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1. Introduction

An anonymous password-based authentication protocol

is designed to provide not only password-based authen-

tication but also client anonymity. However, adding the

most widely-used password authentication to anonymity

is not trivial at all and would be an important re-

search topic in the forthcoming future. So far, sev-

eral anonymous password-based authentication protocols

[12], [14], [15], [16], [17], [18], [19], [20] have been pro-

posed. These protocols are quite attractive because they

do not rely on PKI (Public-Key Infrastructures) and thus

can be used in PKI-unavailable situations. Some poten-

tial applications of such protocols include whistle-blowing

from insiders, questionnaire to qualified people, anony-

mous counseling and so on.
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1.1 Anonymous Password-based Authentication

Protocols Requiring Auxiliary Memory De-

vice or Public Directory

The anonymous password-based authentication proto-

cols [12], [19], [20] requiring auxiliary memory device or

public directory have been proposed in order to elim-

inate the linear computation costs to the number of

clients on the server side in Anonymous PAKE protocols

[14], [15], [16], [17], [18]. In [19], Yang et al., proposed

a new anonymous password-based authentication proto-

col (YZWB09) using the password-protected credentials.

The YZWB09 protocol is constructed from Camenisch’s

signature [4] for clients’ authentication credentials, and

Paillier encryption [11] for server’s homomorphic encryp-

tion. For better efficiency, Yang et al., [20] proposed

another anonymous password-based authentication pro-

tocol (YZWB10) which is based on the BBS+ signature

[2] and the ElGamal encryption [5]. In [12], Qian et al.,

proposed a simple anonymous password-based authenti-

cation (SAPAKE) protocol and its extended SAPAKE+

protocol both of which are constructed on a homomorphic
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public-key encryption scheme. A distinguishing feature of

[12], [19], [20] is that the password-protected credentials

in [19], [20] and the protocol-specific values in [12] must

not require any secure storage facility for usability so that

these credentials/values can be stored on any auxiliary

memory device or public directory. Recently, Shin et al.,

[13] showed that the SAPAKE and SAPAKE+ protocols

[12] are susceptible to active attacks where an attacker

can impersonate the server after modifying the protocol-

specific values.

1.2 Our Contributions

In this paper, we revisit the SAPAKE protocol [12]. Af-

ter describing the SAPAKE protocol [12], we show that it

does not provide client anonymity against an outside at-

tacker, who is much weaker than the server. Specifically,

the attacker can specify which client has actually commu-

nicated with the server in the SAPAKE protocol [12] with

probability 1 even though the attacker does not know the

server’s secrets. Then, we propose a secure anonymous

password-based authentication (for short, SAP) protocol

that is secure against modification attacks (as in Section

4.2 and [13]) on protocol-specific values. The SAP proto-

col allows a server to control the number of anonymous

client authentication, and is more efficient than SAPAKE

[12] in terms of client’s computation costs. Also, we prove

that the SAP protocol provides client anonymity against

an outside adversary and a semi-honest server, who hon-

estly follows the protocol.

2. Preliminaries

In this section, we explain some notations to be used

throughout this paper and a public-key encryption scheme

that is secure against chosen-plaintext attacks.

2.1 Notations

Let λ be a security parameter. Let {0, 1}∗ be a set of

finite binary strings and {0, 1}λ be a set of binary strings

of length λ. Let ”‖” be a concatenation of binary strings

in {0, 1}∗. If U is a set, then u R← U indicates the process

of selecting u at random and uniformly over U . If U is a

function (whatever it is), then u := U indicates the pro-

cess of assigning a result of U to u. Let D be a dictionary

size of passwords. Let Ci, C and S be identities of each

client Ci, all clients {Ci} and server S, respectively.

2.2 A Public-Key Encryption Scheme

Here, we define the syntax of a public-key encryption

scheme and its security notion (i.e., semantic security

against chosen-plaintext attacks).

