
IPSJ SIG Technical Report

Towards an Actor-Based Execution Model of an
FRP Language for Small-Scale Embedded Systems

Takuo Watanabe1,a) Kensuke Sawada1

Abstract: Functional reactive programming (FRP) is a programming paradigm for reactive systems based
on declarative abstractions to express time-varying values. Previous works showed that FRP is beneficial to
embedded systems. In this paper, we propose a new execution mechanism for an FRP language designed for
resource constrained embedded systems. The mechanism is based on the Actor model, a concurrent computa-
tion model in which computation is achieved by actors communicating via asynchronous messages. We adopt
actors for the run-time representation of time-varying values and event streams. With this representation,
we can naturally integrate asynchronous execution mechanism in the runtime of the language.

Keywords: Functional Reactive Programming, Embedded Systems, Actor Model

1. Introduction

Reactive systems are computational systems that respond

to external events. Embedded systems are typical instances

of reactive systems, in which changes in sensor values and

switch states are examples of external events.

The order of events in a reactive system is usually not

predictable, as they arrive asynchronously. Thus, describ-

ing reactive behaviors in conventional sequential program-

ming languages is not straightforward. In practice, polling

and callbacks are commonly used techniques to handle asyn-

chronous events. However, they usually split the control flow

of a program into multiple small pieces and thus are obsta-

cles to modularity.

Functional Reactive Programming (FRP)[2] is a pro-

gramming paradigm for reactive systems based on the func-

tional (declarative) abstractions of time-varying values and

events. Such abstractions are essential in FRP because

we often employ continuously changing data over time as

the sources of external events. Environmental sensor val-

ues are examples of such data. Time-varying values provide

straightforward ways to express reactive behaviors. We can,

of course, use them to represent discrete events.

FRP has been actively studied and recognized to be

promising for various kinds of reactive systems including

robots[4]. The application to robots suggests that FRP can

be useful for other embedded systems. However, with a few

exceptions, the majority of the FRP systems developed so

far are Haskell-based, and therefore they require substantial

runtime resources. Hence, it is virtually impossible to run

such FRP systems on resource constrained platforms.

We designed and developed a new FRP language Emfrp

1 Tokyo Institute of Technology
a) takuo@acm.org

that mainly targets small-scale embedded systems[6]. The

term small-scale here means that the target platforms are

not powerful enough to run conventional operating systems

such as Linux. In contrast to other FRP languages, Emfrp

does not treat time-varying values as first-class to guaran-

tees that the amount of the runtime memory used by an

Emfrp program is predictable.

The runtime system of Emfrp is based on a push-based,

synchronous evaluation of time-varying values. However,

we sometimes need to realize asynchrony for efficient execu-

tion[3]. Since Emfrp is a simple language specialized for the

description of reactive behaviors, interfaces to external de-

vices (including the runtime system) rely on libraries (I/O

code) written in C. One problem caused by this design is

that if we wish to add an asynchronous execution mecha-

nism to the runtime, it might be realized as an ad-hoc C

code.

To address the issue, we propose an integration of the Ac-

tor model[1] in Emfrp runtime, which provides a high-level

view of the internals of the I/O code as well as a high-level

abstraction for inter-device communication. In this inte-

gration, actors provide not only the representation of time-

varying values, but also an asynchronous interface to the

internals of the runtime.

The rest of the paper is organized as follows. The next

section briefly describes Emfrp using an example of a sim-

ple air-conditioner controller. In Section 3, we present our

Actor-based execution model. The section also shows the

implementation of delayed nodes as an application to an

asynchronous computation. Then Section 4 concludes the

paper.

© 2016 Information Processing Society of Japan 1

Vol.2016-EMB-43 No.6
2016/11/11

IPSJ SIG Technical Report

1 module ACController # module name
2 in tmp : Float , # temperature sensor
3 hmd : Float # humidity sensor
4 out ac : Bool # air -conditioner
5 use Std # standard library
6

7 # discomfort (temperature -humidity) index
8 node di = 0.81 * tmp + 0.01 * hmd
9 * (0.99 * tmp - 14.3) + 46.3

10

11 # air -conditioner switch
12 node ac = di >= 75.0

Fig. 1 Emfrp Module for an Air-Conditioner Controller

2. Overview of Emfrp

Emfrp[6]*1 is a purely functional programming language

designed for resource constrained embedded systems. This

section briefly describes the language with some examples.

