually. As a result, similar data processing is
duplicated, although the processed data is commonly reused. In
addition, the physical structure of nodes, in-vehicle networks, and
onboard sensors in an automotive embedded system is usually
different among vehicle types. If the physical structure is changed
during traditional automotive software development, large sec-
tions of the software must be modified, which results in increased
development costs for automotive embedded software.

The discussions above suggests the necessity of a data-centric
software architecture and platform. In our approach, we separate
data processing from the application programs. To achieve this,
we use a DSMS that is suitable for data processing in automotive
embedded systems. Figure 3 shows the architecture of the DSMS

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

applied to an automotive embedded system. We describe automo-
tive data processing using queries in the DSMS. The input-data
from onboard sensors and communications is inserted into input-
streams of the query plan as tuples, and application programs ob-
tain the results of the queries from output-streams. By defining
the schema of each stream that is independent of specific sensors
and applications, sensors and applications are decoupled in this
approach. In addition, it is easy to reduce duplicated processing
of similar data from the query graph.

Because automotive data processing is distributed among
nodes, the DSMS and query graph are also distributed. The
queries of the DSMS are separated from the physical structure
in order to improve the reusability of the queries among differ-
ent vehicle types. By using this approach, the DSMS provides
location-transparent data access to users.

The DSMS represents queries as dataflow diagrams in the same
manner as Aurora and Borealis, and it follows their basic query
specifications [33]. However, other DSMSs, e.g., [34], [35], rep-
resent queries using structured declarative languages like SQL.
SQL-like declarative languages can simplify query descriptions,
but the developers of safety-related automotive applications de-
sign data processing using a work-flow representation.

4. Challenges to Automotive Embedded Data
Stream Management Systems

This section introduces the important challenges that must be
addressed when embedding DSMSs in automotive systems com-
pared with other areas such as sensor networks, financial tickers,
traffic management, and click-stream inspection.

4.1 Time-criticality during Runtime (C1)
In other areas, the ability to register, remove, and modify

queries as necessary on the fly is advantageous for DSMSs. Ex-
isting methods that improve the performance of DSMSs migrate
operators dynamically during runtime according to the load sta-
tus (i.e., input-data volumes), where their performance metrics
include the average latency and throughput [28], [33]. Therefore,
their query plan, including the query graph and operator place-
ment, changes dynamically during runtime.

In contrast, automotive data processing must satisfy real-time
requirements, as described in Section 3.1. For real-time re-
quirements, which differs from the requirements of conventional
DSMSs, speed is not important unless a deadline will be missed.
This implies that the query plan should be optimized in the worst
case scenario.

Time predictability is also a requirement, which is the ability
to exactly predict the worst case latency. Changing the query
plan dynamically in DSMSs makes it difficult to satisfy the pre-
dictability requirement. In automotive embedded systems, hard-
ware configurations and application software are determined at
the design stage during automotive development, and the data
processing installed in automotive embedded systems is also de-
termined at that time. The maximum input-data volumes that
should be processed are known by validating them beforehand.
Therefore, the query plan should be optimized in the critical case
in which the input-data volumes are maximized under the as-

Fig. 4 Examples of in-vehicle networks and nodes.

sumption. Equivalently, the DSMS can determine the query plan
at the design stage.

4.2 Distributed Data Streams in In-vehicle Networks (C2)
The structure of networks and nodes generally differs among

vehicle types; thus, distributed stream processing in an automo-
tive system should be location transparent. A key issue is operator
placement because it affects the efficiency of data processing and
network usage. In other fields, many methods have been proposed
for solving the operator placement problem by assuming overlay
networks, as described in Section 2.4. These methods estimate
network usage accurately because one of their main goals is its
reduction [28].

Automotive data processing also requires reducing and esti-
mating in-vehicle network usage. Increasing in-vehicle network
usage not only increases the communication delay, but also makes
it difficult to predict the communication delay by frequent trans-
mission collisions. However, because in-vehicle networks have a
complex hybrid network topology, which connects multiple bus
networks with multiple gateways, it is difficult to decide the de-
livery route of streams through in-vehicle networks with previous
operator placement methods. Furthermore, it is also difficult to
estimate in-vehicle network usage. The following example indi-
cates the requirements for the DSMS to accurately estimate deliv-
ery routes of streams and network usage in in-vehicle networks.
Example: Consider the following case: nodes A, B, C, and D and
nodes E and F are connected via a gateway, as shown in Fig. 4.
If A and B communicate, some streams are routed only through
bus network1. In this case, network usage increases between C
and D, although the network usage between E and F does not in-
crease. In contrast, if D and E communicate, some streams are
routed through bus network1, the gateway, and bus network2. In
this case, network usage increases not only between C and D, but
also between E and F.

4.3 Applying Real-time Scheduling (C3)
As explained in Section 3.1, our DSMS requires real-time

scheduling. The data rate of the input-streams may change dy-
namically because the input-data rate from V2V communications
changes during driving. For this reason, EDF scheduling is suit-
able as a real-time scheduling algorithm, which is the same ap-
proach used by the previous methods of Section 2.3.

In automotive data processing, the typical query plan is mul-
tiqueries because multiple applications share information such
as vehicle position, as described in Section 3.2. Moreover, be-
cause automotive data processing may be distributed, data stream
processing may also be distributed. Although scheduling is one
of the main research topics in data stream processing, real-time
scheduling has not been widely studied, and it does not meet our
requirements. As described in Section 2.3, previous methods can-
not be applied to distributed stream processing with multiqueries.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

4.4 Enhancing Reliability by Sensor Data Fusion (C4)
Driver assistance systems require enhanced reliability of sensor

data. Sensor fusion is a typical and effective method that meets
this requirement. Kalman filters and particle filters are well-
known algorithms employed for sensor fusion, which use previ-
ous output-results to improve positional accuracy or for tracking
vehicles/pedestrians. However, few previous studies have imple-
mented sensor fusion in a DSMS, and the implementation meth-
ods are not clear [19].

