
IPSJ SIG Technical Report

Analysis of Dropout and its Application to Group Dropout

Kazuyuki Hara1,a) Daisuke Saitoh2 Satoshi Suzuki3 Takumi Kondou2 Hayaru Shouno3

Abstract: Deep learning is a state-of-the-art learning method that is used in fields such as visual object recognition
and speech recognition. This learning uses a high number of layers and a huge number of units and connections, so
overfitting is a serious problem. Dropout is a kind of regularizer that neglects some inputs and hidden units in the
learning process with a probability p; then, the neglected inputs and hidden units are combined with the learned net-
work to express the final output. Warger et al. pointed out that dropout is an adaptive L2 regularizer, so we compared
the learning behavior of dropout with that of SGD with the L2 regularizer. Moreover, we found that the process of
combining the neglected hidden units with the learned network can be regarded as ensemble learning, so we analyzed
dropout learning from this point of view. We compared dropout and ensemble learning from three viewpoints and
found that dropout can be regarded as ensemble learning that divides the student network into two groups. On the basis
of this insight, we explored novel dropout that divides the student network into more than two groups to enhance the
benefit of ensemble learning.

1. Introduction
Deep learning [1],[2] is attracting much attention in visual ob-

ject recognition, speech recognition, object detection, and many
other fields. It provides automatic feature extraction and can
achieve outstanding performance [3].

Deep learning uses a very deep layered network and a huge
amount of data, so overfitting is a serious problem. To avoid over-
fitting, dropout [3] is used for regularization. Dropout consists of
two processes. During learning, some hidden units are neglected
with a probability p, and this process reduces the network size;
therefore, overfitting is avoidable. During testing, learned hidden
units and hidden units that have not been learned are summed up
and multiplied by p to calculate the network output. Hinton said
that this procedure seems like a type of ensemble learning. On the
other hand, Warger et al. pointed out that dropout is an adaptive
L2 regularizer.

Ensemble learning improves the performance of a single net-
work using many networks. Bagging and the Ada-boost algo-
rithm are well known [4]. We theoretically analyzed ensemble
learning using linear or non-linear perceptrons[5],[6].

In this paper, we first present our analysis of dropout as a reg-
ularizer. Then, we present our analysis of dropout regarded as
ensemble learning. On-line learning [7],[8] is used to learn a net-
work. We compared the residual error of dropout and stochas-
tic gradient descent (SGD) with L2 regularization to analyze the
regularization performance of dropout. Next, we compared the

1 College of Industrial Technology, Nihon University, 1-2-1 Izumicho,
Narashino, Chiba 275–8575, Japan

2 Graduate School of Industrial Technology, Nihon University
3 Graduate School of Informatics and Engineering,The University of

Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182–
8585, Japan

a) hara.kazuyuki@nihon-u.ac.jp

learnability of dropout and that of ensemble learning using the
same network structure. The results revealed that dropout can
be regarded as ensemble learning, except when different sets of
hidden units are used in dropout. After that, we propose a novel
dropout called group dropout. The proposed method divides the
hidden units in the student network into several groups at once,
and then each group learns from the teacher independently. Af-
ter the learning, group outputs are averaged to calculate the stu-
dent output. The effect of ensemble learning is more than that of
dropout. Finally, we show the validity of the proposed method
using computer simulations.

2. Model
In this paper, we use a teacher-student formulation and assume

the existence of a teacher that produces the desired output for
learning data. By introducing the teacher, we can directly mea-
sure the similarity of the student weight vector compared to that
of the teacher. First, we formulate a teacher network (referred to
as the “teacher”) and a student network (referred to as the “stu-
dent”), then we introduce the gradient descent algorithm.