Definition1 (Public-Key Encryption) A public-

key encryption scheme is a tuple of probabilistic

polynomial-time algorithms (Gen,E,D) such that:

( 1 ) A key generation algorithm Gen takes as input the

security parameter 1λ and outputs a pair of pub-

lic/private keys (pk, sk).

( 2 ) An encryption algorithm E takes as input a public key

pk and a message m from some underlying plaintext

space. It outputs a ciphertext c := Epk(m).

( 3 ) A decryption algorithm D takes as input a private

key sk and a ciphertext c, and outputs a message

m := Dsk(c) or a special symbol ⊥ denoting failure.

It is required that Dsk(Epk(m)) = m except with possibly

negligible probability over (pk, sk), output by Gen(1λ),

and any randomness used by E.

Definition2 (CPA Security) A public-key encryp-

tion scheme Π = (Gen,E,D) is secure against chosen-

plaintext attacks (CPA-secure) if, for an adversary B,

there exists a negligible function ε(·) in the security pa-

rameter λ such that

Pr[PKEcpa
Π (B) = 1] ≤ 1/2 + ε(·) (1)

in the experiment PKEcpa
Π (B) defined as below:

( 1 ) Gen(1λ) is run to obtain keys (pk, sk).

( 2 ) Adversary B is given pk as well as oracle access to

Epk(·). The adversary outputs a pair of messages

m0,m1 of the same length.

( 3 ) A random bit b ∈ {0, 1} is chosen, and then a chal-

lenge ciphertext c := Epk(mb) is computed and given

to B.

( 4 ) B continues to have access to Epk(·), and outputs a

bit b′.

( 5 ) The output of the experiment is defined to be 1 if

b′ = b, and 0 otherwise.

We denote by Advcpa
Π (B) = 2 Pr[PKEcpa

Π (B) = 1] − 1 the

adversary’s advantage in attacking the public-key encryp-

tion scheme Π.

Also, we define multiplicative homomorphic property of

a public-key encryption scheme as follows. Let R be a set

from which a random coin used by E is uniformly chosen,

and let Epk(m; r) be a ciphertext of a message m under a

public key pk using a random coin r.

Definition3 (Homomorphic Property) A public-

key encryption scheme Π = (Gen,E,D) is multiplicative

homomorphic if, for two arbitrary messages m1 and m2

in the plaintext space, it holds that
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Epk(m1; r1)⊗ Epk(m2; r2) = Epk(m1 ·m2; r′) (2)

for some r′ ∈ R, where both r1 and r2 are random coins,

and ⊗ and · are group operations over ciphertexts and

plaintexts, respectively.

3. The SAPAKE Protocol

In this section, we describe the SAPAKE and its ex-

tended SAPAKE+ protocols [12] both of which consist of

Setup, Registration and Authentication phases.

3.1 Setup

It chooses a finite cyclic group G generated by g of

prime order p, such that |p| = λ, where λ is the secu-

rity parameter. Next, it chooses a homomorphic public-

key encryption scheme (Gen,E,D). Also, it chooses

three hash functions H1,H2,H3 : {0, 1}∗ → {0, 1}λ.

Finally, it publishes (system-wide) public parameters

(G, p, g,H1,H2,H3,Gen,E,D).

3.2 Registration

First, server S generates a key pair (pk, sk) by in-

voking Gen(1λ), and picks an element N
R← G. Each

client Ci randomly chooses his/her password pwi ∈ D

and sends it to the server. Then, server S computes

Ti := Epk(N1/pwi ; ri), where ri ∈ R. Finally, the server re-

leases protocol-specific values ({Ti}, pk). Note that pass-

word pwi is kept by client Ci secretly, and (N ∈ G, sk)

are held by server S secretly.

3.3 Authentication

The authentication phase of SAPAKE consists of four

steps as below.

