
Parallelizable Message Preprocessing for
Merkle-Damg̊ard Hash Functions

Hidenori Kuwakado1,a) Shoichi Hirose2 Masahiro Mambo3

Abstract: Since well-known hash functions sequentially process a message, the time for computing a digest
strongly depends on the performance of a single processor. That is, even if multi-core processors are available,
it is difficult to reduce the time. This paper proposes a message preprocessing that contributes to a reduction
of the time for computing a digest. The message preprocessing is a provable collision-resistant hash function
in the sense that the collision resistance can be reduced to the hardness of lattice problems. Furthermore, it
can be efficiently computed by massively parallel processing. The throughput of the message processing is
evaluated via its implementation on graphics processing units (GPUs).

Keywords: hash function, preprocessing, lattice problem, graphics processing unit

1. Introduction

Increasing the number of cores has been the trend in pro-

cessor development since the performance gains from in-

creasing the operating frequency diminish greatly. Further-

more, most modern processors support single instruction

multiple data (SIMD) instructions in order to improve the

performance of multimedia use.

Hash functions are a primitive for achieving secure encryp-

tion and secure authentication. Well-known hash functions

such as the SHA-2 family are serial processing, that is, mes-

sage blocks are processed in the sequential order. Hence,

the throughput of hash functions strongly depends on the

performance of a single processor (a single core). It follows

that the throughput of hash functions is hardly improved by

increasing the number of processors and supporting SIMD

instructions.

The objective of this paper is to solve this problem with-

out changing the design of existing hash functions. We are

concerned with existing hash functions because their cryp-

tographic security has been extensively studied and their

existing software/hardware implementations are available.

Accordingly, we propose that a message is irreversibly com-

pressed prior to input to the existing hash functions, that

is, a message preprocessing. To achieve the objective, the

message preprocessing is designed so that it is suitable for

parallel processing to use modern processors fully. We

show that a function proposed by Ajtai et al. [1], [3] (an

AGGH function) satisfies such conditions. The algorithm

of the AGGH function is suited to graphics processing units

1 Kansai University
2 University of Fukui
3 Kanazawa University
a) kuwakado@kanasai-u.ac.jp

(GPUs). In our experiments, the throughput of SHA-512

with the AGGH function is at most 3.11 times faster than

that of the original SHA-512. In the case of Tegra TK1,

which is an embedded processor with a GPU, the through-

put is improved about 1.33 times. The cryptographic secu-

rity of the AGGH function has been proved in the sense that

there are reductions to an NP-hard lattice problem. How-

ever, there are few cryptographic applications of the AGGH

function since the AGGH function is a linear function. The

message preprocessing of hash functions is a promising ap-

plication of the AGGH function.

Related Work Although parallelizable hash functions have

been shown in articles [4], [10], it seems that they are not

widely used. Gueron and Krsnov [5] have proposed an al-

gorithm for accelerating the computations of Davies-Meyer

hash function. This algorithm is based on the computation

of several message schedules for several message blocks by

using SIMD instructions. This algorithm produces message

blocks that are identical to those produced by the original

message schedule. They also studied simultaneous hashing

for multiple messages [6]. Note that both of the papers are

for multiple messages, whereas this paper is for a single mes-

sage. Szydlo and Yin [11] have improved a collision-resistant

property of hash functions by message preprocessing. This

is for improving the security and is not for improving the

throughput.

Lyubashevsky et al. [8] have proposed a SWIFFT func-

tion that is based on the hardness of a lattice problem. The

SWIFFT function overcomes drawbacks of the AGGH func-

tion on the efficiency. The comparison of the AGGH func-

tion with the SWIFFT function is described in the later

section. Györfi et al. [7] have shown hardware architecture

for a SWIFFT function. The SWIFFT function was used

Computer Security Symposium 2016
11 - 13 October 2016

－971－

IV

MD hash function

padded blocks

Fig. 1 A new construction ((Kh,Ka) is omitted).

as a primitive of SWIFFTX, which was one of candidates in

the SHA-3 competition.