To develop various sensor fusion algorithms, it would be help-
ful if DSMSs could support common functions for sensor fu-
sion. Such sensor fusion algorithms fuse sensor data with the
same timestamp with previous output-results. As described in
Section 3.1, because input-data may be out of order, tuples with
older timestamp may arrive later. This means that it is necessary
to manage previous output-results for a certain period of time.
Most DSMSs provide windows for operators to manage tempo-
ral recent tuples. However, the intention is to manage the tuples
before operators process rather than output results after the opera-
tors are processed. Therefore, it is necessary to support windows
for the output-results of operators as a common function during
sensor fusion.

4.5 Reusability of Query Descriptions (C5)
The physical structure and application programs are different

by the type of vehicles. Queries that represent data processing
are influenced by the type of vehicle because data processing in
automotive systems is embedded in the product of the vehicle.
Therefore, a reusable query description independent of the vehi-
cle type is required.

Fig. 5 Overview of AEDSMS.

5. AEDSMS: Automotive Embedded Data
Stream Management System

To overcome the challenges discussed in Section 4, we intro-
duce AEDSMS, which is a DSMS for automotive embedded data
processing.

5.1 Design Principles
Figure 5 shows the overview of AEDSMS. AEDSMS pro-

vides users with high-level queries (HLQs) that can be location-
transparent and modularized and precompiles HLQs into low-
level queries (LLQs) using a code generation approach before
they are installed in an automotive embedded system. When a
vehicle is moving, AEDSMS dynamically processes the tuples to
meet real-time and reliability requirements.

For HLQs, users can select a subset of standard Aurora op-
erators; for example, Map, Filter, Union, and Join can be em-
ployed [33]. In addition, user-defined operators (UDOs) can be
employed that allow users to implement processes using C++
classes. UDOs can be extended using class inheritance in C++.
Moreover, AEDSMS is equipped with a mechanism for defin-
ing stream processing components (SPCs) by composing multi-
ple operators and stores them in a library (SPC-Library). Users
can retrieve them from the SPC-Library to describe queries and
use operators and SPCs.

In the same manner as previous time-critical data stream pro-
cessing on a single node [21], [22], [23], AEDSMS allows users
to set End-to-End deadlines for output-streams of queries in dis-
tributed stream processing. AEDSMS executes the query plan
based on EDF to meet End-to-End deadlines during runtime.

In AEDSMS, a sensor data fusion operator (SDFO) is avail-
able, which improves reliability by fusing streams that are ob-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 6 Example of an SPC description.

tained redundantly from different sensors. Users can implement
specific sensor fusion algorithms by inheriting the SDFO C++
class. The process that acquires inputs from onboard sensors is
verified in advance at the design stage to ensure that it meets the
deadline. However, a process that employs communication out-
side of the vehicle may miss a deadline due to large fluctuations
in the volume of data and communication delays. Processes that
use onboard sensors and communicate with the outside are redun-
dant; thus, processes that employ communications are only used
when they meet deadlines. Therefore, AEDSMS can provide re-
liable streams while meeting deadlines even if data obtained from
outside of the vehicle is employed.

Queries installed in a target automotive embedded system
should be customized for the specific vehicle type, whereas
queries described by users should be independent of the physical
structure. To address this issue, AEDSMS provides HLQs that
are less dependent on the physical structure and converts HLQs
into LLQs that are suited to the physical structure. Only query
plans that have been generated as binary code are installed in the
automotive embedded system. In the following, we describe the
order in which the query plan is generated.
I. High-Level Queries (HLQs)
HLQs represent the highest level of abstraction for AEDSMS
queries, and they are described by users. HLQs are location trans-
parent, which means that they are independent of networks and
nodes. HLQs are described using operators and SPCs.
II. Low-Level Queries (LLQs)
LLQs are customized according to the physical structure of the
target, i.e., LLQs depend on networks and nodes. An LLQ does
not include SPCs, and it only comprises operators. Each LLQ is
generated for the node where operators are placed.
III. Executable Queries (EXQs)
An executable query (EXQ) is a query plan embedded in a target.
Each EXQ is generated from an LLQ. Because each EXQ is a
binary code, it cannot be easily edited by users.

5.2 Stream Processing Component (SPC)
In addition to defining queries, SPCs are defined as dataflow

diagrams that comprise operators and connectivity, as shown in
Fig. 6. An SPC has the same interface as operators; the inputs are
streams, and the outputs are streams.

In the example in Fig. 6, an SPC produces the position and
velocity of surrounding vehicles. It converts relative posi-
tion/velocity from radar into an absolute value using the absolute
position/velocity of the subject vehicle. The schema of the stream
(Radar) obtained from radar has attributes such as relative posi-

Fig. 7 Example of an HLQ.

tion and velocity, confidence *3, and the timestamp. The schema
of the other stream (SubjectVehicle) input into the SPC has at-
tributes such as position, velocity, confidence, and the timestamp.
The schema of the stream output from the SPC has the same
schema as SubjectVehicle. The SPC comprises two operators:
Join and Map.

5.3 Example of an HLQ
An example of an HLQ is shown in Fig. 7. SPC#b is the SPC

described in Fig. 6. This HLQ is a multiquery that shares part
of the data processing and delivers three output-streams (output1,
output2, and output3). A load shedder is positioned in the input-
stream from V2V communications. In this HLQ, data process-
ing using V2V communications is made redundant by processing
with onboard sensors. Because of this, all of the input-data from
onboard sensors are processed to meet their deadlines even if the
load shedder drops the input-data from V2V communications.

Output1 delivers the stream about subject and surrounding ve-
hicles, which is generated from the onboard sensors of the subject
vehicle. This End-to-End deadline is the shortest at 30 ms be-
cause the output-stream is used as input for the driver assistance
systems of surrounding vehicles. Output2 delivers the stream in-
cluding the time to collision (TTC) as CollisionDegree, which
is calculated from the streams related to the subject vehicle and
other vehicles with the same timestamp. The End-to-End dead-
line is 300 ms according to ETSI because the output-stream is
used to produce collision warnings [30]. Because output3 pro-
vides the results of sensor fusion from the onboard sensors and
V2V communications for car navigation, real-time performance
is not required, and the End-to-End deadline is 3 s, which is suf-
ficiently long.