Step 1. When client Ci(∈ C) wants to login to server

S, the client does the following: 1) The client chooses

a random element x R← Z?p and computes X ≡ gx;

2) The client obtains a masked X by setting X̂ :=

Epk(X; s) ⊗ T pwii , where s ∈ R; and 3) Finally, the

client sends (C, X̂) to the server.

Step 2. After receiving a message (C, X̂) from client Ci,

server S does the following: 1) The server extracts

X ′ := Dsk(X̂)/N ; 2) The server chooses a random

element y R← Z?p, computes Y ≡ gy, and obtains a

Diffie-Hellman key K ′ ≡ (X ′)y; 3) The server com-

putes an authenticator AuthS := H1(trans′) where

trans′ := C‖S‖X̂‖Y ‖X ′‖K ′; and 4) The server sends

back (S, Y,AuthS) to the client.

Step 3. After receiving a message (S, Y,AuthS) from

server S, client Ci does the following: 1) The client

computes a Diffie-Hellman key K ≡ Y x; 2) The client

checks whether AuthS = H1(trans) where trans :=

C‖S‖X̂‖Y ‖X‖K. If not, the client rejects; 3) Other-

wise, the client computes an authenticator AuthC :=

H2(trans) and a session key SKC := H3(trans); and

4) The client sends AuthC to the server, and termi-

nates with acceptance.

Step 4. After receiving a message AuthC from client Ci,

server S checks whether AuthC = H2(trans′). If not,

the server rejects. Otherwise, the server computes a

session key SKS := H3(trans′) and terminates with

acceptance.

In addition to the multiplicative homomorphic property

of the public-key encryption scheme (Gen,E,D) as in Defi-

nition 3, Qian et al., [12] also defined the following: Given

a message m and an integer n, it follows that

(Epk(m; r3))n = Epk(mn; r′′) (3)

for some r′′ ∈ R, where r3 is a random coin.

As an instantiation of the public-key encryption scheme

(Gen,E,D) in the SAPAKE protocol, Qian et al., sug-

gested the classical ElGamal encryption [5] because it

works well on a cyclic group of prime order and is quite ef-

ficient (see Section 2.2 of [12]). Let (pk ≡ gz, sk = z ∈ Z?p)
be a key pair of the ElGamal encryption. With this key

pair and the homomorphic property,

Ti = Epk
(
N1/pwi ; ri

)
=
(
gri , gz·ri ·N1/pwi

)
(4)

and

X̂ = Epk(X; s)⊗ T pwii

= Epk(X; s)⊗ (Epk
(
N1/pwi ; ri

))pwi

= (gs, gz·s ·X)⊗ (gri·pwi , gz·ri·pwi ·N)

= (gs · gri·pwi , gz·s ·X · gz·ri·pwi ·N) . (5)

This leads to the same Diffie-Hellman key K = K ′.

Also, Qian et al., proposed an extended SAPAKE+

protocol (see Section 6 of [12]) using an index to find

the corresponding ciphertext among ciphertexts for all

possible password candidates. Let f be a bijective map

f : D → {1, 2, · · · , |D|} which determines an index of

each password. The difference from the SAPAKE pro-

tocol is that server S releases protocol-specific values

({Ti := Epk(N1/f−1(i); ri)}1≤i≤|D|, pk), and accordingly

client Ci computes X̂ := Epk(X; s) ⊗ T pwiIi
where s ∈ R

and TIi is the Ii-th ciphertext of {Ti}1≤i≤|D|. In the

SAPAKE+ protocol, client Ci keeps (pwi, Ii := f(pwi))
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and server S holds (N, sk, f) secretly where the index Ii,

computed by server S in the Registration phase, is re-

membered by client Ci. In the SAPAKE+ protocol, the

protocol-specific values are quite large due to {Ti}1≤i≤|D|.

4. An Attack on SAPAKE

In [12], Qian et al., claimed that the SAPAKE protocol

provides client anonymity against server in the sense that

the server cannot specify which client has communicated

with the server. In this section, we show that an outside

attacker, who is much weaker than the server, can specify

which client has actually communicated with the server

in the SAPAKE protocol [12].