Organization Section 2 describes the specification of the

Merkle-Damg̊ard hash function with a message preprocess-

ing function. After requirements to the message prepro-

cessing function are mentioned, it is shown that the AGGH

function fills the requirements. Section 3 shows the through-

put of SHA-512 with the AGGH function which is imple-

mented on GPUs. The throughput can be improved by us-

ing the AGGH function. Section 4 proves that the Merkle-

Damg̊ard hash function with a message preprocessing func-

tion is collision-resistant if the compression function of the

underlying Merkle-Damg̊ard hash function and the message

preprocessing function are collision-resistant. Section 5 con-

cludes this paper.

2. Parallelizable Preprocessing

2.1 New Construction

Let h be a family of functions h : Kh×{0, 1}b+v→{0, 1}v

and let a be a family of functions a : Ka ×{0, 1}λ→{0, 1}b.
The value of b/λ is called a compression rate of a, which is

denoted by α (0 < α < 1). Let K, D, and R be

K = Kh ×Ka, D =

λ
b
2ℓ−1∪
i=0

{0, 1}i, R = {0, 1}v,

respectively. For a key (Kh,Ka) ∈ K and a message X ∈ D,

a family of functions G((Kh,Ka), X) : K×D→R is defined

as follows (Fig. 1):

(1) Choose (Kh,Ka) from K accoding to the uniform dis-

tribution on K.

(2) Append a single ‘1’ to X, and then append ‘0’ so

that the length of the padded message becomes a mul-

tiple of λ. Parse it as n λ-bit blocks, denoted by

X̂1 ∥ X̂2 ∥ . . . ∥ X̂n.

(3) For i = 1, 2, . . . , n, compute Yi = a(Ka, X̂i) where the

bit length of Yi is b.

(4) For i = 1, 2, . . . , n+ 1, assign Wi as

Wi =

Yi i = 1, 2, . . . , n

1 ∥ 0b−1−ℓ ∥ (nb)2 i = n+ 1

where (nb)2 means an ℓ-bit binary representation of nb,

which is the bit length of W1 ∥ W2 ∥ . . . ∥ Wn.

(5) After a v-bit fixed initial vector (IV) is assigned to V0,

compute Vi = h(Kh,Wi ∥ Vi−1) for i = 1, 2, . . . , n+ 1.

(6) Output Vn+1 (∈ R) as a digest of X.

If Y1 ∥ Y2 ∥ . . . ∥ Yn is regarded as a message, then the

procedure from (4) to (6) is identical to the Merkle-Damg̊ard

hash function. The family of functions G is considered as

the Merkle-Damg̊ard hash function with a message prepro-

cessing function a.

2.2 Conditions on the Message Preprocessing

Function

The objective of a message preprocessing is to increase the

throughput of computing a digest. Let ta be the throughput

of the message preprocessing function a (e.g., [MiB/s]) and

let th be that of the compression function h. The following

inequality has to hold to achieve the objective.

λ

ta
+

b

th
<

λ

th
, (1)

where the right-hand side is the time for computing h for

an input with length λ and the left-hand side is that for

computing the composite function h ◦ a for an input with

length λ. Rearranging Eq. (1) gives

λ

λ− b
th < ta. (2)

By using the compression rate α, Eq. (2) is transformed to

1

1− α
th < ta.

The message preprocessing function a has to be at least

1/(1− α) times faster than the compression function h.

On the security, Theorem1 in Sect. 4 will show that the

family of functions G is collision-resistant if both of the com-

pression function h and the message preprocessing function

a are collision-resistant.

2.3 The AGGH Function

We here discuss a function proposed by Ajtai, Goldreich,

Goldwasser, and Halevi [1], [3] (called an AGGH function)

as the message preprocessing function a.

Let q be a positive integer, Zq be the set of all integers

modulo q, and A be a µ × λ random matrix with entries

in Zq. For an input X ∈ {0, 1}λ, the AGGH function is

defined as

Y = a(A, X) = A ·X mod q, (3)

where Y ∈ Zµ
q . Since Y is the input to h, µ and q are chosen

so that the bit length of Y is equal to b (i.e., µ lg(q) = b)*1.

Since A is chosen uniformly at random from a set of all the

µ× λ matrices, A itself plays a role of Ka.

The AGGH function has the following cryptographic

properties.