SPC#a outputs SubjectVehicle, which is obtained using GPS
and velocity sensors. SPC#b outputs SurroundingVehicle, which
is obtained using onboard sensors, as explained in Section 5.2.
The Union operator unifies SubjectVehicle and SurroundingVe-
hicle. The SDFO operator fuses the tuples obtained from the
onboard sensors and V2V communications. Map operators for-
mat the tuples for the purpose of V2V delivery and navigation.
SPC#c outputs CollisionDegree based on the outputs of the two
Filter operators, which extract streams related to the subject and
surrounding vehicles.

5.4 Design Flow of AEDSMS
The design flow of AEDSMS comprises five steps, as outlined

*3 Confidence is represented as a variance in the same manner as Ref. [10]
to simplify the computation.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

in Fig. 5. Steps 1–4 statically precompile queries when the soft-
ware is developed. Step 5 is only processed during runtime on
the target automotive embedded system.
Step 1. SPC expansion
This step expands the SPCs in an HLQ using the definition of
SPCs in the SPC-Library, and it embeds the operators and con-
nectivity, which define SPCs, into the HLQ. As a result, the ex-
panded HLQ does not include SPCs.
Step 2. Operator placement
This step allocates the expanded HLQ to the nodes and in-vehicle
networks of the target. Unlike previous distributed stream pro-
cessing [28], [29], AEDSMS converts a physical structure into
an architectural graph, which is an approach that is widely used
to explore the design space of embedded systems [36]. Next,
AEDSMS allocates the queries to the architectural graph, as
described in Section 5.5. The previous methods of operator
placement often use the input-data rate at runtime. In contrast,
AEDSMS optimizes operator placement by using the maximum
input-data rate in the assumed worst-case; in this case, meeting
deadlines is more important than speed. As a result, previous
methods of distributed stream processing can be applied in our
field, and LLQs can be generated.
Step 3. Task definition
This step defines tasks from the LLQs and assigns the appropriate
relative deadline, which is the modified End-to-End deadline, for
each task. This method is described in Section 5.6. Because the
release-timing of each task is when tuples are inserted into tasks,
the information required by EDF scheduling at runtime can be
obtained in this step.
Step 4. Binary generation
This step statically converts LLQs into source code and then se-
lects the minimum number of necessary modules from a Runtime
Library, which contains functions to run the DSMS in automotive
embedded systems. Next, this step links the Runtime Library,
EXQ, and application programs (if any). As a result, executable
files are generated.
Step 5. Execution on an automotive embedded system
The executable files generated during runtime in Step 4 are in-
stalled on nodes that execute stream processing. The instance of
each task has an absolute deadline by adding the relative dead-
line to the timestamp of the processed tuples. On each node, the
scheduler executes the operator that inputs the tuple with the ear-
liest absolute deadline at the highest priority, based on the EDF
policy. Application programs can use output-streams via function
calls or callback functions.

5.5 Operator Placement using an Architectural Graph
Figure 8 outlines how the operator placement problem is

solved with an architectural graph. In an architectural graph, a
vertex is a node (ECU), network (bus), or gateway. In particular,
a vertex that comprises a network or gateway is a virtual vertex.
The architectural graph has an edge between vertices if and only
if a gateway or an ECU connects with a network.

The following discussion assumes that the physical structure
and application programs are set in a manner similar to that in
Fig. 8 (1). A query is outlined in Fig. 8 (2). The architectural

Fig. 8 Query allocation using an architectural graph.

Fig. 9 Allocation method for tasks and their relative deadlines.

graph converted from Fig. 8 (1) is shown in Fig. 8 (3). After con-
version into an architectural graph and by satisfying the following
constraints, the queries can be allocated using previous methods
of operator placement, such as those in [29].

• An operator cannot be mapped to a virtual vertex, which rep-
resents a network or a gateway *4.
• A stream can be mapped between different nodes only if the

architectural graph has an edge between the vertices.
• The usage of each network can be estimated as the sum of the

data volume in the streams that are input to the virtual ver-
tex corresponding to the network. For example, the network
usage of Bus1 can be estimated as the sum of the input-data
volume of the two streams (s1 and s2) in Fig. 8 (4).

Using the above method, the delivery route of each stream can be
correctly represented in in-vehicle networks and network usage
can be accurately estimated.

5.6 Task Definition for Real-time Scheduling of DSMSs
It is necessary to define tasks and specify their relative dead-

lines to apply EDF to DSMS scheduling. AEDSMS defines each
task as a sequence of operators, where the execution order is de-
termined statically at each node, as shown in Fig. 9. If there ex-
ists a dependency of execution order (i.e., precedence constraints)
among tasks, EDF* [37] can be applied to resolve the depen-
dency. EDF* calculates the relative deadline d of a precedence
task τ from the computation time ci and the relative deadline di

of each subsequent task τi; that is,

d = min{di − ci; i = 1, 2, · · · , n}. (1)

First, the relative deadlines of tasks without subsequent tasks are
initialized as End-to-End deadlines. Next, by recursively apply-
ing Eq. (1) from subsequent tasks to a precedence task, it can be
shown that all tasks can specify appropriate relative deadlines and

*4 A stream can be allocated to virtual vertices.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

remove precedence constraints [37]. AEDSMS considers com-
munication delays in the same manner as the computation time
of an operator; it uses the following equation, which is an exten-
sion of Eq. (1):

d = min{di − ci − cτ→τi ; i = 1, 2, · · · , n}, (2)

where cτ→τi is the communication delay between τ and τi.
The following discussion assumes the example in Fig. 9. After

the relative deadline of T4 is derived from the End-to-End dead-
line of T1 using Eq. (2), the relative deadline of T5 is derived
from the relative deadline of T4 and End-to-End deadlines of T2
and T3 by Eq. (2). Therefore, AEDSMS assigns relative dead-
lines even if a multiquery is distributed among multiple nodes.
As a result, real-time scheduling can be applied based on EDF in
AEDSMS.

Previous load shedders [24], [25], [26] drop or filter tuples
from streams to avoid overload or missing deadlines. Because
the input-data from onboard sensors cannot be dropped in safety
critical applications, AEDSMS can set load shedders to specific
input-streams, which is input-data from outside the vehicle in
most cases. Users can write a value function to determine the
filtering conditions for each load shedder. The load shedder fil-
ters tuples of lower value so that the maximum input volume is
not exceeded, which is predetermined at the design stage. Set-
ting the load shedder to the input-stream from V2V communi-
cations makes it possible to process all of the input-data from
onboard sensors without filtering while meeting deadlines, even
if the number of surrounding vehicles increases.