4.1 Public Parameters vs. Protocol-specific Val-

ues

Before showing an attack on the SAPAKE protocol,

we explain why ’Public parameters’ are different from

’Protocol-specific values’. The former are publicly veri-

fiable parameters, while the latter are publicly unverifi-

able/uncheckable values and specific to the SAPAKE pro-

tocol [12]. For example, the domain parameters (G, p, g)

can be validated with Appendix A of FIPS PUB 186-4

[9] or Chapter 7.2 of ANSI X9.42 [1], and such param-

eters can be found in Appendix A of [6]. Also, secure

hash functions and homomorphic public-key encryption

schemes are available in several international standards

(e.g., [7], [8], [10]).

However, the ciphertexts {Ti} computed with the

server’s public key pk, element N and client’s password

pwi are not verifiable (i.e., whether these are correctly

generated or not) from the client’s viewpoint. In [12],

Qian et al., clearly said that these ciphertexts {Ti} can be

stored on an auxiliary memory device or a public directory

that does not need any security mechanism as in [19], [20]

(refer to Section 4.5 and Table V of [12]). Also, the owner-

ship of pk cannot be guaranteed in the SAPAKE protocol

because there is no PKI (i.e., no certificate to bind the

public key pk to the server).

4.2 On Client Anonymity

As discussed in Section 4.1, an outside attacker can

modify the ciphertexts {Ti} without the client to be no-

ticed. Here, we show an attack on the SAPAKE pro-

tocol [12]. For clarity, suppose that there are only two

clients C1 and C2 whose corresponding ciphertexts (T1 :=

Epk(N1/pw1 ; r1) and T2 := Epk(N1/pw2 ; r2)) are entrusted

to a public directory.

First, an attacker A chooses an element M R← G, com-

putes Epk(M ; r′2) where r′2 ∈ R, and then replaces T2 with

T ′2 := T2 ⊗ Epk(M ; r′2).

Below is the authentication phase of the SAPAKE pro-

tocol between server S and client C2, whose corresponding

ciphertext is T ′2 := T2⊗Epk(M ; r′2). In the authentication

phase, attacker A just eavesdrops the communications be-

tween client C2 and server S. Of course, the attacker does

not know which client is about to perform the SAPAKE

protocol at the starting point of this protocol.

Step 1’. This is the same as Step 1 of Section 3.3

except that client C2 computes X̂ := Epk(X; s) ⊗
(T ′2)pw2 where s ∈ R.

Step 2’. This is the same as Step 2 of Section 3.3.

Step 3’. After receiving a message (S, Y,AuthS) from

server S, client C2 does the following: 1) The client

computes a Diffie-Hellman key K ≡ Y x; and 2) The

client checks whether AuthS = H1(trans) or not

where trans := C‖S‖X̂‖Y ‖X‖K.

If the client terminates the protocol without sending

AuthC (i.e., AuthS 6= H1(trans)) in Step 3’, the attacker

gets to know that the client who has just communicated

with server S is client C2. Otherwise, the attacker comes

to a conclusion that the client who has just communicated

with server S is client C1.

Let (pk ≡ gz, sk = z ∈ Z?p) be the server’s key pair

of the ElGamal encryption. The invalidity of AuthS
in Step 3’ can be easily checked from the inequality

K(≡ Y x ≡ gxy) 6= K ′(≡ (X ′)y ≡ gxy ·My·pw2) since

X̂ = Epk(X; s)⊗ (T ′2)pw2

= Epk(X; s)⊗ (T2 ⊗ Epk (M ; r′2))pw2

= (gs, gz·s ·X)

⊗
((
gr2 , gz·r2 ·N1/pw2

)⊗
(
gr
′
2 , gz·r

′
2 ·M

))pw2

= (gs · gr2·pw2 · gr′2·pw2 ,

gz·s · gz·r2·pw2 · gz·r′2·pw2 ·X ·N ·Mpw2)
def=
(
X̂1, X̂2

)
(6)

and

X ′ =
Dsk(X̂)
N

=
X̂2(

X̂1

)z
·N

= X ·Mpw2 . (7)

4.3 Discussion

In the attack of Section 4.2, the outside attacker can

specify client C1 and C2 with probability 1 by just eaves-

dropping the communications between the client and the

server after replacing the ciphertext T2 with T ′2. Also,
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this attack does not require the server’s secrets (N, sk)

and any off-line dictionary attacks on passwords.