The teacher and student are a soft-committee machine with N
input units, hidden units, and an output, as shown in Fig. 1. The
teacher consists of K hidden units, and the student consists of K′

hidden units. Each hidden unit is a perceptron. The kth hidden
weight vector of the teacher is Bk = (Bk1, . . . , BkN), and the k′th
hidden weight vector of the student is J (m)

k′ = (J(m)
k′1 , . . . , J

(m)
k′N),

where m denotes the number of learning iterations. In the soft-
committee machine, all hidden-to-output weights are fixed to +1
[8]. This network calculates the majority vote of the hidden out-
puts.

We assume that both the teacher and the student receive N-
dimensional input ξ(m) = (ξm1 , . . . , ξ

(m)
N) and that the teacher out-

puts t(m) and the student outputs s(m) are

ⓒ 2016 Information Processing Society of Japan 1

Vol.2016-MPS-111 No.2
2016/12/12

IPSJ SIG Technical Report

Output layer

Hidden layer

Input layer

Fig. 1 Network structures of teacher and student.

t(m) =

K∑
k=1

t(m)
k =

K∑
k=1

g(d(m)
k), (1)

s(m) =

K′∑
k′=1

s(m)
k′ =

K′∑
k′=1

g(y(m)
k′). (2)

Here, g(·) is the output function of a hidden unit, d(m)
k is the inner

potential of the kth hidden unit of the teacher, and y(m)
k′ is the inner

potential of the k′th hidden unit of the student calculated as

d(m)
k =

N∑
i=1

Bkiξ
(m)
i , (3)

y(m)
k′ =

N∑
i=1

J(m)
k′i ξ

(m)
i . (4)

We assume that the ith elements ξ(m)
i of the independently

drawn input ξ(m) are uncorrelated random variables with zero
mean and unit variance; that is, the ith element of the input is
drawn from a probability distribution P(ξi). The thermodynamic
limit of N → ∞ is also assumed. The statistics of the inputs ξ(m)

at the thermodynamic limit of N → ∞ are

⟨
ξ(m)

i

⟩
= 0,
⟨
(ξ(m)

i)2
⟩
≡ σ2

ξ = 1,
⟨
||ξ(m)||

⟩
=
√

N, (5)

where ⟨·⟩ denotes a mean, and || · || denotes the norm of a vector.
For each element Bki, k = 1 ∼ K is drawn from a probabil-

ity distribution with zero mean and 1/N variance. With the as-
sumption of the thermodynamic limit, the statistics of the teacher
weight vector are

⟨Bki⟩ = 0,
⟨
(Bki)2

⟩
≡ σ2

B =
1
N
, ⟨||Bk||⟩ = 1.

This means that any combination of Bl ·Bl′ = 0. The distribution
of inner potential d(m) follows a Gaussian distribution with zero
mean and unit variance at the thermodynamic limit.

For the sake of analysis, we assume that each element of J(0)
k′i ,

which is the initial value of the student vector J (0)
k′ , is drawn from

a probability distribution with zero mean and 1/N variance. At
the thermodynamic limit, the statistics of the k′th hidden weight
vector of the student are⟨

J(0)
k′i

⟩
= 0,
⟨
(J(0)

k′i)2
⟩
≡ σ2

J =
1
N
,
⟨
||J (0)

k′ ||
⟩
= 1.

This means that any combination of J (0)
l · J

(0)
l′ = 0. The output

function of the hidden units of the student g(·) is the same as that

of the teacher. The statistics of the student weight vector at the
mth iteration are

⟨
J(m)

k′i

⟩
= 0,
⟨
(J(m)

k′i)2
⟩
=

(Q(m)
k′k′)

2

N
,
⟨
||J (m)

k′ ||
⟩
= Q(m)

k′k′ .

Here,

(Q(m)
k′k′)

2 = J (m)
k′ · J

(m)
k′ .

The distribution of the inner potential y(m)
k′ follows a Gaussian dis-

tribution with zero mean and (Q(m)
k′k′)

2 variance in the thermody-
namic limit.