5.7 Sensor Data Fusion Operator (SDFO)
The SDFO is the operator that allows users to implement sen-

sor fusion algorithms efficiently by stream processing and is im-
plemented with a specific window structure via class inheritance
from UDO. The window structure of the SDFO is outlined in
Fig. 10. In the automotive field, sensor fusion requires windows
to handle out-of-order inputs, as described in Section 4.4. There-
fore, in addition to the front window, where traditional DSMS
operators such as Join and Aggregate hold the previously input tu-
ples for a certain period of time, SDFO has a rear window, which
holds previous output tuples for a certain period of time.

Most sensor fusion algorithms fuse the same observed objects
and do not fuse different observed objects. Therefore, both the
front window and rear window are partitioned for observed ob-
jects. Moreover, because sensor fusion usually enhances the ef-
fects by fusing diverse sensors, the combination of fused sensor
data should be distinguished by observing sensors. Therefore, the
front window is also partitioned for observing sensors.

The SDFO fuses the tuples held in the front window when all
of the inputs arrive. However, the latency is not guaranteed if

Fig. 10 Structure of the windows employed for SDFO.

the SDFO uses input-data obtained from outside the vehicle. In
this case, the SDFO imposes a time limit and only processes tu-
ples that have arrived at the front window when the timeout is
expired.

6. Feasibility Study

We evaluated the performance of AEDSMS during runtime and
confirmed its feasibility.

6.1 Evaluation Method
The application scenario is the example in Section 3.1.1, and

the HLQs are the same as those in Section 5.3 (Fig. 7). In the
automotive field, the volume of input-data from V2V communi-
cations is large and fluctuates. In order to confirm the feasibil-
ity of AEDSMS when the input-data volume is maximized, we
performed an evaluation where information is received at a max-
imum rate of approximately 1000 vehicles per second from V2V
communications, which matches the ETSI specification [30]. We
used the network simulator Scenargie *5 in this evaluation be-
cause it can handle V2V communications from a large number
of vehicles, as well as facilitate an accurate simulation of their
radio properties, radio field strength, and the mobility of each ve-
hicle. We used roads with a grid layout, specifically, the Manhat-
tan mobility model, which includes obstacles such as buildings,
thereby allowing us to evaluate collision warnings at intersections
with poor visibility, while still satisfying the maximum input-data
volume specified by ETSI.

Figure 11 shows the roads and initial vehicle positions. Each
vehicle moves in the direction of the arrow at a speed of 60 km/h,
and the distance between all intersections is equal to 100 m. The
number of vehicles is maximized at the two intersections marked
with circles in Fig. 11. Figure 12 shows the number of input-data
obtained from V2V communications per unit time (1 s). These
simulation parameters ensure that the input volume is maximized
and satisfies the ETSI specifications at the two intersections.

Both V2V communications and radar were assumed to provide

Fig. 11 Initial positions of vehicles in the Manhattan model.

Fig. 12 Input rate from V2V communications.

*5 Scenargie: https://www.spacetime-eng.com/en/labSimulator.html

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 13 Physical structure.

Fig. 14 LLQs and their mappings.

Table 1 Task definition on each node.

Task Node Operators Relative deadline [ms]
T1 Node1 SDFO1, Map1 d1 :=min{d2 − c2, d3 − c3} − cBus1

T2 Node2 Union1 d2 :=min{d4 − c4, d5 − c5}−
2cBus1 − cGW − cBus2

T3 Node2 Join1, Map2, Union1 d3 :=min{d4 − c4, d5 − c5}−
2cBus1 − cGW − cBus2

T4 Node3 SDFO2 d4 :=min{d6 − c6, d7 − c7, d8 − c8}
T5 Node3 Map3 d5 :=30
T6 Node3 Filter1, Join2, Map4 d6 :=300
T7 Node3 Filter2, Join2, Map4 d7 :=300
T8 Node3 Map5 d8 :=3000

input-data at 100 ms cycles, and their range was approximately
200 m. Radar was not refracted by obstacles because we used a
high frequency of 70 GHz or greater. However, the V2V com-
munications occurred at 700 MHz, the frequency band defined in
Japan, which means that it is refracted to some extent even if there
are obstacles. Because sensor noise cannot be simulated in Sce-
nargie, we experimentally injected artificial noise based on sensor
specifications *6 *7.

Figure 13 shows the physical structure. The network is com-
prised of one gateway and three nodes in which the previous
methods of operator placement have difficulties allocating a query
plan. The specification for each node is an 800 MHz CPU with
512 MB of RAM running on a Linux OS (Fedora10). Figure 14
shows the physical structure and allocation of the LLQs. Opera-
tors #a–#c correspond to the SPCs to which the operators belong.
The bus networks assume Controller Area Networks (CANs), and
the communication delay is calculated using formular (1) in [38].

Table 1 shows the task definition on each node. Each task is
comprised of the third column (Operators), which corresponds to
operators in Fig. 14. For some i, di is the relative deadline of task
Ti, and ci is the computation time. cBus1, cBus2, and cGW are the
communication delays of Bus1, Bus2, and GW, respectively.

6.2 Basic Performance of SDFOs
Before evaluating the application scenario described in Sec-

tion 6.1, we evaluated the basic performance of a single SDFO.
An SDFO is a specific operator that was newly developed for
AEDSMS and takes more computation time than the other op-

*6 DGPS: http://www.u-blox.com/images/downloads/Product Docs/
GLONASS-HW-Design ApplicationNote (GPS.G6-CS-10005).pdf

*7 Radar: http://www.abott-mf.com/images/pdf/IbeoLUX2010.pdf

Table 2 Latency in the case of single sensor fusion.