The main reason why the attack of Section 4.2 is possi-

ble is that the client can not check the integrity of T2, at

the same time, the server can not check whether the cor-

rect T2 is used in the computation of X̂ (due to the homo-

morphic property of the public-key encryption scheme).

Therefore, the SAPAKE protocol [12] does not provide

client anonymity against an outside attacker, who is much

weaker than the server.*1

A simple countermeasure to the attack of Section 4.2 is

to use integrity-preserving memory devices or public di-

rectories for storing the protocol-specific values. However,

it is contrary to a distinguishing feature of the SAPAKE

protocol [12] that the protocol-specific values (including

{Ti}) must not require any secure facility for storage (on

the client side) as in [19], [20].

5. A Secure Anonymous Password-based

Authentication (SAP) Protocol

In this section, we propose a secure anonymous

password-based authentication (for short, SAP) protocol

that provides security against modification attacks (as in

Section 4.2 and [13]) on protocol-specific values. Specifi-

cally, the SAP protocol guarantees not only AKE security

against active attacks and modification attacks, but also

client anonymity against an outside adversary and a semi-

honest server, who honestly follows the protocol. In the

SAP protocol, a server can control the number of anony-

mous client authentication.

5.1 Main Ideas

Here, we explain main ideas of the SAP protocol in order

to prevent the modification attacks in Section 4.2 and [13].

As a countermeasure to the attack in Section 4.2, client

Ci should check the integrity of protocol-specific values by

verifying an authenticator that is sent from server S and

computed with the protocol-specific values locally stored

by server S. In order to avoid the attack in [13], client

Ci should use his/her password pwi for masking a Diffie-

Hellman public value X as well as an element N in a

ciphertext Ti. Note that the masking technique used in

the SAP protocol is different from that in the SAPAKE

protocol [12]. By doing these, we can prevent any ef-

*1 The attack of Section 4.2 is not applicable to the SAPAKE+
protocol because the index for ciphertexts {Ti} is hidden
with the secret bijective map f . However, the SAPAKE+
protocol is insecure against active attacks [13] (see Section
1.1).

fects caused by manipulation of protocol-specific values

in the SAP protocol without requiring any secure facility

for storing the protocol-specific values.

5.2 The SAP Protocol

The SAP protocol consists of Setup, Registration and

Authentication phases.

5.2.1 Setup

It chooses a finite cyclic group G of prime order p and

g is a generator of G, where the operation is denoted mul-

tiplicatively.*2 Let G,H be full-domain hash functions

mapping {0, 1}∗ → G. Next, it chooses a multiplicative

homomorphic public-key encryption scheme (Gen,E,D)

that is CPA-secure. Also, it chooses three hash functions

H1,H2,H3 : {0, 1}∗ → {0, 1}λ, where λ is the security

parameter. Finally, it publishes (system-wide) public pa-

rameters (G, p, g,H1,H2,H3,G,H,Gen,E,D).

5.2.2 Registration

First, server S generates a key pair (pk, sk) by in-

voking Gen(1λ), and picks an element N ∈ G. Each

client Ci chooses his/her password pwi ∈ D and sends

Wi := G(Ci, pwi)−1 to the server. Then, server S com-

putes Ti := Epk(Wi ·Hk(N); ri) where k ∈ N is the number

of anonymous client authentication for C, Hk(·) is a hash

chain of length k, and ri ∈ R.*3 Finally, the server re-

leases protocol-specific values ({Ti}, pk). Note that client

Ci remembers his/her password pwi, and server S holds

(C, k,N, (pk, sk), {Ti}). This registration phase should be

done securely between client Ci and server S.