Next, we introduce the stochastic gradient descent (SGD) al-
gorithm for the soft-committee machine. For the possible inputs
{ξ}, we want to train the student to produce the desired outputs
t = s. The generalization error is defined as the squared error ε
averaged over possible inputs:

ε(m)
g =

⟨
ε(m)
⟩
=

1
2

⟨
(t(m) − s(m))2

⟩
=

1
2

⟨ K∑
k=1

g(d(m)
k) −

K′∑
k′=1

g(y(m)
k′)


2⟩
, (6)

At each learning step m, a new uncorrelated input, ξ(m), is pre-
sented, and the current hidden weight vector of the student J (m)

k′

is updated using

J (m+1)
k′ =J (m)

k′ +
η

N

 K∑
l=1

g(d(m)
l) −

K′∑
l′=1

g(y(m)
l′)


× g′(y(m)

k′)ξ(m), (7)

where η is the learning step size and g′(x) is the derivative of the
output function of the hidden unit g(x).

On-line learning uses a new input at once; therefore, overfit-
ting does not occur. To evaluate dropout, the learning must ex-
hibit overfitting. To exhibit the overfitting in on-line learning,
pre-selected whole inputs are frequently used in an on-line man-
ner. From our experience, when the input dimension is N, then
overfitting occurs for less than pre-selected 10× N learning input
data. This assumption is held in this paper.

3. Analysis of Dropout
Dropout is used in deep learning to prevent overfitting[3]. A

small amount of data compared with the size of a network may
cause overfitting [10]. In the state of overfitting, learning error,
which is error from learning data, and error from test data, which
is individual from learning data, become different.

The learning equation of dropout for the soft-committee ma-
chine can be written as follows.

J (m+1)
k′ =J (m)

k′ +
η

N

 K∑
l=1

g(d(m)
l) −

(1−p)K′∑
l′<D(m)

g(y(m)
l′)


× g′(y(m)

k′)ξ(m), (8)

Here, D(m) includes a number of hidden units that are randomly

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-MPS-111 No.2
2016/12/12

IPSJ SIG Technical Report

selected with respect to the probability p from all the hidden units
at the mth iteration. Subscript k of the student weight vector J is
included in D(m). Note that the second term in the bracket of
R.H.S. of Eq. (8) is a soft-committee machine composed of not
selected hidden units. Then, the hidden units in D(m) are not sub-
ject to learning, the size of the student decreases, and a shrunken
student may avoid overfitting. This effect is the dropout oppor-
tunity. After the learning, the student’s output s(m) is calculated
using the sum of learned hidden outputs and hidden outputs that
have not been learned multiplied by p.

s(m) = p ∗


(1−p)K′∑
l′<D(m)

g(y(m)
l′) +

pK′∑
l′∈D(m)

g(y(m−1)
l′)

 (9)

This equation is regarded as the ensemble of a learned soft-
committee machine (the first term of R.H.S.) and that of a not
learned soft-committee machine (the second term of R.H.S.)
when the probability is p = 0.5. However, in deep learning, a
set of hidden units in D(m) is changed in every iteration where
the same set of hidden units are used in the ensemble learning.
Therefore, dropout is regarded as ensemble learning using a dif-
ferent set of hidden units in every iteration. Therefore, we refer
to dropout as “random dropout” in this paper.

Figure 2 shows the results of the SGD without regularization
and those of dropout. The soft committee machine was used for
both the teacher and student. erf(x/

√
2) was used as the output

function g(x). We generated 10 × N learning data and N testing
data. The input dimension was N = 1000. The teacher had two
hidden units, and the student had 100 hidden units. The input and
its target were generated as those of Fig.5. The learning step size
η was set to 0.01.

Figure 2(a) shows the learning curve of the SGD without reg-
ularization. In this setting, overfitting will occur. Figure 2(b)
shows the learning curve of the SGD with dropout. The learning
error was less than the test error; however, the difference between
the learning error and the test error was not as substantial as that
of the SGD. Therefore, these results show that dropout prevents
overfitting.

3.1 Comparison between dropout and SGD with L2 regu-
larization

As Warger et al. pointed out, dropout is an adaptive L2 regu-
larizer[9]. Thus, in this subsection, we present a comparison of
dropout and SGD with L2 regularization (refer as SGD with L2).