Type Average Standard deviation
1 1.84 ms 86.2 μs
2 11.0 ms 92.2 μs

Fig. 15 Relationship between the fusion number and latency.

erators. We implemented two types of Kalman filters as SDFOs,
which were the same as the SDFOs in the LLQs shown in Fig. 14.
Type1: Subject vehicle position estimation
This type estimates the subject vehicle’s position and velocity by
observing GPS and velocity sensors, as described in Ref. [39].
This type of sensor fusion is used frequently in commercial cars.
Type2: Fusion of multiple sensor data from vehicles
This type estimates the subject vehicle’s position by fusing the
position of the subject and surrounding vehicles based on onboard
sensors and V2V communications, in the same way as Ref. [40].
The fusion number varies according to the number of vehicles
communicating via V2V and the number of vehicles observed.

Table 2 shows the latency of each SDFO when the fusion num-
ber (i.e., the number of sensor fusions) is 1, where the statistics
are calculated using over 10,000 samples. The average latency is
on the order of ms for Type1 even in the worst case conditions,
and the End-to-End deadline is 30 ms for Type1. The latency is
on the order of 10 ms for Type2, and the End-to-End deadline is
300 ms for Type2. The standard deviations are also small. Thus,
the latency is predictable and acceptable when the fusion number
was 1.

Figure 15 shows the change in the latency as the fusion num-
ber varies with Type2. In addition, Fig. 15 shows the results of the
linear regression analysis, where the fusion number is used as an
explanatory variable to predict the latency. The results show that
the error is sufficiently small because the average relative error
between the measured value and the predicted value is 1.64 ms.
Therefore, the computation time of each SDFO can be predicted
from the fusion number. Furthermore, the computation time is
predictable in the worst case because the maximum fusion num-
ber can be estimated from the input volume of tuples in the SDFO.

6.3 Effect of Introducing the EDF Scheduler
We evaluated the effectiveness of applying real-time schedul-

ing based on EDF in AEDSMS and compared it with an FIFO
scheduler. Figure 16 shows the changes in the maximum latency
for output1, which is the output-stream with the shortest End-to-
End deadline. The latency is measured from the time between
when the input-data is read from the sensors to when the tuples
are inserted into the output-streams. Each plot and error bar are
the average and standard deviation of the maximum latency based
on 100 trials, respectively.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 16 Changes in maximum latency of output1 with driving time.

Fig. 17 Deadline miss ratio of output1 and output2.

The proposed method reduces the maximum latency of output1
by 61%. This is because AEDSMS processes the tuples with ear-
lier deadlines first using EDF and postpones the tuples with later
deadlines. In particular, because the computation time of SDFO2
is long with large input-data volumes from V2V communications,
the difference of the execution order drastically affects the differ-
ence in the maximum latency, as shown in Fig. 16.

Figure 17 shows the rates of tuples with missed deadlines
(deadline miss ratio) for output-streams of output1 and output2.
The deadline miss ratio of output3 is always 0 in each method.
The horizontal axis represents the maximum volume of input-data
that the load shedder passes per 1 s in the input-stream derived
from V2V communications.

Figure 17 shows that real-time scheduling and load shedding
both reduce the rates of missed deadlines. However, the effect
of real-time scheduling based on EDF is significantly better. In
the cases where EDF is applied, it is possible to process 800 sets
of input-data per 1 s. In contrast, the cases without EDF (i.e.,
FIFO) can only process 100 sets of input-data per 1 s. This shows
that the proposed method processes approximately eight times as
much input-data volume, while still meeting deadlines. This can
be attributed to the fact that the maximum latencies of output1,
where the End-to-End deadline is the shortest, are reduced by
EDF.

With or without EDF, the maximum numbers of the input-data
volume that could be processed in the following evaluation were
800 and 100 per 1 s, respectively.

6.4 Effect on Time to Collision
We evaluated the effects of vehicle collisions based on the time

to collision (TTC), which is the remaining time when the subject
vehicle would have collided with the surrounding vehicles, ob-
tained from output2. In this scenario, without braking, the subject
vehicle would have collided with the six vehicles that are marked

Fig. 18 Changes in the detection rate with TTC from output2 in a trial.

Fig. 19 Box plot of TTC at the first detection of each vehicle∗ from output2.

by asterisks (∗) in Fig. 11. We estimated that the time required
to stop to be 2.8 s on dry roads based on the total stopping dis-
tance, where the vehicle is traveling at a speed of 60 km/h, based
on [41]. We also assumed that the subject vehicle began to stop
after detecting the vehicles∗. This means that the subject vehicle
collides with each vehicle∗ if and only if the TTC is shorter than
2.8 s for vehicle∗.

First, Fig. 18 shows how many of the six vehicles∗ could be de-
tected with a specific TTC, as the detection rate, in a trial. A red
line is drawn at 2.8 s, which is the threshold of collision avoidance
for each vehicle∗. We denote the case where V2V communica-
tion is not used by NoV2V.

If V2V communication is not used (i.e., NoV2V), the subject
vehicle collides with all of the vehicles∗ because the detection
rate is 0 when TTC is greater than 2.8 s. This shows that it is dif-
ficult to avoid vehicle crashes using only onboard sensors. How-
ever, all of the vehicles∗ were detected before colliding because
the detection rate was 1 when TTC was greater than 0. This shows
that collision warnings are processed only by the onboard sensors
with the time limit feature of the SDFO. Figure 18 also shows that
AEDSMS using EDF achieves a better detection rate than that
using FIFO when the TTC is long. This is because EDF allows
more tuples from V2V communications to be processed while
still meeting deadlines.

Next, we estimated the vehicle crash rate as the proportion of
cases where the subject vehicle collided with the vehicles∗. In
this experiment, trials similar to Fig. 18 were repeated 100 times.
In this case, the vehicle crash rate was defined by
∑

1,2,··· ,100 Mt

6 × 100
, (3)

where Mt is the number of vehicles∗ that collided with the subject
vehicle in the t-th trial.

Figure 19 shows the TTC when each vehicle∗ is detected at
the first time in all of the trials. A red line is drawn at the thresh-
old of collision avoidance (2.8 s). The shortest TTC (worse case)
of AEDSMS is 3.5 s, whereas that of FIFO or NoV2V is 2.3 or
1.1 s, respectively. In particular, AEDSMS avoids vehicle crashes
in all of the trials, whereas using FIFO or NoV2V contributed
to vehicle crashes. Thus, we found that real-time scheduling of
AEDSMS has a positive effect on advance driver assistance sys-
tems.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 20 Tracking of vehicle# in a trial with confidence from output3.

