
Accelerate Deep Learning Inference with

MCTS in the game of Go on the Intel Xeon

Phi

Ching-Nung Lin1,a) Shi-Jim Yen1,b)

Abstract: The performance of Deep Learning Inference is a serious issue when combining with
speed delicate Monte Carlo Tree Search. Traditional hybrid CPU and Graphics processing unit
solution is bounded because of frequently heavy data transferring. This paper proposes a method
making Deep Convolution Neural Network prediction and MCTS execution simultaneously at Intel
Xeon Phi. This outperforms all present solutions. With our methodology, high quality simulation
with pure DCNN can be done in a reasonable time.

1. Introduction

Combining Deep Convolutional Neural Net-

work(DCNN) and Monte Carlo Tree Search(MCTS)

becomes a hot topic after AlphaGo beats a Korea

professional go player. However, DCNN evaluation

is 1000 time slower than the traditional pattern

matching method. So, asynchronous combination and

batch inference are used as a compromise. In fact,

synchronized DCNN with MCTS performs better[1].

This paper focuses on how to accelerate it. Although

Graphics processing unit(GPU) is good at DCNN

training, Xeon Phi outperforms GPU at DCNN

prediction with the batch size equal to 1.

Efficiently inference in GPU requires batch execu-

tion, which is able to use maximal threads in the hard-

ware to archive good parallel performance. However,

according to this research[2], it is possible to increase

batch size equal to 1 prediction speed by modifying al-

gorithms. But, MCTS requires sufficiently large sim-

ulations to show its potential. Batch inference effects

MCTS quality badly because of the difficulty to esti-

mate future node selections.

The contribution in this research describes how

Xeon Phi can efficiently execute DCNN prediction and

MCTS on itself: There are three steps: (1) explain

how to use Single instruction, multiple data(SIMD) in

Xeon Phi which is benefit for DCNN inference (2) in-

1 Dept. of Computer Science and Information Engineer-
ing, National Dong Hwa University, Hualien, Taiwan

a) 810221001@gms.ndhu.edu.tw
b) sjyen@mail.ndhu.edu.tw

vent Knowledge Plane to reduce DCNN size without

losing good prediction accuracy (3) show Xeon Phi

that is excellent standalone running parallel MCTS.

Xeon Phi(31SP1) GTX 980 Ti
Cores 57 22 SMM

Threads 228 2816
L1 Data(KB) 32 + 32 64 + 48
L2 Data(KB) 512 x 57 3072

Independent core 228 22
Table 1 Table of Intel Xeon Phi and Nvidia GTX 980 Ti

architecture

2. Architecture

Table 1 shows the main differences between Xeon

Phi and GTX 980 Ti. On-board memory is excluded

because of at least 10 times slowness. The GPU has

more threads which is efficient for deep learning train-

ing. On the contrary, Xeon Phi has more indepen-

dent cores which can run different processes simulta-

neously. In addition, the bigger cache size makes effi-

cient data locality. However, For accelerating DCNN

inference, fit as much as data in the local cache mem-

ory is an important key point. Xeon Phi has more

local memory per independent core(4 threads share

512KB.) comparing to 22 SMM sharing with 3072KB

memory(1SMM is about 140KB). In addition, the la-

tency accessing the local L2 cache in Xeon Phi is 11

cycle[3] in contrast of GPU which is more than 100

cycle[4]. Moreover, there are two advantages:

• Half Precision Floating-point Format(fp16) or 8

Bit Integer Format(int8): store everything with

16 bit float or 8 bit integer type, which is half or

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 65 -

1/4 size of the Floating-point format without sac-

rificing any inference quality[5]. Although GPU

starts to support fp16 or int8 recently, Xeon Phi

remains better performance benefits because of its

bigger cache size for each thread.

• Vectorization: Xeon Phi supports 512 bit SIMD

instructions, Load, store and max(which is used in

ReLU) 16 float or integer values simultaneously.

In addition, SIMD can do 16 FMADD(A∗B+C)

at one time which is important at matrix multi-

plication.

3. Method

Xeon Phi is similar to CPU and owns more cores.

We will introduce how to accelerate performance from

SIMD computing, network size reducing and MCTS

paralleling.

3.1 Accelerate Inference Computation

Table 2 A 7x7 Input Volume

x11 x21 x31 x41 x51 x61 x71
x12 x22 x32 x42 x52 x62 x72
x13 x23 x33 x43 x53 x63 x73
x14 x24 x34 x44 x54 x64 x74
x15 x25 x35 x45 x55 x65 x75
x16 x26 x36 x46 x56 x66 x76
x17 x27 x37 x47 x57 x67 x77

Table 3 A 3x3 Filter Weight

y11 y21 y31
y12 y22 y32
y13 y23 y33

Table 2 and 3 is a good example. As the filter

size is 3x3, first evaluate the convolution value as

x11 ∗ y11 + x21 ∗ y21 + x31 ∗ y31 + x12 ∗ y12 + ...;

Then, stride one cell right, calculating x21 ∗ y11 +

x31 ∗ y21+x41 ∗ y31+x22 ∗ y12+ All elements in

the input volume mostly are required to multiply all

elements in the filter weight.

