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Abstract: To obtaine some knowledge about a protein’s function or characteristics, Molecular Dynamics(MD)
simulation technique was utilized. Time seriese data representing motions of a protein contains not only es-
sential dynamics but also random motions corresponding to thermal fluctuation of focal system. To solve
the problem to extract essential motions we had proposed a method named “GrabRPM”. The method al-
lows us to extract and summarize complexed motions contained in a time seriese data from MD simulation.
However the part for the extraction of structural transition events depends on two thresholds corresponding
the minimal difference of Root Mean Squared Distance(RMSD) between two structures of focal protein and
the time period that the effect of structural transition events last. In this study we applied the method to
extract change point from time seriese data, named “Robust Singular Spectrum Transform”(RSST)? and
utilized preliminary experiments using artificial data to show some property of RSST. From the experiments,
although RSST could extract the change in the mean value, it has the difficulty for the extraction of the
change in the variance.

1. Introduction

Improvements on hardware and software allow us to sim-

ulate various biological processes in computer. Simulations

about various biological process, such as protein folding and

ligand binding were archieved.To execute the simulation of

a biological process Molecular Dynamics(MD) method and

Monte had been used. As examples of softwares to utilize

MD simulation, we can cite CHARMM[1], AMBER[2] and

GROMACS[3]. Time seriese data of coordinates of atoms

consist of a protein is called “Trajectory”. Analysing a tra-

jectory, the information about the focal protein’s structure

and motions in a system could be obtained. Because struc-

ture and its motions are related to the biological function of

a protein, obtaining information of them has possibility to

archieve the more accurate knowledge about various biolog-

ical processes.

Instead of the its effectiveness a trajectory contains not

only essential motions or dynamics that relate to the func-

tions but also ones that originated from thermal fluctua-

tions in a system. To obtain the information about the

structure or motions related to the function it is needed

to separate essential dynamics from the random motions.

To solve the problem we had proposed a method that con-
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sists of density-based clustering[8] and graph representation

named “GrabRPM”[7]. Some method to choose the pa-

rameters used in the proposal were also developped[10]. In

the report[10] a summarization result was shown from the

MD trajectory corresponding model protein, HP35. How-

ever the extraction of structural transition events depends

on two thresholds corresponding the minimal difference of

Root Mean Squared Distance(RMSD) between two struc-

tures of focal protein and the time period that the effect

of structural transition events last. Such thresholds value

might be varied depending on focal protein and biological

process. Then it is required for a more flexible method to

extract the time points structural transitions occured.

In this report we applied the method to extract change

point for time seriese data, named “Robust Singular Spec-

trum Transform” (RSST)? and utilized preliminary experi-

ments using artificial data to show some property of RSST.

2. Extraction of Structural Transition

In this section, the explanations about the method for ex-

traction of structural transitions used in previous report[10].

After that we give the introduction of the method, named

“Robust Singular Spectrum Transform”(RSST) to extract

change points from time seriese data.

2.1 Extraction Method used in the Report[10]

Considering the noise level of given dataset and using
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the optimal Traditional method to extraction of structural

transition events were based on a graph-based representa-

tion of a protein motions. The representation had been

proposed in the report[7] and called “Structural Transition

Graph”(STG). Because of that STG contains the informa-

tion of structural transitions in a trajectory, the analysis of

the characteristic sub-structure of STG could allow us the

useful information about structural transitions. Considering

the fact that a trajectory is a time-series data, Two major

cases about about the structure of STG could be assumed.

The first one is the structure that is globally linear and con-

tains some locally dense components. And the second is

global ring structure and contains some dense local regions.

In both cases, structure of STG contains locally dense re-

gions as sub-structure. Global structure of STG corresponds

to two major outcomes of biological process. The first out-

comes is the case that the end structure was same to the

the one at the starting time point in a simulation. And the

second is the one that structures at starting time point and

end were different such as the simulation of protein folding

process. We made a hypothesis that local dense region rep-

resents some significant structural transitions such as the

resolving a sub-structure that is a energetic barrier on a en-

ergy landscape.