Fig. 21 Box plot of positional error for all of the vehicles from output3.

6.5 Impact on Sensor Data Fusion
First, by focusing on vehicle# in Fig. 11, we confirmed the ef-

fect on the positional accuracy of vehicles based on sensor fu-
sion in the application scenario. Figure 20 shows the vehicle#
position and confidence that are included in the surrounding ve-
hicles’ information delivered from output3. The circle represents
the symmetrical 95% confidence interval, which is used in ETSI
specifications [4], [5].

Figure 20 shows that AEDSMS using EDF improves the posi-
tional accuracy and confidence about the vehicle#, compared to
using FIFO. This is because tuples can be fused for a higher num-
ber of vehicles with the SDFO (Type2) when using EDF, which
allows more tuples to be processed while still meeting deadlines.

Next, we evaluated the positional accuracy between the true
and observed values for all of the vehicular information that was
delivered from output3. Figure 21 shows the error between the
exact position and the observed position based on output3 for all
of the vehicles in this scenario.

With and without sensor fusion, the average errors were 2.32
and 7.30 m, respectively, i.e., 4.98 m less than when using sen-
sor fusion. Therefore, sensor fusion is effective for improving
confidence with AEDSMS. With EDF and FIFO, the average er-
rors were 2.32 and 3.37 m, i.e., 1.05 m less than when applying
EDF. Therefore, we demonstrated that real-time scheduling of
AEDSMS is effective for improving the positional accuracy of
automotive data.

7. Discussion

In this section, we summarize how AEDSMS addresses the
challenges described in Section 4.
Time-criticality During Runtime (C1)
AEDSMS achieves time-criticality using the architecture based
on precompilation strategies, as shown in Fig. 5. This is because
it requires to optimize query plans in the worst-case. The other
reason is because the maximum input-data volumes, automotive
data processing, and the physical structures are specified during
the design stage. Moreover, real-time scheduling based on EDF
is applied to achieve the requirement, which is explained later

(i.e., C3). In addition, we evaluated the performance of the SD-
FOs, which require more computation time than standard opera-
tors, and confirmed that the worst-case latency for the SDFOs are
predictable in Section 6.2.
Distributed Data Streams in In-vehicle Networks (C2)
Previously proposed distributed stream processing systems do not
determine the route of streams in in-vehicle networks, which con-
sist of bus networks and gateways, when allocating a query plan.
In addition, they do not provide accurate measures of usage in
in-vehicle networks. Thus, AEDSMS solves these problems by
applying an architectural graph, which is used widely in embed-
ded systems (especially, design space exploration), as described
in Section 5.5.
Applying Real-time Scheduling (C3)
Previous methods for real-time scheduling of stream processing
could not be applied directly to AEDSMS because they are too
limited to handle multiqueries in distributed stream processing.
Thus, we proposed the definition of tasks and their relative dead-
lines using EDF*, which is employed in real-time scheduling.
We applied EDF-based real-time scheduling to AEDSMS, as de-
scribed in Section 5.6. We confirmed that EDF-based real-time
scheduling reduced the maximum latency, the deadline miss ratio,
and the vehicle crash rate, and improved the positional accuracy
of vehicles, as described in Sections 6.3, 6.4, and 6.5.
Enhancing Reliability by Sensor Data Fusion (C4)
AEDSMS enhanced reliability by using the sensor fusion oper-
ator, SFDO, as described in Section 5.7. We implemented two
types of Kalman filters and confirmed the basic performance and
improved positional accuracy of vehicles in Sections 6.2 and 6.5.
Reusability of Query Descriptions (C5)
In AEDSMS, high-level query descriptions are produced using
HLQs, which provide a method for modularizing stream process-
ing by SPC and positional transparency; thus, these descriptions
require fewer modifications if the physical structure changes.

8. Conclusions

Because advanced driver assistance systems with automatic
driving technologies are being utilized in vehicles, software plat-
forms for managing data integration based on DSMSs are be-
coming increasingly important. In this paper, we introduced
AEDSMS, i.e., a DSMS for data processing in automotive em-
bedded systems, and we clarified five important challenges of this
study as well as the solutions to these challenges. The feasibility
was evaluated by a vehicle collision warning application, which
is crucial for supporting driving safety. The evaluation was sim-
ulated according to the C-ITS specification where the input-data
volume was maximized. As a result, the performance during run-
time was measured, and the effectiveness of AEDSMS was con-
firmed and demonstrated. This integrated technology can also be
applied to other application areas such as avionics and robotics,
which must address the same challenges. In the future, we will
introduce AEDSMS into actual cars.

Acknowledgments We would like to thank the consortium
partners for supporting the development of an AEDSMS. These
partners included seven companies (Toyota Motor Corporation,
Hitachi Ltd., Hitachi Automotive Systems Ltd., Hitachi Solutions

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Ltd., NEC Informatec Systems Ltd., Toyota Central R&D Labs,
and Denso Corporation) and three organizations (National Insti-
tute for Land and Infrastructure Management, Japan Digital Road
Map Association, and Chubu Bureau of Economy, Trade, and In-
dustry). This research was supported in part by a Grant-in-Aid
for Scientific Research (25240007) and the Strategic Informa-
tion and Communications R&D Promotion Programme (SCOPE)
(12180615) by the Ministry of Internal Affairs and Communica-
tions, Japan.

References

[1] Jones, W.D.: Keeping cars from crashing, IEEE Spectr., Vol.38, No.9,
pp.40–45 (2001).

[2] Buehler, M., Iagnemma, K. and Singh, S.: The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic, Springer, 1st edition
(2009).

[3] Erico, G.: How Google’s Self-Driving Car Works, IEEE Spectrum
(online), available from 〈http://spectrum.ieee.org/automaton/robotics/
artificial-intelligence/how-google-self-driving-car-works〉 (accessed
2014-11-21).

[4] ETSI: Intelligent Transport Systems; Vehicular Communications; Ba-
sic Set of Applications; Part 2: Specification of Cooperative Aware-
ness Basic Service (2011).