• Ajtai [1] has proved that when A is chosen uniformly

at random, the average-case complexity of inverting the

AGGH function is at least as hard as the worst-case

*1 lg denotes the logarithm of base 2 or the number of bits for
expressing a given number.

－972－

Table 1 The number of operations.

Operation SHA-512

bitwise NOT 80
bitwise AND 400

bitwise inclusive OR 736
bitwise exclusive OR 816

shift 1600
modular addition 752

Total 4384

complexity of approximating an NP-hard lattice prob-

lem.

• Goldreich, Goldwasser, and Halevi [3] have proved that

when A is chosen uniformly at random, it is computa-

tionally hard to find X(1), X(2) such that a(A, X(1)) =

a(A, X(2)), that is, the AGGH function is collision-

resistant.

Despite of these remarkable properties, the AGGH function

itself is not suitable for cryptographic applications because

the AGGH function is a linear function.

Next, we discuss the throughput of the AGGH function

when the SHA-512 compression function is used as the com-

pression function h. Equation (3) requires at most µ(λ− 1)

additions over Zq. For example, suppose that b = 1024,

q = 256, and α = 1/8. Equation (3) requires at most

1048448 (= 27(213 − 1)) additions because

lg(q) = lg(256) = 23, µ =
b

lg(q)
=

1024

23
= 27,

λ =
b

α
= 1024 · 8 = 213,

and the SHA-512 compression function requires 4384 opera-

tions as shown in Table 1*2. Their comparison suggests that

the throughput of the AGGH function is much lower than

that of SHA-512 when they are sequentially computed.

However, the computation of Eq. (3) can be completed in

the time of lg(λ − 1) additions if an ideal parallel process-

ing is possible. We can expect that the throughput of the

AGGH function increases considerably by using massively

parallel processing units such as graphics processing units

(GPUs).

Another drawback of Eq. (3) is the memory size for A,

which is µλ lg(q) bits. For example, suppose that b = 1024,

q = 256, and α = 1/8. The size of A is about 223 [bits],

and the size of constants in SHA-512 is 5632 (≈ 212.45)[bits].

Thus, the AGGH function requires larger memory than the

SHA-512 compression function.

In fact, above-mentioned drawback of the AGGH func-

tion (i.e., the low throughput and the large memory) have

been known. To overcome drawbacks, Lyubashevsky et al.

[8] have proposed a SWIFFT function that is based on the

following idea.

• A skew-circulant random matrix is used as A.

• A prime is used as q.

The size of the skew-circulant random matrix is 1/µ times

smaller than that of the random matrix. Owing to the skew-

*2 The circular shift operation is achieved by two shift operations
and one bitwise inclusive OR operation.

IV

Buffering

Concurrent
execution

Fig. 2 The preprocessing with message buffering.

Table 2 Throughput of the AGGH function. [MiB/s]

α
GPU 1/8 1/16 β

Tegra TK1 66.0 66.8 128
Tegra TX1 102.8 112.0 256
GTX 960M 278.9 284.3 512
GTX 690 (single) 685.5 698.6 1024
GTX TITAN X 1015.6 1010.7 2048

circulant matrix and the prime q, the function that is equiv-

alent to Eq. (3) is efficiently performed with the fast Fourier

transform. However, this paper does not use the SWIFFT

function, and uses the AGGH function for the following rea-

sons.

• The reduction to lattice problems is unclear when the

skew-circulant random matrix is used.

• To use single instruction multiple data (SIMD) instruc-

tions for the addition over Zq, q has to be 28 or 216.

3. Implementation

3.1 Message Buffering

GPUs have more cores than necessary to compute the sin-

gle AGGH function. For example, NVIDIA GeForce GTX

TITAN X, which is a high-end GPU, contains 3072 cores.

Buffering a sufficiently long message allows a GPU to com-

pute a number of the AGGH functions independently. Con-

sequently, the throughput is probably improved.