The next learning equation shows the SGD with L2.

J (m+1)
k′ =J (m)

k′ +
η

N

 K∑
l=1

g(d(m)
l) −

K′∑
l′=1

g(y(m)
l′)


× g′(y(m)

k′)ξ(m) − α||J (m)
k′ ||

2. (10)

Here, α is a coefficient of the L2 penalty.
In Fig. 3, we show the learning results of the SGD with L2. We

used soft-committee machines that include 100 hidden units. For
dropout, we set p = 0.5. For SGD with L2, we selected α = 10−6.
The learning step size was set to η = 0.01. Input data were gen-
erated by using eq. (5), and the target was generated by using the

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

time:t=m/N

test

learn

(a)

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Time: t=m/N

test
learn

(b)

Fig. 2 Effect of dropout. (a) is the learning curve of SGD, and (b) is that of
dropout learning.

teacher. We used 10×N inputs for learning and N inputs for test-
ing. Training data were frequently used. Results were obtained
using an average of 10 trials. The conditions were the same as
those of Fig. 7.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

time: t=m/N

test
learn

(a)

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Time: t=m/N

test
learn

(b)

Fig. 3 Learning curve of SGD with L2.

A comparison between Fig. 3 and Fig. 7(b) reveals that the resid-
ual error of dropout learning was almost the same as that of the
SGD with L2 regularization. Therefore, the regularization effort
of dropout learning is the same as the L2. Note that for the SGD
with L2, we must choose α in trials; however, dropout learning
has no tuning parameter.

Figure 4 shows the time course of the average and variance of
the squared norm of the student weight vector ||Jk ||2 that are used

ⓒ 2016 Information Processing Society of Japan 3

Vol.2016-MPS-111 No.2
2016/12/12

IPSJ SIG Technical Report

in Fig. 3. The horizontal axes are continuous time t = m/N,
and the vertical axes are the squared norm of the student weight.
The solid lines are the averages of the squared norm of the stu-
dent weights (refer to ”L2 ave” and ”Dropout ave”), and the bro-
ken lines are those of variances (refer to ”L2 vari” and ”Dropout
vari”). In these figures, the squared norm of the student weight
decreases as the learning proceeds for both SGD with L2 and
dropout. Therefore, regularization is effective for both methods.
The average of the squared norm of L2 regularization is smaller
than dropout, so regularization is more effective on SGD with
L2 than dropout. However, the variance of the squared norm of
dropout is higher than that of SGD with L2. This means that the
diversity of hidden units when using dropout is maintained. This
may be an advantage for ensemble learning.

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.01 0.1 1 10 100 1000 10000

a
v
e

ra
g

e
,
v
a

ri
a

n
c
e

 o
f
s
q

u
a

re
d

 n
o

rm

Time: t=m/N

L2 ave
L2 variance

Dropout ave
Dropout variance

Fig. 4 Squared norm of SGD with L2 and that of dropout.

3.2 Ensemble learning
Ensemble learning is performed by using many learners (re-

ferred to as“ students”) to achieve better performance [5]. In
ensemble learning, each student learns from the teacher indepen-
dently, and each student output sk′en is averaged to calculate the
ensemble output sen. We assume that the teacher and the students
are the soft-committee machines. Thus, the ensemble output en is
calculated by

sen =

Ken∑
k′en=1

Ck′en sk′en =

Ken∑
k′en=1

Ck′en

K′∑
k′=1

g(yk′). (11)

Here, K′ is the number of hidden units in the student, Ck′en is a
weight for averaging, and Ken is the number of students to be av-
eraged. The learning equation of ensemble learning is the same
as eq. (7).

There are three cases of setting the number of hidden units in
the student: (1) K′ < K, (2) K′ = K, and (3) K′ > K. The case
of K′ < K is unlearnable and insufficient because the degree of
complexity of the student is less than that of the teacher. The case
of K′ = K is learnable because the degree of complexity of the
student is the same as that of the teacher. The case of K′ > K is
learnable and redundant because the degree of complexity of the
student is higher than that of the teacher[10]. Therefore, if we set
K′ = K, the network performance will be the best of them.