2.1 Design Considerations

Designing abstraction mechanisms for time-varying values

and events is the central topic of FRP language design. Most

of existing FRP languages and libraries, such as Elm[3] or

Yampa[4], treat time-varying values as first-class data that

encapsulate time dependencies. Data types (or type con-

structors) for the purpose are either built-in (e.g., Signal

in Elm) or user-definable using type constructors such as

arrows[5].

We adopt a different approach for Emfrp. We often rep-

resent a program in (functional) reactive style as a directed

graph whose nodes and edges represent time-varying val-

ues and their dependencies respectively. The design of Em-

frp directly reflects this representation. An Emfrp program

consists of a fixed number of named nodes that express time-

varying values. A node corresponds to a signal or a behavior

in other languages.

Because Emfrp is mainly targeted at small-scale embed-

ded systems, we designed the language to have the following

characteristics to make the amount of runtime memory con-

sumption predictable.

• Nodes (time-varying values) are not first-class value.

We must, therefore, always specify nodes with their

names.

• The language does not provide ways to alter the de-

pendency relation between nodes at runtime. In other

words, the graph representation of a program is static.

• Recursion is not allowed in function and type defini-

tions.

2.2 Example: Air-Conditioner Controller

An Emfrp program consists of one or more modules. Fig. 1

is an example Emfrp module for a simple air-conditioner

controller. It reads data from two environmental sensors

(temperature and humidity) and turns an air-conditioner

*1 https://github.com/sawaken/emfrp/

11 # air -conditioner switch
12 node init[False] ac = di >= 75.0 + ho
13

14 # hysteresis offset
15 node ho = if ac@last then -0.5 else 0.5

Fig. 2 Improved Air-Conditioner Controller

on only during the discomfort index*2 calculated from the

sensor values is more than or equal to 75, otherwise turns it

off.

A module definition contains a single module header fol-

lowed by one or more type, function or node definitions used

in the module. In Fig. 1, the module header (lines 1–5) de-

fines the module name (ACController), then declares two

input nodes (tmp and hmd) and one output node (ac), and

specifies the library module (Std) used in this module.

The rest of the module (lines 7–12) consists of two node

definitions. A node definition looks like

node [init[c]] n = e

where n is the node name and e is an expression that de-

scribes the (time-varying) value of the node. The optional

init[c] specifies the constant c as the initial value of the

node. Note that if e contains another node name m, we say

that n depends on m. While the value of m changes over

time, the value of n varies also.

Emfrp has three kinds of nodes: input, output and in-

ternal. Each input or output node has a connection to an

external device, while an internal node has no such connec-

tion. The value of an input node always expresses the cur-

rent value (or state) of the device connected, and the value

of an output node acts on its device. Thus, an input node

needs no node definition in the module. In contrast, other

kinds of nodes require explicit definitions to determine their

values.

In the example, tmp and hmd are input nodes connected to

the sensors. Their values represent the current environmen-

tal data. The internal node di (lines 8–9) always expresses

the latest discomfort index depending on tmp and hmd. The

output node ac (line 12) serves as a time-varying Boolean

value that controls the on/off status of the air-conditioner.

2.3 Expressing History-Sensitive Behaviors

In fact, the air-conditioner controller in Fig. 1 has a se-

rious flaw. Let us consider a situation that the discomfort

index drifts around the threshold (75.0). In such a case,

the time-varying Boolean value of the output node ac may

change at a fast rate, which results in quick changes of the

on/off status of that are hazardous to the air-conditioner

To avoid such situation, we add a history-sensitive behav-

ior (hysteresis) to the controller by replacing lines 11–12 in

Fig. 1 with Fig. 2. This patch adds a new internal node

ho that represents a history-sensitive offset to the threshold.

The node definition of ho has an expression ac@last, which

*2 a.k.a. temperature-humidity index. About 50% of people feel
uncomfortable if it reaches 75.