Suppose that a GPU computes β AGGH functions con-

currently after buffering β blocks (Fig. 2). Let ta(β) be the

throughput (e.g., [MiB/s]) of the AGGH function in such a

case and let th be the throughput of the compression func-

tion. Then, since the input size is βλ and the time is given

by

βλ

ta(β)
+

βb

th
=

β(λth + bta(β))

ta(β)th
,

the throughput is given by

βλ · ta(β)th
β(λth + bta(β))

=
ta(β)th

th + αta(β)

where α (= b/λ) denotes the compression rate. Hence, the

throughput is ta(β)/(th + αta(β)) times faster than that of

the underlying Merkle-Damg̊ard hash function owing to the

message preprocessing with buffering.

3.2 Results

The throughput was measured for a sufficiently long mes-

sage under the following parameters: b = 1024, q = 256.

The throughput was measured in such a way that the time

－973－

Table 3 Throughput of SHA-512. [MiB/s]

CPU Throughput

Tegra TK1 (ARM Cortex A15) 35.9
Tegra TX1 (ARM A57) 97.3
Intel Core i7-2600S 199.3
Intel Core i7-6700HQ 206.4
Intel Core i5-3570 255.5
Intel Xeon E3-1275 V2 [2] 411.5

for transferring data between a CPU and a GPU through

the PCI Express bus was included.

Table 2 shows the throughput of the AGGH function with

buffering that was implemented on NVIDIA GPUs. In Ta-

ble 2, α and β denotes the compression rate and the number

of buffering blocks. Their codes were written in CUDA 7.0 or

CUDA 5.5 and used the SIMD instruction that operates on

quads of a byte*3. The throughput was the highest when the

compression rate and the number of buffering blocks were

values shown in the Table 2. When β is fixed, the above

discussion showed that smaller α gave better throughput.

However, the throughput ta(β) actually depends on not only

β but also α.

Table 3 shows the throughput of the SHA-512 compres-

sion function that was implemented on ARM CPU or Intel

CPU. Their codes are written in standard C. The through-

put of Intel Xeon E3-1275 V2 in Table 3 is an excerpt from

eBASH [2].

Tegra TK1 is a system on a chip (SoC) for GPU-

accelerated parallel processing in embedded systems. Owing

to the message preprocessing, the throughput on Tegra TK1

is about 1.66 (= 66.8/(35.9 + 66.8/16)) times faster than

that of SHA-512. Using GTX TITAN X, which is usually

equipped to personal computers of Intel CPU, the through-

put is about 1.88 to 3.11 times faster than that of SHA-512.

4. Security Proof

4.1 Definition

A hash function is a family of functions H : K × D→R
where the domain D is a wider space than the range R. Let

K be a value sampled from the uniform distribution on K.

Then, HK : D→R is defined as

HK(M) = H(K,M) (4)

for all M ∈ D.

Definition 1 Let H : K × D→R be a hash function

and let A be an algorithm (adversary). The advantage of A

with respect to collision resistance is defined by

AdvCR
H (A) = Pr

[
ExpCR

H (A) = 1
]

(5)

where ExpCR

H (A) is defined as follows:

(1) Choose K from K according to the uniform distribution

on K and give K to A.

(2) Let (X(1), X(2)) be the output of A(K).

(3) If X(1),X(2) ∈ D ∧ X(1) ̸= X(2) ∧ HK(X(1)) =

*3 All the GPUs in Table 2 support such SIMD instructions.
When no SIMD instructions are used, for example, the
throughput of Tegra TK1 at α = 1/16 is 41.7 [MiB/s].

HK(X(2)), then return 1. Otherwise, return 0.

Suppose that the size of K is exponential in ι. If there exists

a negligible function neg(ι) such that AdvCR
H (A) ≤ neg(ι)

for all probabilistic polynomial-time algorithms A in ι, H is

called a collision-resistant hash function.

4.2 Proof of Collision Resistance

We evaluate the advantage of an adversary AG against

G with respect to collision resistance. The theorem to be

proved is as follows:

Theorem 1 Let h be a family of functions Kh ×
{0, 1}b+v→{0, 1}v and a be a family of functions Ka ×
{0, 1}λ→{0, 1}b. A family of functions G : K × D→R is

constructed from h and a in a manner of Sect. 2.1. If there

exists an adversary AG that can find collisions in G, then

there exists an adversary Ah that can find collisions in h or

an adversary Aa that can find collisions in a such that

AdvCR
G (AG) ≤ AdvCR

h (Ah) +AdvCR
a (Aa). (6)

The running time of Ah or that of Aa is dominated by the

sum of the following three items.
• the running time of AG

• the time to compute G(K,X(1)) and G(K,X(2))

where (X(1), X(2)) is the collision in G found by AG

• the time to sort message blocks of X(1), X(2)

We introduce Lemma1 for proving Theorem1. The proof

of Lemma1 is described in Appendix A.1.