5.2.3 Authentication

The authentication phase of the SAP protocol consists

of four steps as below.

Step 1. When client Ci(∈ C) wants to login to server

S anonymously, the client does the following: 1) The

client chooses a random element x R← Z?p, and com-

putes a Diffie-Hellman public value X ≡ gx and its

masked value X̄ ≡ X · G(Ci, pwi); 2) The client com-

putes X̂ := Epk(X̄; s) ⊗ Ti where s ∈ R; and 3) Fi-

nally, the client sends (C, X̂) to the server.

Step 2. After receiving a message (C, X̂) from client Ci,

server S does the following: 1) If k < 1, the server

aborts the protocol; 2) Otherwise, the server recov-

ers X ′ := Dsk(X̂)/Hk(N); 3) The server chooses a

random element y
R← Z?p, and computes Y ≡ gy

and a Diffie-Hellman key K ′ ≡ (X ′)y; 4) The server

*2 In the aftermath, all the subsequent arithmetic operations
are performed in modulo p unless otherwise stated.

*3 For example, if k = 3 then H3(N) := H(H(H(N))).

－838－



computes an authenticator VS := H1(trans′) where

trans′ := C‖S‖{Ti}‖pk‖X̂‖Y ‖X ′‖K ′; and 5) The

server sends back (S, Y, VS) to the client.

Step 3. After receiving a message (S, Y, VS) from server

S, client Ci does the following: 1) The client com-

putes a Diffie-Hellman key K ≡ Y x; 2) Let trans :=

C‖S‖{Ti}‖pk‖X̂‖Y ‖X‖K. If VS is not valid (i.e.,

VS 6= H1(trans)), the client aborts the protocol;

3) Otherwise, the client computes an authentica-

tor VC := H2(trans) and a session key SKC :=

H3(trans); and 4) The client sends VC to the server,

and terminates the protocol with acceptance.

Step 4. After receiving a message VC from client Ci,

server S does the following: 1) If VC is not valid

(i.e., VC 6= H2(trans′)), the server aborts the pro-

tocol; 2) Otherwise, the server computes a session

key SKS := H3(trans′); 3) The server computes

Ti := Ti ⊗ Epk(Hk−1(N)/Hk(N); t), where t ∈ R,

and k := k − 1; and 4) The server updates {Ti} and

k, and terminates the protocol with acceptance.

Note that, if k = 0 in Step 4, any client Ci(∈ C) can no

longer be authenticated anonymously with server S.

In the SAP protocol, the public-key encryption scheme

(Gen,E,D) can be instantiated with the ElGamal encryp-

tion [5]. Let (pk ≡ gz, sk = z ∈ Z?p) be a key pair of the

ElGamal encryption. With this key pair and the multi-

plicative homomorphic property (as in Definition 3),

Ti = Epk
(
Wi · Hk(N); ri

)

=
(
gri , gz·ri ·Wi · Hk(N)

)
(8)

and

X̂ = Epk(X̄; s)⊗ Ti
= Epk(X · G(Ci, pwi); s)⊗ Epk

(
Wi · Hk(N); ri

)

= (gs, gz·s ·X · G(Ci, pwi))

⊗ (gri , gz·ri ·Wi · Hk(N)
)

=
(
gs · gri , gz·s ·X · gz·ri · Hk(N)

)
. (9)

This leads to the same Diffie-Hellman key K = K ′.

5.3 Discussions

In this subsection, we discuss security of the SAP pro-

tocol against the modification attacks in Section 4.2 and

[13].