Figure 5 shows computer simulation results. The student has
the same architecture as the teacher, and they include 2 hidden

units, that is K = K′ = 2. The output function g(x) is the
error function erf(x/

√
2) =

∫ x
−x dt exp(−t2/2)/

√
2π. We gener-

ated 10 × N learning inputs ξ(m) where N = 10, 000, and they
were frequently used. Each of the elements ξ(m)

i of the indepen-
dently drawn input ξ(m) are uncorrelated random variables with
zero mean and unit variance, as shown in eq. (5). We also gener-
ated N testing data of cross validation. The target for an input ξ is
the output of the teacher. In the figure, the horizontal axis is time
t = m/N. Here, m is the iteration number, and N is the dimen-
sion of input units. The vertical axis is the mean squared error
(MSE) for N input data. MSE was calculated for N independent
inputs. In the figure, “Single” is the results of using a single stu-
dent. “m2” is the results of using an ensemble of two students,
“m3” is that of an ensemble of three students, and “m4” is that
of an ensemble of four students. As shown, the performance of
the ensemble improves when a higher number of students is used.
Therefore, the ensemble of four students outperformed the other
two cases.

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000 10000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Time: t=m/N

single
Ken=2
Ken=3
Ken=4

Fig. 5 Effect of ensemble learning.
s1s s2

+

Fig. 6 Network divided into two networks to apply ensemble learning.

Next, we modified the ensemble learning. We divided the stu-
dent (with K′ hidden units) into Ken networks (See Fig. 6. Here,
K′ = 4 and Ken = 2). These sub-networks learned the teacher
independently, and then we calculated the ensemble output sen by
averaging the outputs of sub-networks sk′enl′ as:

sen =
1

Ken

Ken∑
k′en=1

sk′en =
1

Ken

Ken∑
k′en=1

M∑
l′=1

g(yk′enl′). (12)

Here, sk′en is the output of a sub-network with M hidden units, and
g(yk′enl′) is the l′th hidden output in the k′enth sub-network. Eq.
(12) corresponds to Eq. (11) when Ck′en =

1
Ken

and K′ = M.
The next section present our comparison of dropout and en-

semble learning to clarify the effect of the random selection of
hidden units.

ⓒ 2016 Information Processing Society of Japan 4

Vol.2016-MPS-111 No.2
2016/12/12

IPSJ SIG Technical Report

3.3 Comparison between random dropout and ensemble
learning

We compared dropout and ensemble learning from three view-
points: (1) selecting the hidden units in a group randomly or us-
ing the same hidden units, (2) dividing the student into two or
more groups that contain a part of hidden units in the student,
and (3) averaging the outputs of learned networks and those of
unlearned networks or averaging only the output of learned net-
works. Dropout involves selecting the hidden units in a group
randomly, dividing the student into two groups, and averaging
the output of learned hidden units and that of unlearned net-
works. Ensemble learning involves using the same hidden units in
a group throughout the learning, dividing the students into more
than two groups, and averaging the output of learned networks.
Thus, this subsection concentrates on the effect of selecting the
hidden units in a group to be compared randomly.

In comparison, we used two soft-committee machines with 50
hidden units for ensemble learning. For dropout, we used 100
hidden units and set p = 0.5; then, dropout selected 50 hidden
units in D(m) with 50 unselected hidden units remaining. There-
fore, dropout and ensemble learning had the same architectures.
The number of input units was N = 1000, and the learning step
size was set to η = 0.01. The output function g(x) is a sigmoid-
like function erf(x/

√
2). Input data were generated by using eq.