© 2016 Information Processing Society of Japan 2

Vol.2016-EMB-43 No.6
2016/11/11

IPSJ SIG Technical Report

ACController

tmp

hmd

acdi

temperature
sensor

humidity
sensor

air
conditioner

node node dependency

external device reference

ho

past dependency

Fig. 3 Graph Representation of Fig. 2

refers to the value of ac at the “previous moment” — the

value evaluated in the previous iteration (see Section 2.4).

The new program behaves as follows. While the air-

conditioner is off, namely, ac is False, di must be more than

or equal to 75.5 to turn it True. Once it becomes True, di

must be less than 74.5 to turn it False. As a result, we

can avoid the quick changes of the on/off status explained

above.

The operator @last in Emfrp generalizes foldp in Elm.

The latter only allows a node to refer to the previous value

of itself, whereas the former provides access to those of ar-

bitrary nodes. Owing to this simple operator and other fea-

tures, Emfrp offers a flexible and intuitive way of describing

reactive behaviors.

2.4 Execution Model

As described in Section 2.1, an Emfrp program can be

represented as a directed graph whose nodes and edges cor-

respond to time-varying values and their dependencies re-

spectively. Figure 3 shows the graph representation of Fig. 2,

which consists of five nodes and five edges.

We categorize the edges (dependencies) into two kinds:

past and present. A past edge from node m to n means

that n has m@last in its definition. A present edge from

node m to n, in contrast, means that n directly refers to m.

In Figure 3, the dotted arrow line from ac to ho is the past

edge. All other edges are present.

By removing the past edges from the graph representation

of an arbitrary Emfrp program, we obtain a directed-acyclic

graph (DAG). The topological sorting on the DAG gives a

sequence of the nodes. For Figure 3, we have: tmp, hmd, ho,

di, ac.

The execusion model of Emfrp is push-based[2]. The run-

time system updates the values of the nodes by repeatedly

evaluating the elements of the sequence. We call a single

evaluation cycle an iteration. The order of updates (schedul-

ing) in an iteration must obey the partial order determined

by the above mentioned DAG.

The value of n@last is the value of n in the last iteration.

At the first iteration, where no nodes have their previous

values, n@last refers to the initial value c specified with

init[c] in the definition of n. The definition of ac in the

1 class Actor {
2 public:
3 virtual void send(Message *m);
4 virtual void receive(Message *m);
5 virtual void activate(Message *m) = 0;
6 }

Fig. 4 C++ Class for Actors

1 class TMPNode : public Actor {
2 public:
3 TMPNode(Actor2 *di, TMPSensor *tmp);
4 virtual ˜TMPNode () {}
5 virtual void activate(Message *m);
6 private:
7 Actor2 *di;
8 TMPSensor *tmp;
9 }

10

11 void TMPNode :: activate(Message *m) {
12 di->send1(
13 Message :: floatMessage(tmp ->read(),
14 m->cust));
15 }
16

17 class DINode : public Actor2 {
18 public:
19 DINode(Actor *ac) ac(ac) { ... }
20 virtual ˜DINode () {}
21 virtual void activate(Message *m);
22 private:
23 Actor *ac;
24 }
25

26 void DINode :: activate(Message *mt,
27 Message *mh) {
28 assert(mt->cust == mh->cust);
29 float t = mt->getFloat ();
30 float h = mh->getFloat ();
31 float di = 0.81 * t + 0.01 * h
32 * (0.99 * t - 14.3) + 46.3;
33 ac->send(
34 Message :: floatMessage(di, mt->cust));
35 }

Fig. 5 Actors for Nodes tmp and di

modified program (Fig. 2) has the initial value as ho refers

to ac@last.

3. Integration of the Actor Model

This section briefly describes an integration of the Actor

model in Emfrp. In this integration, each node is repre-

sented by an actor and a dependency between two nodes is

expressed as an actor reference. As a natural consequence,

iterations are realized by message passing. The actor-based

representation provides a higher-level abstraction for nodes

in the I/O code of an Emfrp program.

3.1 Representing Nodes as Actors

We use C++ objects to represent actors. The class Actor

(Fig. 4) provides the basic actor APIs. The method send

puts a message in the system queue. When the message is

scheduled to be received by an actor, receive and activate

are invoked at the receiver in this order.