The attack in Section 4.2 is not applicable to the SAP

protocol. If an attacker adds any modifications to the

protocol-specific values {Ti} as in Section 4.2, client Ci
aborts the protocol due to the invalidity of VS (i.e.,

VS 6= H1(trans)) without sending out VC to server S. The

key point is that the invalidity of VS is always checked by

client Ci regardless of the values X and K.

Also, the SAP protocol is secure against the attack in

[13]. Even if an attacker changes the protocol-specific val-

ues ({Ti}, pk) to another ones as in [13], the attacker can

not recover X from X̂ with the probability better than

that of on-line dictionary attacks since X is masked with

G(Ci, pwi).

5.4 Update of Protocol-specific Values

In this subsection, we describe how to update protocol-

specific values in the SAP protocol depending on several

situations.

5.4.1 When k = 0

If k = 0 and server S wants to provide additional anony-

mous authentication services to C, the server computes

Ti := Ti ⊗ Epk(Hknew (Nnew)/H0(N); t)

k := knew

N := Nnew

and updates {Ti}, k and N .

5.4.2 When Client is Revocated

If revocation of client Cj happens, the server computes

Ti := Ti\j ⊗ Epk(Hk−1(N)/Hk(N); t)

k := k − 1

and updates {Ti} and k.

5.4.3 When Client Joins

If joining of client Cj happens, the server computes

Ti := Ti ⊗ Epk(Hk−1(N)/Hk(N); t)
⋃

Epk(Wj · Hk−1(N); rj)

k := k − 1

and updates {Ti} and k.

6. Security

After explaining the computational Diffie-Hellman

(CDH) problem, we show that the SAP protocol of Sec-

tion 5.2 is provably secure in the random oracle model [3]

under the CDH problem.

6.1 Computational Assumption

Here, we explain the computational Diffie-Hellman

(CDH) problem on which the SAP protocol is based.

Definition4 (CDH Problem) Let G be a finite

cyclic group of prime order p with g as a generator. A
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(t1, ε1)-CDHG,p,g attacker is a probabilistic polynomial

time (PPT) machine B, running in time t1, such that its

success probability Succcdh
G,p,g(B), given random elements

gα and gβ to output gαβ , is greater than ε1. We denote by

Succcdh
G,p,g(t1) the maximal success probability over every

adversaries, running within time t1. The CDH problem

states that Succcdh
G,p,g(t1) ≤ ε1 for any t1/ε1 not too large.

6.2 Security Proofs

In this subsection, we prove that the SAP protocol is

AKE secure in the random oracle model [3] under the

CDH problem, and provides client anonymity against an

outside adversary and a semi-honest server.

Theorem6.1 Let P be the SAP protocol where pass-

words are independently chosen from a dictionary of size

D. For any adversary A within a polynomial time t, with

less than qsend active interactions with the parties (Send-

queries), qexecute passive eavesdroppings (Execute-queries)

and asking qhashH hash queries to any Hl, for l = 1, 2, 3,

respectively,

Advake
P (A) ≤ 2(qsendC + 3qsendS)

D
+ 2n · Advcpa

Π (B)

+6q2
hashH × Succcdh

G,p,g(t1 + 3τe)

+
(qexecute + qsend)2

|G| +
2qsend + q2

hashH

2λ

(10)

where (1) qsendC (resp., qsendS) is the number of Send-

queries to Ci (resp., S) instance, (2) n is the number of

{Ti}, (3) λ is the security parameter for the hash func-

tions, and (4) τe denotes the computational time for an

exponentiation in G.

This theorem shows that the SAP protocol is secure

against off-line dictionary attacks since the advantage of

the adversary essentially grows with the ratio of interac-

tions to the number of passwords. Due to the lack of

space, we omit the proof of Theorem 6.1.

Theorem6.2 The SAP protocol provides client

anonymity against an outside adversary.