(5), and the target was generated by using the teacher. We used
10 × N inputs for learning and N inputs for testing.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Time:t=m/N

test
learn

(a)

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Time: t=m/N

test
learn

(b)

Fig. 7 Results of comparison between dropout and ensemble learning. (a)
is ensemble learning of two networks, and (b) is dropout with respect
to p = 0.5.

Figure 7 shows the results. The results were obtained by tak-
ing the average of the results of ten trials. 104 independent data
were used in the learning, and 103 independent data were used
to calculate the MSE. The horizontal axes are time t = m/N,
and the vertical axes are the MSE calculated for N data. In Fig.
7(a), “Single” shows the soft-committee machines with 50 hidden

units, and “Ensemble” shows the results given using ensemble
learning. Test errors are used in these figures. In Fig. 7(b), “Test”
shows the MSE given using the test data, and “Learning” shows
the MSE given using the learning data. Dropout was used. From
Fig. 7(a), the ensemble learning achieved an MSE less than that
of the single network. However, from Fig. 7(b), dropout achieved
an MSE less than that of ensemble learning. Therefore, dropout
outperforms ensemble learning because it uses randomly selected
hidden units and averages the outputs of learned networks and
those of unlearned networks.

4. Group dropout
In dropout, two groups of learned hidden units and those of not-

learned hidden units are used. This means that dropout uses only
two students for ensemble. In ensemble learning, using many stu-
dents will achieve better performance. Therefore, the effect of the
ensemble in dropout is not enough. Therefore, we propose “group
dropout,” which involves dividing the student into more than two
groups composed of hidden units of the student and applying en-
semble learning. In group dropout, the number of hidden units in
a group is the same as that in the teacher network.

In the proposed method, we selected K hidden units in a group
at random from a pool of K’ hidden units before the learning was
started. Therefore, we had Kgd = K′/K groups. (See Fig. 6.
Here, K′ = 4 and K = 2). These groups learned from the teacher
independently, and then we calculated the ensemble output sen by
averaging the group outputs sgd as:

J (m+1)
k′ =J (m)

k′ +
η

N

 K∑
l=1

g(d(m)
l) −

K∑
l′<D

g(y(m)
l′)


× g′(y(m)

k′)ξ(m), (13)

sgd =
1

Kgd

Kgd∑
k′
gd=1

sk′
gd
=

1
Kgd

Kgd∑
k′
gd=1

K∑
k′=1

g(yk′
gdk′). (14)

s1s s3

+ +

S2

Fig. 8 Student divided into three groups to learn by ensemble learning.
Teacher was composed of two hidden units.

Here, sk′gr is the output of a group with K hidden units, and yk′
gdk′

is the k′th hidden output in the k′gdth group. We set the number of
hidden units in a group to K, and this makes the learning of the
group network possible.

Figure 9 shows the results. The results were obtained by tak-
ing the average of the results of 10 trials. We generated 10 × N
learning data and N testing data with respect to eq. (5). The input
dimension was N = 1000. Learning data were frequently used. In
these figures, the horizontal axes show the learning time t = m/N.
The vertical axes show the MSE. The simulation conditions are
the same as those of Fig. 7. The line labeled “Half Dropout”
shows the results of the ensemble of two groups of students, and

ⓒ 2016 Information Processing Society of Japan 5

Vol.2016-MPS-111 No.2
2016/12/12

IPSJ SIG Technical Report

it uses the same hidden units in a group during the learning. “Half
Dropout” is the same as “Random Dropout” except for using the
same hidden units in a group and the ensemble of learned soft-
committee machines.

1.0e-02

1.0e-01

1.0e+00

1.0e+01

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

Time : t=m /N

without Dropout
Group Dropout

Half Dropout
Random Dropout

(a)

1.0e-02

1.0e-01

1.0e+00

1.0e+01

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Time : t= /N

without Dropout
Group Dropout

Half Dropout
Random Dropout

m

(b)

Fig. 9 Effects of proposed method. (a) shows when K′ = 8, and (b) shows
when K′ = 30. K = 2 for both. The results are shown for the average
of ten trials.