Lemma 1 Let h and G denote families of functions in

Theorem1. If there exists an adversary AG that can find

collisions in G, then there exists an adversary Ah that can

find collisions in h such that

Pr
[
ExpCR

h (Ah) = 1
]
≥ Pr

[
colh|ExpCR

G (AG) = 1
]

· Pr
[
ExpCR

G (AG) = 1
]
, (7)

where colh denotes the event such that a collision found

by AG results in a collision in h. The running time of

Ah is dominated by that of AG and the time to compute

G(K,X(1)) and G(K,X(2)) where (X(1), X(2)) is the colli-

sion in G found by AG. Similarly, there exists an adversary

Aa that can find collisions in a such that

Pr
[
ExpCR

a (Aa) = 1
]
≥ Pr

[
cola|ExpCR

G (AG) = 1
]

· Pr
[
ExpCR

G (AG) = 1
]
, (8)

where cola denotes the event such that a collision found by

AG results in a collision in a. The running time of Aa dom-

inated by that of AG, the time to compute G(K,X(1)) and

G(K,X(2)), where (X(1), X(2)) is the collision in G found

by AG and the time to sort message blocks of X(1), X(2).

We here prove Theorem1.

Proof When ExpCR

G (AG) = 1, an event colh ∨ cola is a

certain event. That is,

Pr
[
colh ∨ cola|ExpCR

G (AG) = 1
]
= 1. (9)

Since colh and cola are not always disjoint, the following

－974－

inequality holds.

Pr
[
colh ∨ cola|ExpCR

G (AG) = 1
]

≤ Pr
[
colh|ExpCR

G (AG) = 1
]
+ Pr

[
cola|ExpCR

G (AG) = 1
]

(10)

Adding Eq. (7) to Eq. (8) gives

Pr
[
ExpCR

h (Ah) = 1
]
+ Pr

[
ExpCR

a (Aa) = 1
]

≥ Pr
[
ExpCR

G (AG) = 1
]

· (Pr
[
colh|ExpCR

G (AG) = 1
]
+ Pr

[
cola|ExpCR

G (AG) = 1
]
)

≥ Pr
[
ExpCR

G (AG) = 1
]

· Pr
[
colh ∨ cola|ExpCR

G (AG) = 1
]

(∵ Eq. (10))

≥ Pr
[
ExpCR

G (AG) = 1
]
. (∵ Eq. (9))

From Definition 1, the inequality above is transformed as

AdvCR
h (Ah) +AdvCR

h (Aa) ≥ AdvCR
G (AG).

The running time of Ah and that of Aa are the same as that

described in Lemma1. 2

5. Conclusions

This paper has proposed the Merkle-Damg̊ard hash func-

tion with the message preprocessing that meets the trend in

processor development, and has shown that the AGGH func-

tion is suitable for the message preprocessing. Our measur-

ing results showed that the AGGH function was efficiently

computed with GPUs and the throughput was improved

owing to the message preprocessing of the AGGH func-

tion. This paper has also proved that the Merkle-Damg̊ard

hash function with the message preprocessing is collision-

resistant if the compression function of the Merkle-Damg̊ard

hash function and the message preprocessing function are

collision-resistant.

A hash-based message authentication code (HMAC) is an

important application of the Merkle-Damg̊ard hash function

[9]. It is future work to analyze the security of HMAC that is

based on the Merkle-Damg̊ard hash function with the mes-

sage preprocessing.

References

[1] Ajtai, M.: Generating Hard Instances of Lattice Problems,
Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, pp. 99–108 (1996).

[2] eBASH, http://bench.cr.yp.to/results-hash.html, 2016.
[3] Goldreich, O., Goldwasser, S. and Halevi, S.: Collision-Free

Hashing from Lattice Problems, pp. 30–39, Springer Berlin
Heidelberg (2011).