Proof. In this proof, we show that the outside adver-

sary’s advantage Advano
P (Aano) is upper-bounded by the

AKE advantage Advake
P (A). First, we choose either Ci or

Cj 6=i with the probability 1/2, and then simulate all the

instances of P for the chosen pair Ci (or Cj 6=i) and S. Let

bre-ano be an event that Aano breaks client anonymity for

the given pair. Also, let S be an event that A correctly

guesses the bit b, involved in the Test-query, and let ¬S

be its complement event.

Advano
P (Aano) = 2 Pr[breaking-anonymity]− 1

= 2
(

1
2

Pr[bre-ano|S ∨ ¬S]
)
− 1

= Pr[bre-ano|S] + Pr[bre-ano|¬S]− 1

≤ Pr[S] + Pr[bre-ano|¬S]− 1

= Pr[S]− 1
2

=
1
2

(2 Pr[S]− 1)

=
1
2

Advake
P (A) . (11)

Note that Pr[bre-ano|¬S] = 1/2 since Aano cannot distin-

guish Ci and Cj 6=i in the event bre-ano|¬S better than 1/2.

�
Theorem6.3 The SAP protocol provides uncondi-

tional client anonymity against a semi-honest server.

Proof. Let us consider server S who honestly follows

the SAP protocol, but it is curious about client’s iden-

tity involved with the protocol. It is obvious that server

S cannot get any information about the client’s identity

Ci since the X̂ (actually, X) has a unique discrete loga-

rithm of g and, with the randomly-chosen element x, it

is the uniform distribution over G. Also, the authentica-

tor VC does not reveal any information about the client’s

identity from the fact that the probability, for any clients,

to compute the Diffie-Hellman key K is equal. Therefore,

Dist[P (Ci, S)] = Dist[P (Cj , S)] for any two clients Ci and

Cj 6=i. �

7. Comparison

In this section, we compare security and efficiency of

the SAPAKE [12] and SAP (Section 5.2) protocols, both

of which are instantiated with the ElGamal encryption [5],

in terms of computation and communication costs.

In Table 1, we summarize comparative results of the

SAPAKE [12] and SAP (Section 5.2) protocols where

’ExpG’ indicates a modular exponentiation in G, ’|c|’ in-

dicates a bit-length of c, and the parentheses mean the

remaining number of modular exponentiations after ex-

cluding those that are pre-computable. The ’SAP w/o

control of client authentication number’ protocol can be

obtained from the SAP (Section 5.2) protocol by setting

k = 1, and removing the check of k in Step 2 and the

update of {Ti} and k in Step 4.

With respect to computation costs, client Ci (resp.,

server S) in the SAP protocol needs to compute 4 (resp.,

5) modular exponentiations in G. In case of the ’SAP w/o

control of client authentication number’ protocol, client

Ci (resp., server S) needs to compute 4 (resp., 3) modular

exponentiations in G. When pre-computation is allowed,
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表 1 Comparison between the SAPAKE [12] and SAP (Section 5.2) protocols

Security against modification Computation costs

Protocols attacks in Section 4.2 and [13] Client Ci Server S Communication costs∗1

SAPAKE [12] insecure 6ExpG 3ExpG
(4ExpG) (2ExpG)

SAP secure 4ExpG 5ExpG 3|G|+ 2|H|
(2ExpG) (2ExpG) (3 moves)

SAP w/o control of client secure 4ExpG 3ExpG
authentication number (2ExpG) (2ExpG)

*1: The bit-length of identities is excluded

the remaining costs of client Ci (resp., server S) in the

SAP and ’SAP w/o control of client authentication num-

ber’ protocols are 2 (resp., 2) modular exponentiations in

G. With respect to communication costs, the SAP and

’SAP w/o control of client authentication number’ pro-

tocols need a bandwidth of (3|G| + 2|H|)-bits except the

bit-length of identities C and S. From Table 1, we can see

that the SAP and ’SAP w/o control of client authentica-

tion number’ protocols are more efficient than SAPAKE

[12] in terms of client’s computation costs. However, the

SAPAKE protocol [12] is not secure against the modifica-

tion attacks in Section 4.2 and [13].
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