[5] ETSI: Intelligent Transport Systems; Users and applications require-
ments; Part 2: Applications and facilities layer common data dictio-
nary (2013).

[6] Yamada, M., Sato, K. and Takada, H.: Implementation and Evaluation
of Data Management Methods for Vehicle Control Systems, Vehicular
Technology Conference (VTC Fall), pp.1–5 (2011).

[7] Yamaguchi, A., Nakamoto, Y., Sato, K., Ishikawa, Y., Watanabe, Y.,
Honda, S. and Takada, H.: AEDSMS: Automotive Embedded Data
Stream Management System, Proc. IEEE 31st International Confer-
ence on Data Engineering, pp.1292–1303 (2015).

[8] Yamaguchi, A., Watanabe, Y., Sato, K., Nakamoto, Y. and Takada, H.:
Real-time Scheduling Method for Automotive Embedded Data Stream
Processing (in Japanese), IPSJ Trans. Database, Vol.8, No.2, pp.1–17
(2015).

[9] Freund, U.: Mulit-level System Integration Based on AUTOSAR,
Proc. 30th International Conference on Software Engineering,
pp.581–582 (2008).

[10] Vivo, G., Dalmasso, P. and Vernacchia, F.: The European Integrated
Project SAFESPOT - How ADAS applications co-operate for the driv-
ing safety, Proc. IEEE Conference on Intelligent Transportation Sys-
tems, pp.624–629 (2007).

[11] Nystrom, D., Tesanovic, A., Norstrom, C., Hansson, J. and Bankestad,
N.-E.: Data management issues in vehicle control systems: A case
study, Proc. Euromicro Conference on Real-Time Systems, pp.249–
256 (2002).

[12] Nystrom, D., Tesanovic, A., Tesanovic, R., Nolin, M., Norstrom, C.
and Hansson, J.: COMET: A Component-Based Real-Time Database
for Automotive Systems, Proc. Workshop on Software Engineering for
Automotive Systems, pp.1–8 (2004).

[13] Cugola, G. and Margara, A.: Processing Flows of Information: From
Data Stream to Complex Event Processing, ACM Comput. Surv.,
Vol.44, No.3, pp.15:1–15:62 (2012).

[14] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman,
J., Lax, R., McVeety, S., Mills, D., Nordstrom, P. and Whittle, S.:
MillWheel: Fault-tolerant Stream Processing at Internet Scale, Proc.
VLDB Endow., Vol.6, No.11, pp.1033–1044 (2013).

[15] Lam, W., Liu, L., Prasad, S., Rajaraman, A., Vacheri, Z. and Doan, A.:
Muppet: MapReduce-style Processing of Fast Data, PVLDB, Vol.5,
No.12, pp.1814–1825 (2012).

[16] Schweppe, H., Member, A.Z. and Grill, D.: Flexible On-Board Stream
Processing for Automotive Sensor Data, IEEE Trans. Industrial Infor-
matics, Vol.6, No.1, pp.81–92 (2010).

[17] Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra,
S., Dull, J., Sarkar, K., Klein, M., Vasa, M. and Handy, D.: VEDAS:
A Mobile and Distributed Data Stream Mining System for Real-Time
Vehicle Monitoring, Proc. SIAM International Conference on Data
Mining, pp.300–311 (2004).

[18] Kargupta, H., Sarkar, K. and Gilligan, M.: MineFleet R©: An overview
of a widely adopted distributed vehicle performance data mining sys-
tem, Proc. 16th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp.37–46 (2010).

[19] Bolles, A., Appelrath, H., Geesen, D., Grawunder, M., Hannibal, M.,
Jacobi, J., Koster, F. and Nicklas, D.: StreamCars: A new flexible

architecture for driver assistance systems, Intelligent Vehicles Sympo-
sium, pp.252–257 (2012).

[20] Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series),
Springer-Verlag, Santa Clara, CA, USA (2004).

[21] Ou, Z., Yu, G., Yu, Y., Wu, S., Yang, X. and Deng, Q.: Tick Schedul-
ing : A Deadline Based Optimal Task Scheduling Approach for Real-
Time Data, Proc. Advances in Web-Age Information Management,
pp.725–730 (2005).

[22] Wei, Y., Son, S. and Stankovic, J.: RTSTREAM: Real-time query pro-
cessing for data streams, Proc. 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing,
pp.141–150 (2006).

[23] Li, X., Jia, Z., Ma, L., Zhang, R. and Wang, H.: Earliest Deadline
Scheduling for Continuous Queries over Data Streams, Proc. Inter-
national Conference on Embedded Software and Systems, pp.57–64
(2009).

[24] Wei, Y., Prasad, V., Son, S. and Stankovic, J.: Prediction-Based QoS
Management for Real-Time Data Streams, Proc. IEEE Real-Time Sys-
tems Symposium, pp.344–358 (2006).

[25] Li, X., Ma, L., Li, K., Wang, K. and an Wang, H.: Adaptive Load
Management over Real-Time Data Streams, Proc. 4th International
Conference on Fuzzy Systems and Knowledge Discovery, pp.719–725
(2007).

[26] Li, X., Jia, Z., Ma, L., Qin, Z. and Wang, H.: QoS-Aware Schedul-
ing for Mixed Real-Time Queries over Data Streams, Proc. 15th IEEE
International Conference of the Embedded and Real-Time Computing
Systems and Applications, pp.145–154 (2009).

[27] Srivastava, U., Munagala, K. and Widom, J.: Operator Placement
for In-network Stream Query Processing, Proc. 24th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
ACM, pp.250–258 (2005).

[28] Lakshmanan, G.T., Li, Y. and Strom, R.: Placement Strategies
for Internet-Scale Data Stream Systems, IEEE Internet Computing,
Vol.12, No.6, pp.50–60 (2008).

[29] Kalyvianaki, E., Wiesemann, W., Vu, Q.H., Kuhn, D. and Pietzuch,
P.: SQPR: Stream Query Planning with Reuse, Proc. 2011 IEEE 27th
International Conference on Data Engineering, IEEE Computer Soci-
ety, pp.840–851 (2011).