Our method is to calculate the multiplication of

each element in the input volume and every el-

ement in the filter weight. By the benefit of

vectorization, sixteen data can be processed at

the same time. For example, In one execution,

x11, x21, x31, x41, ..., x13, x23 can multiply y11 syn-

chronously. Furthermore, at the same time, the previ-

ous result can be added such as x11∗y12+(x11∗y11).

After all result value is calculated, the next input vol-

ume can be merged by adding different value together,

this can be done with SIMD swizzle and shuffle in-

struction.

3.2 Train a high quality DCNN with small

size

As previous mention, if DCNN can fit into the

thread local cache, the performance increases dramat-

ically. For GPU, The latency of L2 cache is slow, so

the performance is limited by the speed of memory

access. But, in Xeon Phi, the speed is fast if the net-

work fits into the L2 cache. Considering 256KB space

to store net weight values(The others are for MCTS),

There are 256*1024/(2(fp16) or 1(int 8)) = 131061 or

262122 weights stored as register like execution speed.

Next, how to train a high quality DCNN with small

size of weights is the key. A new Knowledge Plane

method is provided. Instead of using simple features

such as liberty, history, distance to the center, ... as

input planes, The knowledge from search, heuristic, ...

can be merged as DCNN planes before training. This

archives good prediction accuracy with quite small

DCNN size. So other algorithms can be combined

with DCNN by treating outcomes as planes. It might

be a mechanism to mix different well developed algo-

rithms and DCNN.

3.3 Parallel Monte Carlo Tree Search on

Xeon Phi

GPU is not suitable for MCTS because of the de-

pendency diversity. When there are a lot of diverge,

the performance drop significantly. This is the reason

that MCTS is running on CPU in most cases. Xeon

Phi is close to CPU, each thread is hardware indepen-

dent. It can archive good parallel MCTS performance

as same as the SMP CPU architecture, there are more

threads(228 vs. 32) in Xeon Phi. Depending on the

playout numbers, it performs best if the store size of

playouts fits into the local cache.

4. Experimental Result

4.1 Synchronized Performance

The darkforest bot from Facebook with synchro-

nized DCNN which tree is expanded after getting

the result from DCNN evaluations is tested against

Pachi. The simulation number of pachi(11.00) is fixed

as 400000(about 2 dan level, no DCNN) without load-

ing any pattern. The pattern is not used because huge

number of random simulations sometimes benefits for

Semeai. It beats the darkforest with DCNN rollouts

equal to 1024 by killing it. Table 4 shows that the

winning rates increase significantly when the number

of DCNN rollouts is big enough.

4.2 Inference Speed

The darkforest has total 12 layers with 25 feature

planes; The alphago has 13 layers with 48 feature

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 66 -

Rollouts 1 256 1024
Pachi 44.1% ± 4.9% 81.4% ± 3.9% 88.2% ± 3.2%

Table 4 Results (Winning rates) of darkforest various
DCNN rollouts against Pachi

planes. A small DCNN is defined as 11 layers with

7 feature planes. Each layer has 16 channels of kernel

size 3x3 and the last layer convolves 1 channel of ker-

nel size 1x1. Table 5 describes the evaluating time for

different architectures. It is tested with a single thread

on Intel Xeon Phi 31S1P card. The speed of batch size

equal to 1 on GPU for deep learning inference in Go

is around 0.2 second on darkforest[1] and 0.15 second

on alphago[6]. The evaluation time on Xeon Phi de-

pends on the DCNN size. When the DCNN fits the

cache size, it outperforms the GPU which is bounded

to 0.15 seconds because of the transferring, initializ-

ing, ...

Darkforest AlphaGo Small
Weight number 13m 4m 0.04m
Time in seconds 5.21s 1.41s 0.0076s

Table 5 Results of evaluating time

In addition, a knowledge plane is added in addition

to the darkforest 25 feature planes, which is a maxi-

mal 6 move semeai for 2 liberty group search with long

ladder checking. For example, in Figure 1, the three

stones killed is found in one move. Figure 2 shows

a common two liberty semeai problems found in five

moves. In addition, it can solve more complex prob-

lems such as Figure 3 to kill that four stones. In Fig-

ure 4, it is a common situation in many games. This

killed stone is recognized instead of treating as one

normal two liberty stone. It requires average one sec-

ond to make this plane on a E5-2670 CPU. For prac-

tical reason to combine with DCNN inference, using

Field-programmable gate array(FPGA) to accelerate

this process is a good choice.

The Network Architecture is first 5x5 convolution

and 18 3x3 convolution layers, each convolution layer

follows a ReLU nonlinearity. Table 6 describes the

channel sizes. There are total 20 layers, each layer

has the same channel size but last one. The last

layer has 3x3 kernel with 1 channel. The training

data is 10 millions board positions from 9D player

games on the Tygen Go server. The testing data is

another 0.3 millions board positions from the same

source. The input planes is the same as the darkfor-

est one adding one knowledge plane, The knowledge

plane is one extra search plane explained previously.