As can be seen from Fig. 9, the residual error of “Without
Dropout” stays high and can be considered as overfitting the data.
The residual error of “Half Dropout” is in the middle of “Without
Dropout” and “Random Dropout” or “Group Dropout”, so divid-
ing the student into two groups and applying ensemble learning
does not perform well. The residual error of “Random Dropout”
and “Group Dropout” converge to a low value, so these are con-
sidered as not overfitting the data. Therefore, both “Random
Dropout” and “Group Dropout” can work as a regularizer. As
can be seen from these figures, when the number of hidden units
is low (Fig. 9(a)), the MSE of the group dropout and that of
the random dropout are identical. However, when the number of
hidden units is high (Fig. 9(b)), the MSE of the group dropout
outperforms that of the random dropout.

The group dropout differs from the random dropout for three
reasons. First, dropout divided the student into two groups; how-
ever, the proposed method divided the student into more than
two groups. Second, the dropout randomly selected the hidden
units to be neglected at each learning step; however, the pro-
posed method used the same hidden units in the group. Third,
the dropout is the ensemble learning of learned hidden units and
unlearned hidden units; however, the group dropout is the ensem-
ble of only learned hidden units.

5. Conclusion
This paper presented our analysis of the dropout regarded as

ensemble learning. We showed that the dropout can be regarded
as ensemble learning except for when using a different set of hid-
den units in every learning iteration. This analysis clarified that

using a different set of hidden units outperforms ensemble learn-
ing. We next proposed using group dropout, which divides the
student into several groups with some hidden units that are iden-
tical to those of the teacher, and described the performance of en-
semble learning. The proposed method outperforms the dropout
when the number of hidden units in a group is higher than that of
the teacher. Our future work is to clarify the effect of averaging
the outputs of learned networks and that of unlearned networks
and to explore group dropout using different hidden units in a
group.

Acknowledgments
The authors thank Professor Masato Okada and Assistant Pro-

fessor Hideitsu Hino for their insight and advice. The authors
also thank Professor Yutaka Sakai for his advice on comparing
regularization performance between dropout and the regulariza-
tion method.

References
[1] LeCun, Y., Bengio, Y., and Hinton, G., “Deep learning”, Nature, vol.

521, pp. 436–444 (2015).
[2] Hinton, G. E., Osindero, S., and Teh, Y. W., “A fast learning algorithm

for deep belief nets”, Neural Computation, 18, pp. 1527–1554 (2006).
[3] Krizhevsky, A., I. Sutskever, I., and Hinton, G. E., “ImageNet Clas-

sification with Deep Convolutional Neural Networks”, Advances in
Neural Information Processing Systems 25, (2012).

[4] Freund, Y., and Schapire, R. E., “A Decision-Theoretic Generaliza-
tion of On-Line Learning and an Application to Boosting”, Journal of
Computer and System Science vol. 55, pp. 119–139, (1997).

[5] Hara, K., and Okada, M., “Ensemble Learning of Linear Perceptrons:
On-Line Learning Theory”, Journal of the Physical Society of Japan,
vol. 74, no. 11, pp. 2966–2972 (2005).

[6] Miyoshi, S., Hara, K., and Okada, M., “Analysis of ensemble learning
using simple perceptron based on online learning theory”, Physical
Review E, American Physical Society, (2005).

[7] Biehl, M., and Schwarze, H., “Learning by on-line gradient descent”,
Journal of Physics A: Mathematical and General Physics, 28, 643–656
(1995).

[8] Saad, D., and Solla, S. A., “On-line learning in soft-committee ma-
chines”, Physical Review E, 52, pp. 4225–4243 (1995).

[9] Wager, S., Wang, S., and Liang, P., “Dropout Training as Adaptive
Regularization”, Advances in Neural Information Processing Systems
26 (2013).

[10] Bishop, C. M., Pattern Recognition and Machine Learning, Springer
(2006).

ⓒ 2016 Information Processing Society of Japan 6

Vol.2016-MPS-111 No.2
2016/12/12