© 2016 Information Processing Society of Japan 3

Vol.2016-EMB-43 No.6
2016/11/11

IPSJ SIG Technical Report

1 module ACController # module name
2 in tmp : Float , # temperature sensor
3 hmd : Float # humidity sensor
4 pulse10ms : Bool # 10 msec interval timer
5 out ac : Bool , # air -conditioner
6 led : Bool # LED
7 use Std # standard library
8

9 # discomfort (temperature -humidity) index
10 node di = 0.81 * tmp + 0.01 * hmd
11 * (0.99 * tmp - 14.3) + 46.3
12

13 node init [0] timer =
14 if !pulse10ms@last && pulse10ms
15 then (timer@last + 1) % 600
16

17 # air -conditioner switch
18 node ac = if timer@last != timer && timer == 0
19 then di >= 75.0
20

21 # LED blinks at 1Hz
22 node led = (timer % 100) < 50;

Fig. 6 Air-Conditioner Controller using a Timer

The compiler for the actor-integrated version of Emfrp is

supposed to produce a collection of actor classes that repre-

sent the nodes in the original Emfrp program. Fig. 5 shows

the definitions of actors that represent nodes tmp and di.

The class Actor2 is a join actor*3 that requires two mes-

sages to invoke activate. Join actors represent nodes that

depend on multiple nodes. We have Actor3, Actor4, . . . as

well.

The compiler also generates a piece of code that instanti-

ates actors in static area as follows.

ACNode ac();
HONode ho(&ac);
DINode di(&ac);
TMPNode tmp(&di);
HMDNode hmd(&di);

Since node dependencies are static in Emfrp, actor refer-

ences are provided as arguments of constructors. A single

iteration starts with messages to actors that represent the

input nodes as follows.

tmp ->send(Message :: unitMessage (& sys_actor));
hmd ->send(Message :: unitMessage (& sys_actor));

The iteration ends with messages to the actor sys_actor sent

from the actors that represent the output nodes.

3.2 Example: Air-Conditioner Controller using a

Timer

Timers are crucial components of most embedded sys-

tems. Fig. 6 shows another implementation of the air-

conditioner controller that utilizes a timer. In this imple-

mentation, the changes of the on/off status occur at most

once per minute. The input node pulse10ms is connected to

a hardware interval timer with 10 msec interval. The inter-

nal node timer constantly counts up on each rising edge of

pulse10ms and resets to 0 every one minute. The value of

*3 Similar notion to join continuation[1]

17 # air -conditioner switch
18 node ac = if timer@last != timer && timer == 0
19 then (di >= 75.0)@delay

Fig. 7 Delayed Block

1 class DINode : public Actor2 { ... }
2

3 void DINode :: activate(Message *mt,
4 Message *mh) {
5 float t = mt->getFloat ();
6 float h = mh->getFloat ();
7 float di = 0.81 * t + 0.01 * h
8 * (0.99 * t - 14.3) + 46.3;
9 mt->cust ->send(

10 mkFloatMessage(di, mt->cust));
11 }
12

13 class ACNode : public Actor { ... }
14

15 void ACNode :: activate(Message *m) {
16 if (m->prevInt () != m->getInt () &&
17 m->getInt () == 0) {
18 tmp ->send(Message :: unitMessage(
19 &acDelayedBlock));
20 hmd ->send(Message :: unitMessage(
21 &acDelayedBlock));
22 }
23 }
24

25 class ACDelayedBlock : public Actor { ...}
26

27 void ACDelayedBlock :: activate(Message *m) {
28 m->cust ->send(
29 Message :: booleanMessage(
30 m->getFloat () > 75.0, m->cust));
31 }

Fig. 8 Implementation of the Delayed Block

ac may change only when timer becomes 0 and di ≥ 75. In

addition, an LED blinks at 1Hz to indicate that the system

is in operation.

A possible problem of this code is that, due to the push-

based execution model of Emfrp, di, tmp and hmd are up-

dated in every iteration regardless of their necessities. In

fact, however, we can see from the definition of ac (lines

18–19) that the value of di (hence tmp and hmd) is required

only once per minute. The results of all other updates are

just ignored. Such wasteful computation is unfavorable es-

pecially for small-scale embedded systems since it leads to

higher power consumption.