The training batch size is set to 10; the initial learn-

ing rate is 0.05; the learning policy is Inverse Decay

with Gamma equal to 0.0001 and Power equal to 0.75.

Fig. 1 Long ladder

Fig. 2 Semeai 1

Fig. 3 Semeai 2

There are 55 epochs for each training. First, the ac-

curacy is better than small DCNNs published lately

which is less than 40%[7]. In addition, it outperforms

any patterns trained from Minorization-Maximization

Algorithm[8]. Second, when the channel size is re-

duced, the benefit from the extra knowledge plane in-

creases. With decreasing network size, the predicting

time is reduced from 0.24 second to 0.03 seconds. Int8

is slightly faster than fp16. In our experience, Int8 is

faster significantly than fp16 when the network size is

increased such as the channel size equal to 384. It is

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 67 -

Fig. 4 Semeai 3

possible to get the same quality network with smaller

size by adding more knowledge planes.

Channel size 64 32 24
Accuracy for 25 planes 49.41% 47.27% 46.41%

Accuracy for 25+1 Plane 49.57% 48.01% 47.58%
Weight number 705152 186688 108912

Time in seconds(int8) 0.24 0.05 0.03
Time in seconds(fp16) 0.25 0.06 0.03

Table 6 Results of small DCNN

4.3 MCTS scalability on Xeon Phi

According to previous research[9], Xeon Phi is scal-

ing up to 47 times fast on MCTS. Also, in Table 7,

our Chinesedark chess program which is MCTS with

domain knowledge can scale up to 112 threads. It exe-

cutes standalone MCTS on itself. The number of play-

out is 22400 which is similar to the number as darkfor-

est plays on the computer go tournaments. The Tree

parallelization is used with the global lock. If each

thread evaluates its own DCNN and then runs MCTS

on its own, it outperforms GPU in synchronize mode

in the same time constraint because each thread has

its own computing and storing resource and no com-

munication bottleneck.

Furthermore, in our Small network, the inference

speed is more efficient than GPU, doing a DCNN

only simulation(There are average 200 moves in a

simulation.) costs 1.5 seconds averagely. Accord-

ing the previous paper[7], a two layer network with

0.02 million weights is used, it can perform 80 to

170 simulations on one GPU. The similar evaluation

speed(112threads/1.5 = 75) can be archived with a

bigger network(0.04 v.s. 0.02 million) on Xeon Phi.

Thread number 28 56 112 224
Time in seconds 1306 653 375 321
Table 7 Scalability of Xeon Phi on MCTS

5. Conclusions

Xeon Phi can outperforms deep learning Inference

with GPU especially when the network fits the cache

size. It is possible to merge playout policy with pure

DCNN evaluation in MCTS. This will improve the

strength of the simulation quality dramatically. In

the future, adding more knowledge in the planes is a

good direction to go.

6. Acknowledgement

The authors would like to thank anonymous ref-

erees for their valuable comments in improving the

overall quality of this paper, and Ministry of Science

and Technology of Taiwan for financial support of this

research under the contract numbers 104-2221-E-259

-009 -MY2.

References

[1] Tian, Yuandong and Zhu, Yan, “Better Computer Go
Player with Neural Network and Long-term Predic-
tion”, ICLR, 2016.

[2] Nvidia, “GPU-Based Deep Learning Inference: A Per-
formance and Power Analysis”, Nov., 2015.

[3] Jianbin Fang; Ana Lucia Varbanescu; Henk J. Sips;
Lilun Zhang; Yonggang Che and Chuanfu Xu, “An Em-
pirical Study of Intel Xeon Phi”, CoRR, 2013.

[4] X. Mei; X. Chu, “Dissecting GPU Memory Hierarchy
throughMicrobenchmarking,” in IEEE Transactions on
Parallel and Distributed Systems , vol.PP, no.99, pp.1-1

[5] Suyog Gupta; Ankur Agrawal; Kailash Gopalakrishnan
and Pritish Narayanan, “Deep Learning with Limited
Numerical Precision”, CoRR, 2015.

[6] David Silver; Aja Huang; Christopher J. Maddison;
Arthur Guez; Laurent Sifre; George van den Driess-
che; Julian Schrittwieser; Ioannis Antonoglou; Veda
Panneershelvam; Marc Lanctot; Sander Dieleman; Do-
minik Grewe; John Nham; Nal Kalchbrenner; Ilya
Sutskever; Timothy Lillicrap; Madeleine Leach; Ko-
ray Kavukcuoglu; Thore Graepel and Demis Hassabis,
“Mastering the game of Go with deep neural networks
and tree search”, Nature, 2016, Pages 484-503, Volume
529.

[7] Peter H. Jin and Kurt Keutzer, “Convolutional Monte
Carlo Rollouts in Go”, CoRR, 2016.

[8] Coulom, Rmi. “Computing elo ratings of move patterns
in the game of go.” Computer games workshop. 2007.

[9] S. Ali Mirsoleimani; Aske Plaat; H. Jaap van den Herik
and Jos Vermaseren, “Scaling Monte Carlo Tree Search
on Intel Xeon Phi”, CoRR, 2015.

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 68 -