[30] ETSI: Intelligent Transport Systems; V2X Applications; Part 3: Lon-
gitudinal Collision Risk Warning application requirements specifica-
tion (2013).

[31] FHWA: Intersection Safety Issue Briefs (2004).
[32] Casparsson, L., Rajnak, A., Tindell, K. and Malmberg, P.: Volcano a

revolution in on-board communications (1998).
[33] Abadi, D.J., Ahmad, Y., Balazinska, M., Hwang, J.-h., Lindner, W.,

Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y. and Zdonik,
S.: Aurora: A new model and architecture for data stream manage-
ment, The VLDB Journal, Vol.12, No.2, pp.120–139 (2003).

[34] Arvind, D.P., Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K.,
Nishizawa, I., Rosenstein, J. and Widom, J.: Stream: The Stanford
stream data manager, IEEE Data Engineering Bulletin, Vol.26, pp.19–
26 (2003).

[35] Cranor, C., Johnson, T., Spataschek, O. and Shkapenyuk, V.: Gigas-
cope: A Stream Database for Network Applications, Proc. 2003 ACM
SIGMOD International Conference on Management of Data, ACM,
pp.647–651 (2003).

[36] Oliveira, M.F.S., Nascimento, F.A., Mueller, W. and Wagner, F.R.:
Design Space Abstraction and Metamodeling for Embedded Sys-
tems Design Space Exploration, Proc. 7th International Workshop on
Model-Based Methodologies for Pervasive and Embedded Software,
pp.29–36 (2010).

[37] Chetto, H., Silly, M. and Bouchentouf, T.: Dynamic Scheduling
of Real-time Tasks Under Precedence Constraints, Real-Time Syst.,
Vol.2, No.3, pp.181–194 (1990).

[38] Navet, N. and Simonot-Lion, F.: Trends in Automotive Communica-
tion Systems, Networked Embedded Systems, CRC Press, p.13 (2009).

[39] Ammoun, S. and Nashashibi, F.: Real time trajectory prediction for
collision risk estimation between vehicles, Proc. IEEE International
Conference on Intelligent Computer Communication and Processing,
pp.417–422 (2009).

[40] Smith, R.C. and Cheeseman, P.: On the Representation and Estimation
of Spatial Uncertainly, Int. J. Rob. Res., Vol.5, No.4, pp.56–68 (1986).

[41] South Australia: The Driver’s Handbook, Department for Transport,
Energy and Infrastructure (2005).

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Akihiro Yamaguchi is currently a stu-
dent of Nagoya University, and works
for Toshiba Corporation. He received
his M.E. degree in Kobe University in
2006. From 2006, he joined Toshiba Cor-
poration. From 2011 to 2014, he was
a researcher at the Center for Embed-
ded Computing Systems (NCES), Nagoya

University. His research interests include data stream processing
and real-time scheduling.

Yousuke Watanabe received his M.E.
and Dr.E. degrees in University of
Tsukuba in 2003 and 2006. In 2014, he
joined Institute of Innovation for Future
Society, Nagoya University, as a desig-
nated associate professor. His research in-
terests include data stream processing and
information integration. He is a member

of the Database Society of Japan, IEICE, and ACM.

Kenya Sato is a professor of Doshisha
University, Kyoto, Japan, where he has
been since 2004. He also currently leads
the Mobility Research Center of the uni-
versity, and serves as a designated profes-
sor of Nagoya University. He received his
BE and ME degree from Osaka Univer-
sity, and also received the Ph.D. degree

from Nara Institute of Science and Technology. During 1991-
1994 Dr. Sato was a visiting researcher at Computer Science De-
partment, Stanford University, and he was a chief technologies
of Automotive Multimedia Interface Collaboration in Michigan,
U.S. in 2001-2003. His research interests include network archi-
tecture, distributed systems, and ITS. Professor Sato is a member
of Japan head of delegation to ISO ITS technical committee, and
a member of Advance Safety Vehicle study committee in Japan.

Yukikazu Nakamoto received his M.E.
and Ph.D. degrees from Osaka Univer-
sity in 1982 and 2000, respectively. From
1982 to 2004, he worked for NEC Cor-
poration. In 2004, he joined the Univer-
sity of Hyogo and is currently a Professor
of Graduate School of Applied Informat-
ics. From 1990 to 1991, he was a Visiting

Researcher at Cornell University. From 2006 to 2015, he was
a Designated Professor of the Center for Embedded Computing
Systems, in the Graduate School of Information Science, Nagoya
University. His research interests include real-time systems, dis-
tributed systems, mobile systems, and software development en-
vironments. He is a member of IEICE and IEEE Computer Soci-
ety.

Yoshiharu Ishikawa is a professor in
Graduate School of Information Science,
Nagoya University. His research interests
include spatio-temporal databases, mobile
databases, sensor databases, data mining,
information retrieval, and Web informa-
tion systems. He is a member of the
Database Society of Japan, IEICE, JSAI,

ACM, and IEEE.

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Infor-
mation Engineering, Toyohashi Univer-
sity of Technology in 2005. From 2004 to
2006, he was a researcher at the Nagoya
University Extension Course for Embed-
ded Software Specialists. In 2006, he
joined the Center for Embedded Comput-

ing Systems, Nagoya University, as an assistant professor, where
he is now an associate professor. His research interests include
system-level design automation and real-time operating systems.
He received the best paper award from IPSJ in 2003. He is a
member of ACM, IEEE, IEICE, and JSSST.

Hiroaki Takada is a professor at Insti-
tute of Innovation for Future Society,
Nagoya University. He is also a pro-
fessor and the Executive Director of the
Center for Embedded Computing Systems
(NCES), the Graduate School of Infor-
mation Science, Nagoya University. He
received his Ph.D. degree in Information

Science from University of Tokyo in 1996. He was a Research
Associate at University of Tokyo from 1989 to 1997, and was a
Lecturer and then an Associate Professor at Toyohashi University
of Technology from 1997 to 2003. His research interests include
real-time operating systems, real-time scheduling theory, and em-
bedded system design. He is a member of ACM, IEEE, IEICE,
JSSST, and JSAE.

(Editor in Charge: Takanori Takano)

c© 2017 Information Processing Society of Japan