According to the method to extract the structural transi-

tion events from the time region in a trajectory correspond-

ing to the vertices in local dense region had benn developped.

It was based on two assumptions. The first is that in the

time region that particular structural transition events oc-

cur, the RMSD value of focused protein structure accord-

ing to a corresponding trajectory. And the second, after the

increasing RMSD at certain time point if the variation of

RMSD fall into some range then it could be considered that

the structure that occured in previous structural transition

event might be kept in some time period. The algorithm

to detect the time points that structural transition might

occure is shonw in Fig.1. Using algorithm described above

one can extract the occurence point of that structural tran-

sitional events and last time of its effects.

2.2 Outline of Robust Singular Spectrum Trans-

form

The extraction method shown in Fig.1 uses two thresholds

that represents some property of focal protein and biologi-

cal process. Then these values might be varied depends on

a protein and biological process. From this fact the more

flexible method to extract the time points that structural

transition events is required.

As such method we can site Robust Singular Spectrum

Transform(RSST)?. RSST calculates some score for each

time points that represents the likelihood that the time point

is a change point. The steps of RSST are shown in Fig.??

and its pseudo code is shown in Fig.??. the main concepts

of RSST is the comparison the current state and the past

changes in the past. Firstly Hankel matrix is calculated at

time point t before or after by sliding window manner using

1: procedure ExtractEventTime(Focusing time region T ,

RMSD function in time region T R(t), Event occurence thresh-

old r, Structure remaining threshold l)

2: eventTimingSet ← ϕ

3: for t← T do

4: if R(t) > r then

5: eventTimingSet Leftarrowt

6: end if

7: end for

8: eventRegionSet ← ϕ

9: for t←eventTimingSet do

10: eventRegionSet ← t

11: for u← {t+ 1, t+ 2, · · · ,, NextTiming(t)} do
12: if R(u) < l then

13: eventRegionSet ← u

14: else

15: break

16: end if

17: end for

18: end for

19: return eventRegionSet

20: end procedure

Fig. 1 Pseudo code of the algorithm for structural transition
event detection in the report[10]

the window that its width w. The number of windows(sub-

sequence) contained in Hankel matrix is denoted as n. Han-

kel matrix at time point t corresponding to the past changes

is denoted as H(t) and the one corresponding the current

state is denoted as G(t).

H(t) = (seq(t− n), . . . , seq(t− 1))T (1)

G(t) = (seq(t), . . . , seq(t+ n− 1))T (2)

In Eq.2 seq(t) represents a sub-sequence starting at time

point t that its length is w. After the calculation of the ma-

trices current change state and the changes in the past are

captured using the singular value decomposition and eigen

value decomposition of them.

H(t) = U(t)S(t)V (t)T (3)

G(t)G(t)T vi = λivi (4)

where λi+1 ≤ λi ≤ λi−1. The singular values in S(t)

and corresponding vectors in U(t) are sorted with increas-

ing order same as λi. After the decomposition to remove

the components that originated by random fluctuation the

vectors corresponding small singular values or eigen values

are filtered out. The number of vectors after the filtering

is denoted as l for H(t) and m for G(t). To measure the

significance of the vectors the singular values are accumu-

lated. The points that tangent to the curve of accumulation

is greater than π
4 is determined as the threshold to filter

the vectors originated by random fluctuations out. For pa-

rameter m same steps are used to determine its value. For

comparison between the current state and past changes the

projection of the vector vi onto the hyper plane Ul and nor-

malization are utilized.

α(t) =
Ulvi

||Ulvi||
(5)
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where i ∈ {1, . . . ,m}. If there is no change of the dynamics

in the time seriese the vector vi representing current state

will be near on the hyper plane represented by Ul. In other

words the vectors α(t) and vi are very similar in such case.