[4] Gueron, S.: A j-lanes tree hashing mode and j-lanes SHA-
256, Cryptology ePrint Archive, Report 2012/476 (2012).
http://eprint.iacr.org/.

[5] Gueron, S. and Krasnov, V.: Parallelizing message schedules
to accelerate the computations of hash functions, Cryptology
ePrint Archive, Report 2012/067 (2012). http://eprint.
iacr.org/.

[6] Gueron, S. and Krasnov, V.: Simultaneous hashing of mul-
tiple messages, Cryptology ePrint Archive, Report 2012/371
(2012). http://eprint.iacr.org/.

[7] Györfi, T., Creţ, O., Hanrot, G. and Brisebarre,
N.: High-Throughput Hardware Architecture for the
SWIFFT/SWIFFTX Hash Functions, Cryptology ePrint
Archive, Report 2012/343 (2012). http://eprint.iacr.

org/.
[8] Lyubashevsky, V., Micciancio, D., Peikert, C. and Rosen,

A.: SWIFFT: A Modest Proposal for FFT Hashing, Fast
Software Encryption, FSE 2008, Lecture Notes in Computer
Science, Vol. 5086, pp. 54–72 (2008).

[9] National Institute of Standards and Technology: The Keyed-
Hash Message Authentication Code (HMAC), Federal In-
formation Processing Standards Publication, FIPS PUB
198-1 (2008). http://csrc.nist.gov/publications/fips/
fips198-1/FIPS-198-1_final.pdf.

[10] Sarkar, P. and Schellenberg, P. J.: A Parallel Algorithm for
Extending Cryptographic Hash Functions, Progress in Cryp-
tology – INDOCRYPT 2001, Lecture Notes in Computer
Science, Vol. 2247, pp. 40–49 (2001).

[11] Szydlo, M. and Yin, Y. L.: Collision-Resistant usage of
MD5 and SHA-1 via Message Preprocessing, Cryptology
ePrint Archive, Report 2005/248 (2005). http://eprint.
iacr.org/.

－975－

Appendix

A.1 Proof of Lemma1

Lemma 1 Let h and G denote families of functions in

Theorem1. If there exists an adversary AG that can find

collisions in G, then there exists an adversary Ah that can

find collisions in h such that

Pr
[
ExpCR

h (Ah) = 1
]
≥ Pr

[
colh|ExpCR

G (AG) = 1
]

· Pr
[
ExpCR

G (AG) = 1
]
,

where colh denotes the event such that a collision found

by AG results in a collision in h. The running time of

Ah is dominated by that of AG and the time to compute

G(K,X(1)) and G(K,X(2)) where (X(1), X(2)) is the colli-

sion in G found by AG. Similarly, there exists an adversary

Aa that can find collisions in a such that

Pr
[
ExpCR

a (Aa) = 1
]
≥ Pr

[
cola|ExpCR

G (AG) = 1
]

· Pr
[
ExpCR

G (AG) = 1
]
,

where cola denotes the event such that a collision found by

AG results in a collision in a. The running time of Aa dom-

inated by that of AG, the time to compute G(K,X(1)) and

G(K,X(2)), where (X(1), X(2)) is the collision in G found

by AG and the time to sort message blocks of X(1), X(2).

Proof Consider adversary Ah taking Kh as an input de-

scribed in Fig.A·1. In Fig.A·1, the statement from ‘�’ to

the end of a line is a comment. Analyzing the procedure of

Fig.A·1 gives

ExpCR

h (Ah) =

{
0 (line 6, line 17)

1 (line 9, line 14).

When line 17 is performed, although AG has succeeded in

finding a collision in G, it is not a collision in h. The success

of AG does not mean that of Ah. Hence, we have

Pr
[
ExpCR

h (Ah) = 1
]

= Pr
[
colh|ExpCR

G (AG) = 1
]
· Pr

[
ExpCR

G (AG) = 1
]
.

The running time of Ah is dominated by that of AG and

the time to compute variables in line 4 (i.e., G(K,X(1))

and G(K,X(2))).