3.3 Delayed Blocks

The problem described in the previous subsection can be

resolved using a pull-based execution model. However, the

execution of periodically updating nodes such as timer and

LED require push-based model. Thus we need a mixture of

both execution models.

We extend Emfrp with a simple mechanism called delayed

block. Syntactically, a delayed block is an expression suffixed

with @delay. Fig. 7 shows an example use of a delayed block

with which lines 17–19 of Fig. 6 should be replaced.

In Fig. 6, node ac depends on both timer and di. How-

© 2016 Information Processing Society of Japan 4

Vol.2016-EMB-43 No.6
2016/11/11

IPSJ SIG Technical Report

ever, in Fig. 7, di is removed from the dependency of ac.

So di is no longer in the dependency of any output nodes.

This means that di, hence tmp and hmd are removed from

the program graph. The value of di is needed only when

the condition of if statement of Fig. 7 holds. Thus, the com-

piler performs a simple dependency analysis and produces

the code so that starting messages to tmp and hmd are sent

when the condition holds (Lines 6–9 in Fig. 8).

The compiler now treats DINode as an output node. Thus

the result will be passed to the actor acDelayedBlock, which

plays a role of the continuation of the starting messages to

tmp and hmd. As a result, the sensor values and the discom-

fort index value are calculated only if the condition regarding

the timer is satisfied.

4. Concluding Remark

This paper briefly describes a simple idea of integrating

the Actor model into Emfrp, a functional reactive program-

ming language designed for resource constrained embedded

systems. The integration provides a higher-level view of

the internal representation of nodes, representations of time-

varying values, as well as an actor-based inter-device com-

munication mechanism.

The group of actors representing the nodes of an Emfrp

program are viewed as the meta-level of the program. Thus

it is possible to apply a variation of group-wide reflection[7]

to the actor group to realize more drastic customization

such as application-oriented evaluation (scheduling) polities

or dynamic node reconfiguration.

We have just started this project. We need to work on the

abstraction of the APIs and the integration of inter-device

communication mechanism.

Acknowledgments

This work is supported in part by JSPS KAKENHI Grant

No. 15K00089.

References

[1] Agha, G.: Actors: A Model of Concurrent Computation in
Distributed Systems, MIT Press (1986).

[2] Bainomugisha, E., Carreton, A. L., Van Cutsem, T.,
Mostinckx, S. and De Meuter, W.: A Survey on Reactive
Programming, ACM Computing Surveys, Vol. 45, No. 4, p. 52
(online), DOI: 10.1145/2501654.2501666 (2013).

[3] Czaplicki, E. and Chong, S.: Asynchronous Functional Re-
active Programming for GUIs, 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation (PLDI 2013), ACM, pp. 411–422 (online), DOI:
10.1145/2499370.2462161 (2013).

[4] Hudak, P., Courtney, A., Nilsson, H. and Peterson, J.: Ar-
rows, Robots, and Functional Reactive Programming, Ad-
vanced Functional Programming, Lecture Notes in Computer
Science, Vol. 2638, Springer-Verlag, pp. 159–187 (online),
DOI: 10.1007/978-3-540-44833-4˙6 (2003).

[5] Hughes, J.: Generalising monads to arrows, Science of Com-
puter Programming, Vol. 37, No. 1–3, pp. 67–111 (online),
DOI: 10.1016/S0167-6423(99)00023-4 (2000).

[6] Sawada, K. and Watanabe, T.: Emfrp: A Functional Reac-
tive Programming Language for Small-Scale Embedded Sys-
tems, Modularity 2016 Constrained and Reactive Objects
Workshop (CROW 2016), ACM, pp. 36–44 (online), DOI:
10.1145/2892664.2892670 (2016).

[7] Watanabe, T.: Towards a Compositional Reflective Archi-

tecture for Actor-Based Systems, Workshop on Program-
ming based on Actors, Agents, and Decentralized Control
(AGERE!@SPLASH 2013), ACM, pp. 19–24 (online), DOI:
10.1145/2541329.2541341 (2013).

© 2016 Information Processing Society of Japan 5

Vol.2016-EMB-43 No.6
2016/11/11