To measure the difference the cosine of the angle between

them is calculated.

csi(t) = 1− α(t)vi (6)

After the calculatin of cs(t)i for each significant vector vi

the weighted sum of them is calculated as change score using

λi as weight values.

cs(t) =

∑m
i λi × csi(t)∑m

i λi
(7)

In addition RSST executes one more filtering using the in-

formation about the static state of time seriese around the

time point t.

ˆcs(t) = cs(t)× |µf (t)− µp(t)| × |σf (t)− σp(t)| (8)

where µf (t) and µp(t) represent the mean values in the past

and the future at time point t. σf (t) and σp(t) are standard

deviation in the past and the future.

Follwing the above steps we can calculate the change score

that represents the likelihood that the time point is change

point.

3. Performance of RSST in Parameter

Variation

In RSST we have to set two parameters, the width of

window w and the number of the windows n for the con-

struction of Hankel matrix. To check the performance of

RSST according to the variation of these parameters, we

utilized experiments using artificial time seriese data.

3.1 Experimental Setup

In the experiments we considered two major cases of the

changes in time seriese, mean shift and the change in vari-

ance. For mean shift a time seriese that its length = 1,000

was generated by concatenating 5 sub-sequences. The length

of each sub-sequence is 200 and the mean value was varied

in 0.0, -1.0, 2.0, 0.5 and 0.0. Each sub-sequence has same

variance value σ2 = 0.2. For variance change a time seriese

data that its length = 1,000 was generated in same manner

with mean shift. Each sub-sequence has length 200 and the

variance values were 0.1, 0.2, 0.4, 0.8, and 1.0. The mean

value was set to 0.0. RSST was utilized to the aritificial

data by setting parameter w to 5, 10, 20, 50 and 100 and

parameter n to 10, 20, 50 and 100.

3.2 Result and Discussion

The results for the data with mean shift are shown in

Fig.2. As shown in Fig.2, in the cases which relatively small

value of n RSST could capture the change points corre-

sponding to the shifts of mean more accurately. On the other

hand the results in the cases which smaller window size was

tend to have much more false positive change points in the

region where mean value = 0.0. Such region contained only

random variation (noise) the result of RSST could be noisy

in the region where essential signal (or dynamics) is small.

In addition larger window size had tend to be relatively

smoothen curve of change scores. The window size reflect

the sub-sequence space in which the essential dynamics of

time seriese has to be contained. From this fact it is implied

that larger window size correspond to so large sub-sequence

space and this lead to the situation that sub-sequences in

the space are distributed sparsely. Then the difference be-

tween two hyper plane spanned by sub-sequences adjacent

in the time seriese data could be relatively large.

As shown in Fig.3, RSST could capture only the change

point correctly between σ = 0.1 to 0.2 and σ = 0.2 to 0.4.

In addition there were much false positive change points in

the region that the variance value is higher than 0.4. And

in the case w = 5 much false positive points were detected

in whole region. These results correspond to previous ones

in the case of mean shift. Because of the settings param-

eter µ = 0 in variance change data RSST results became

noisy. And it is implied from these results that the results

of RSST degradate in the region that time seriese data has

high variance.

From these results it is implied that RSST could capture

mean shift events more effectively but its results are eas-

ily degradated by increasing the variance contained in focal

data.

4. Conclusion
In this report we utilized RSST to artificial data to check

its performance according to the change of the static states µ
and σ of time seriese data. Although RSST is more flexible
than the method that we had proposed before, its results are
easily degradated by the increasing the variance. As next
task the development of the method that could handle the
variance change more robustly and parameter decision rules.
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Fig. 2 The results obtained from mean shift data. The black line represents the mean
shift data and red one denotes the corresponding change scores at each time point.
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Fig. 3 The results obtained from variance change data. The black line represents the
original data and red one denotes the corresponding change scores at each time
point.
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