Next, consider adversary Aa taking Ka as an input de-

scribed in Fig.A·2. The algorithm of Aa is based on the

observation that if (X̂
(1)
i , X̂

(2)
j) is a collision in a, then two

different messages X(1),X(2) that gives a collision in G an

be obtained easily. Conversely, a collision in G does not al-

ways give a collision in a. In addition, even if AG does not

give a collision in G, the output of AG might give a collision

in a. Analyzing the procedure of Fig.A·2 gives

ExpCR

a (Aa) =

{
0 (line 9)

1 (line 7).

1: procedure Adversary Ah(Kh)

2: Choose Ka fromKa according to the uniform distribution

on Ka and give (Kh,Ka) to AG.

3: Let (X(1), X(2)) be the output of AG((Kh,Ka)).

4: For τ = 1, 2, compute W
(τ)
i , V

(τ)
i where i = 1, 2, . . . , n(τ)+

1 in a manner of Sect. 2.1.

5: if V
(1)

n(1)+1
̸= V

(2)

n(2)+1
then

6: return (⊥,⊥). ◃ ⊥̸∈ {0, 1}v, Ah fails.

7: end if

8: if n(1) ̸= n(2) ∨ V
(1)

n(1) ̸= V
(2)

n(2) then ◃ V
(1)

n(1)+1
= V

(2)

n(2)+1

9: return (W
(1)

n(1)+1
∥ V

(1)

n(1) ,W
(2)

n(2)+1
∥ V

(2)

n(2)). ◃ Ah

succeeds.

10: end if

11: Let n = n(1). ◃ n(1) = n(2) ∧ V
(1)

n(1) = V
(2)

n(2)

12: for i = n, n− 1, . . . , 1 do ◃ V
(1)
i = V

(2)
i

13: if W
(1)
i ∥ V

(1)
i−1 ̸= W

(2)
i ∥ V

(2)
i−1 then

14: return (W
(1)
i ∥ V

(1)
i−1,W

(2)
i ∥ V

(2)
i−1). ◃ Ah succeeds.

15: end if

16: end for

17: return (⊥,⊥) ◃ Ah fails.

18: end procedure

Fig. A·1 Adversary Ah.

1: procedure Adversary Aa(Ka)

2: Choose Kh from Kh according to the uniform distribution

on Kh and give (Kh,Ka) to AG.

3: Let (X(1), X(2)) be the output of AG((Kh,Ka)).

4: For τ = 1, 2, compute X̂
(τ)
i , Y

(τ)
i where i = 1, 2, . . . , n(τ)

in a manner of Sect. 2.1.

5: Find (i, j) such that X̂
(1)
i ̸= X̂

(2)
j ∧ Y

(1)
i = Y

(2)
j where

i ∈ {1, 2, . . . , n(1)} and j ∈ {1, 2, . . . , n(2)}.
6: if such a (i, j) is found then

7: return (X̂
(1)
i , X̂

(2)
j) as a collision in a. ◃ Aa succeeds.

8: else

9: return (⊥,⊥). ◃ Aa fails.

10: end if

11: end procedure

Fig. A·2 Adversary Aa.

Let suc denote the event that the statement in line 7 is

performed. Then,

Pr
[
ExpCR

a (Aa) = 1
]

= Pr
[
suc|ExpCR

G (AG) = 0
]
· Pr

[
ExpCR

G (AG) = 0
]

+ Pr
[
suc|ExpCR

G (AG) = 1
]
· Pr

[
ExpCR

G (AG) = 1
]

≥ Pr
[
suc|ExpCR

G (AG) = 1
]
· Pr

[
ExpCR

G (AG) = 1
]

≥ Pr
[
cola|ExpCR

G (AG) = 1
]
· Pr

[
ExpCR

G (AG) = 1
]
,

which is the inequality of Eq. (8). The running time of Aa

is dominated by that of AG, the time to compute variables

in line 4 (i.e., G(K,X(1)) and G(K,X(2))), and the time

to find (i, j) in line 5. The search in line 5 can be done in

O((n(1)+n(2)) log(n(1)+n(2)))) by using an efficient sorting

algorithm (e.g., a quick sort). 2

－976－

